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Classification of forces

e a. Tensile force: Tensile force is a type of loading in which the
two sections of material on either side of a plane along its
length tend to be pulled apart or elongated.



* b. Compressive force: Compressive force is a
type of loading in which the two sections of
material on either side of a plane along its
length tend to be pushed or compressed.

 Tensile or compressive stress acts normal to
the stress plane.



e ¢. Shear force: Shear involves applying a load parallel to a plane

which caused the material on one side of the plane to want to
slide across the material on the other side of the plane.

A shearing stress acts parallel to the stress plane.

Shear properties are primarily used in the design of
mechanically fastened components, webs, and torsion
members, and other components subject to parallel, opposing
loads.



e d. Bending moment: Bending involves
applying a transverse load in a manner that

e causes a material to curve shape and results in
compressing the material on one side and
stretching it on the other.



e e. Torsion or twicesting moment: Torsion is
the application of a force that causes twice
sting in a material. Torsion induced in the
material when the transverse load is not lying
on the longitudinal axis (away from the
longitudinal axis).



Types of loads

Static loading is a constant force acting on a material.
Dynamic or cyclic loading is not constant force but fluctuates on the material.
Load is the combined effect of external forces acting on a body.

a)
b)

C)

d)

f)
Q)
h)

Point load or concentrated load: It isthe load considered to act at a point.

Distributed load : The load is distributed or spread in some manner over
the length of the beam.

Uniformly distributed load (u.d.l): The load is distributed or spread
uniformly.

Uniformly varying load (u.v.l): The load distributed or spread is not
uniform i.e. varying along the length. eg.Triangular load, trapezoida
load, parabolic load, etc.

Parabolic loading
Concentrated moment
Uniformly distributed moment
Inclined load



Stress: Stress 15 defined as the internal resistance offered by the body against
deformation.

=
A

o : Stress (tensile or compressive)
P Axial load
A : Cross sectional area

Units of stress : N/mm?2, kN/m?
Simple stress 1s also called direct stress.
Stress 15 the force required per unit cross sectional area.
o Crushing stress 1s a localized compressive stress at the area of contact between
two members.
+ Maximum stress of a material depends on the type of material.
» Stress at a point 1s tensor.




o Compressive stress (or compression) is the stress state caused
by an applied load that acts to reduce the length of the material
aong the axis of the applied load. A simple case of
compression is the uniaxial compression induced by the action
of opposite, pushing forces.

 Tenslestressisthe stress state caused by an applied load that
tends to elongate the material along the axis of the applied
load.

o Shear stressis the stress state caused by the combined energy
of a pair of opposing forces acting along parallel lines of
action through the material. It is the stress caused by faces of
the material dliding relative to one another.



Strain: Strain 15 defined as the ratio of change i length to origmal length.

~

ol
e=—

[
e: Compressive or tenstle stram
0l Change 1n length
[ Original length
o Strain 15 the deformation produced by stress.

» Strain 15 the deformation per unit length.
» Stran rosettes are used to measure the lmnear straimn.



Linear strain 1s the deformation of the bar per unit length in the direction of the
applied force.

Lateral strain s the deformation of the bar per unit length m a direction right angle
to the direction of the applied force.

Shear strain: Shear strain 1s measured by the angle through which the body distorts.

Shear strain, ¢, = tan ¢ e =¢
When a square or rectangular block subjected to shear force 1s i equilibrium, the
shear stress 1n one plane 1s always associated with a complementary shear stress of

equal magnitude in the other plane at right angles to it.
Volumetric strain: It is defined as the ratio of change in volume to original volume

of the body.
~ Changeinvolume oV

e

" Original volume ¥



Hook’s law: Hook’s Law 15 defined as the stress 1s directly proportional to strain.
Stress o Stram

S1ress
— =3 .constant

Strain
» proposed by Robert Hook.



Modulus of Elasticity: Modulus of Elasticity is defined as the linear stress to linear
strain. It 1s denoted by E .

I Linear stress o
Linear strain e

+ E 15 the slope of a linear part of stress-strain curve.

i

Material | Modulus of elasticity, GPa
Aluminium 70

Bronze 80

Brass 100

Copper 120

Steel 200

Diamond 1200




Modulus of Rigidity: Modulus of Rigidity 1s defined as the shear stress to shear
strain. It 15 denoted by G,C or N It 1s also called shear modulus of elasticity.

shear stress 7
G ™ —

shear stram ¢

Bulk modulus; Bulk modulus 1s defined as the normal stress to volumetric stram. It 1s
denoted by K.

~ Volumetric stress 0,

K
volumetricstran e,



Elongation of a bar:

Elongation of a prismatic bar, o/ = ;D;
. . 4P
Elongation of a circular tapered bar, o/ =
wdd,E

P : Applied Load

[ : Length of the bar
A : Cross sectional area

E : Modulus of elasticity of the material of the bar
d,,d,: Diameters at the ends of the bar



::-.' *

Elongation of a bar due to self weight

Prismatic bar
Stress at lower end = 0

Stress at the support, o, = p./

Elongation of bar, 6/ = P
2K

p - Density of the material of the bar

[ : Length of the bar
E : Modulus of elasticity

b. Conical bar:

Elongation of bar, 8/ = i
6F

Stress at lower end = 0
]

Stress at the support, o, = %



Elongation of a bar due to Rotation

The maximum stress in the bar due to rotation occurs at the point of rotating axis.

o _ oI’
ma}:_gp' z

por'l’
12E

Elongation of bar, &/ =



Bar of uniform strength

Vi
ol
A =R L7
4Pl
Elongation of bar, &/ =
T EDd

o : Uniform stress in the bar
D, d : Diameters at the ends of the bar



Tapered flat

Elongation of a tapered flat, 6/ = i log, b
(b, —b)IE b

t: Thickness of the flat
b,, b, : Width of the flat at the ends



Poisson’s ratio

Poisson’s ratio 15 defined as the ratio of lateral strain to longitudinal strain. It is
denoted by pror 1/mor v.

| lateral (or transverse) stram
I 0r —=

~m longitudional (or primary) strain

The value of mvaries between 3 and 4 for differentt materials.
o For most metals, 41 varies between (.25 to (.33



1118 a constant for a given material.

_____Material | Poisson’sratio __
0.0
CEONEE 00210003
0.08
0.1t0 0.2
0.270
0.278
Steel 000 0.288
0.300
0.305
jee 000 0.330
T 0.330
Brass 00000 0.340
0.340
0.355
0.400
Gold 0.440
0.440



« Poisson’s ratio 15 a very important diagnostic property of an 1sotropic elastic
material.
« Range of Poisson’s ratio values for isotropic elastic solid : —1< ££1<0.5

» For incompressible matertals like clay, paraffin and rubber, z = 0.5

» The maximum Poisson’s ratio of 0.5 1s for an 1deal elastic mcompressible material
whose volumetric strain is zero.

» For a perfectly ngid material, z=0., then stretching a specimen causes no
lateral contraction

» For a perfectly isotropic elastic material, Poisson's Ratio 15 0.25.

» Polymer foams have negative values of Poisson’s ratio.

» Some anisotropic materials have are or more Poisson’s ratios above 0.5 in some

directions.
» Poisson’s ratio 1s an isotropic and not anisotropic concept.

« Some bizarre materials have £ <0, on stretching a round bar of such a material,
the diameter of bar increases.



o/ Changein length

Strain along length of member, = —=——
[ Origmnallength

. . ob
Stratn along width of member, e, =—fLe = ' —lle

Stratn along thickness of member, e, =—/Le= o =—Jle
f

b Width of the member
t. Width of the member
ob: Change m width of the member
ot : Change in width of the member



Relationship between the Elastic Modulii:
E=2G1+ u)
F = 3 KAl = 2 )

OK G 3K —2G
= =

3K +G T 6K —-2G
E : Modulus of elasticity
G : Modulus of rigidity

K : Bulk modulus

For an isotropic material. £ = K > G.

1
lfw.”{i§= E =K
1
It == F—K
3
1
E,H}§= =K

E_pu 2G

Lami’s constant, A = e :
(1+ ) (1—2 ) (1—24u)




Bar fixed at both ends subjected to axial force:

| | I s
l | l : -c;.-'_m'?‘ {:
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PP =]



Compound Bars

e Compound bar is statically
Indeterminate to degree 1.

e One compatibility eguation
and one  equilibrium

equation Is required for
analyzing the problem.

« The external applied axial
load is shared by the two
bars.

S



Pl B Equilibrium equation
=g 4 +vo, 4,
E.P : Load shared by the bars 1 and 2
0,. 0, : Stresses n the bars 1 and 2
A . A, : Cross sectional areas of the bars 1 and 2
e .e, . xXXirain produced in the bars 1 and 2

ol .ol,: Ztramn produced in the bars 1 and 2
The strain produced in the two bars 1s sameme.
e, =e, — ol =0l, Compatibility equation
o, O, o

- —s 1:E1
E, E, o, £k,




When the differentce in length of bars is o :

Equilibrium equation, P=F + £
Compatibility equation, 8, =38+ ‘& [

t
+g;'.‘ s——
e, =e +— ;'
2 7 .

Change 1n length of compound bar, 6/ = i
AE + AL,
Load shared by the bars 1, F, = it _Jd]
AE + AE, | |
PAE, |

Load shared by the bars 2, P, =
o AR +A,E,




Compound bars of differentt length:
Equilibrium equation, P=F + P,
Compatibility equation, o/, =0l +o

1

\



Compound bar between two rigid supports:

'.'ll._a.
' 1
-
1.__&‘__ — 2 : n ",..-J -.I
a4
b = III‘. I =
I‘ f 'ﬁ L 'l'. "_Il ‘:\-\,ll'q
1 1 ll.' L . . .



Thermal stresses and strains:

It the temperature of the bar 15 raised or lowered, then s length mcreases o
decreases comespondingly.

6l Change n length cus nse / fall i temperature
ol =lal
[ Length of the bar

 : Coeffictent of [mear expansion
[ Ruse/fall m temperature, T=f, ¢

£ Inital temperature of the bar
- Fnal terperature of the bar



If the change in length of bar is prevented by some means, temperature strain
produced and hence induces temperature stresses.

[

-I - [ —

I i b, -i_:“ W= i { —
b
¥

e,: Temperature strain
e, =al

Temperature strain is directly proportional to change in temperature.,
o, : Temperature stress

c,=e.E=al.E
Temperature stress induced in a bar depends on & ,T and E .

If the temperature of the bar is raised, the temperature strain and stress will be

Compressive in nature.
If the temperature of the bar 1s lowered, the temperature strain and stress will be

tensile in nature.
If the bar i1s allowed to expand / contract freely due to rise / fall of temperature, no

strain and stress will be induced in the bar.



Compound bar subjected to thermal stresses and strain:

Rise in temperature:

—

If «a, =a,, the extension of bar 1 is more than that of bar 2 when subjected to rise in

temperature.

Since the bars 1 and 2 are brazed together, the bar 1 will try to pull the bar 2 and the
bar 2 push the bar 1. Therefore, compressive stress induced in bar 1 and tensile stress
induced in bar 2.

e =al—e

e, =e—a,.l

BRI Y e (1)
_G _ G

€ —Ei= € _E:
Py



Fall in temperature:

_I!F-r"

fotl e

If o >a, the contraction of bar 1 15 more than that of bar 2 when subjected to fall in

femperafure.

Since the bars 1 and 2 are brazed together, the bar 1 will try to push the bar 2 and the
bar 2 will try to pull the bar 1. Therefore, tensile stress mduced 1n bar 1 and
compressive stress induced 1n bar 2.



Circular taper bar subjected to rise/fall temperature:

Free expansion due to rise in temperature, &/ = laT

Elongation of a circular tapered bar, 6/ = 4—PE
wd,d.E
. . . al.E.rdd,
Load required to prevent the free expansion/contraction, P = i
d,

Maximum stress induced at the section having diameter d,,0, =aTE.—

1
.. . . . . d,
Minimum stress induced at the section having diameter d,, o, = «TE. 7

2



Yolumetric strain for a rectangular section:

; : Changein volume o
Volumetric strain, e = : g : 8 =—
Onginal volume I
. !'-: T
ke~ i
P ==l
: =T
s | _
A : -
M k ¥os

Volumetric strain, e =, +e +¢&,
Wolumetric strain 15 equal to the algebraic sum of the strains along the three principal
axes.

1 1 o
Stram in x direction, &, P P i—__i
E mE mE
1 1 o
Strain in y direction, @, = ——. L+ 22 = 73
; m E E m E
1 :
Strain in Z direction, &, =——.—L—— 92, 73
m E E E



Volumetric strain of a circular rod:
LetL: Length of the circular rod

d - Diameter of the circular rod
Volumetric stram, ¢,=2¢,;+¢

Volumetric stram of a circular rod 15 the sum of stran m length and twicece the stram
in diameter.



Volumetric strain of a sphere:

Let d: Diameter of the sphere
Volumetric strain, e, =3¢,

Volumetric strain of a sphere is equal to three times the strain in diameter.

Modulus of elasticity, E = Linearsfress

Linearstrain

Modulus of rigidity, G = Shearsress

Shearstrain

Volumetric stress

Bulk modulus, XK = : _
Volumetricstram



Hoop stress

[f any thin tyre of steel or any other metal is to be shrunk on to a wheel, the diameter
of the tyre is to be slightly smaller than that of the wheel so that it does not come out

casily.
D : Diameter of the wheel
d : Diameter of the tyre

Contraction prevented 7D-7d D-d
Original length ~ 7zd  d

Hoop or circumferential stress due to fall of temperature, 0 = e.E

D-d
o=—.

d
Minimum temperature to which tyre is to be raised so that it can be fitted over the
wheel is given by

rD=rd(1+al)

Temperature strain, e=



Objective questions and answers

01. The maximum value of Poisson’s ratio for an elastic material is CE 1991
2.0.25 b, 0.5 ¢.0.75 d. 0.1
01.b

The maximum Poisson’s ratio is (.5 for an ideal elastic incompressible material
whose volumetric strain is zero.



02. A cantilever beam of tubular section consists of two materials, copper as outer
cvlinder and steel as nner cylinder. It 1s subjected to a temperature rse of 20°C

and o > o, . The stresses developed in the tubes will be CE 1991

e R

3. compression in steel and tension in copper
b. tension in steel and compression in copper
;. no stress in both d. tension in both the materials

2. b

Rise of temperature, T =20°C

I:r'-.: e > I'i-"{'r.'.-.'.*_'

Extension of beam due to rise of temperature, &/ = L.aT
L : Length of the beam

. - Coefficient of linear expansion

T . Change of temperature

since cr, . >, . the free expansion of copper is more than the steel.

Since the two materials are brazed together, copper tube try to pull the steel tube

and steel tube push the copper tube. Therefore, tensile stress induced in steel tube
and compressive stress induced 1n copper tube.



03. The shear modulus { &), modulus of elasticity( £ ) and the Poisson’s ratiof u ) of

amaterial are related as, CE 2002
oG B b i o s
~ ~ — 2(u—1]
03. 3

(r: Shear modulus
E - Modulus of elasticity
L - Poisson’s ratio

Relationship between the above parameters s E=2G(1+ u



04. A bar of varying square cross-section 1= loaded symmetrically as shown in the
figure. Loads shown are placed on one of the axes of symmetry of cross-section.
Ignoring self weight, the maximum tensile stress in N/mm? anywhere is

P L st
e 100 .
o]
100 kN ' 00k
kN CE 2003
a. 16.0 b. 20.0 c. 25.0 d. 30.0
04. g
F

Tensile stress, &= s

Load in lower bar, f = 50 kN

Load on upper bar, 5 = 100+100+530 =230 KN

Cross sectional area of lower bar, 4= 50%50=2500 mm?
Cross sectional area of upper bar, 4; =100%100=1 = 10*mm?

' 3
Tensile stress in lower bar, o, = }{};Lﬂ = 20 N/mm-*
5
Tensile stress in upper bar, @, = % =25 N/mm?
=

Maximum tensile stress = 25 N/mm=



05. For an isotropic material, the relationship between the Young’s modulus ( £),

shear modulus ( G ) and Poisson’s ratio ( x ) is given by CE 2007
a. G= E e e G g G= E d G= E
Tl i F2i 2(1—p)
05.a

E: Young’s modulus
G : Shear modulus
L - Poission’s ratio

EF=2G(1+u) = G=
(1+4) RN




06. A metal bar of length 100 mm is inserted between two rigid supports and its

temperature is increased by 10°C. If the coefficient of thermal expansion is

12 x 10 per °C and the Young’s modulus is 2x 10° MPa, the stress in the bar is

a. Z€10 b.12MPa ¢ .24 MPa d. 2400 MPa CE 2007
06. ¢

Length of the bar, =100 mm

Temperature increase = Al

Coefficient of thermal expansion, & = 12x 10 per °C

Young’s modulus, £=2x 10~ MPa

Stress in the bar due to change of temperature, o =a.TE

=12x10% x 10x2x 10°=24 MPa



07. A rigid bar is suspended by three rods made of the same material as shown in the

ficure. The area and length of the central rod are 3 4and_ L, respectively while
that of the two outer rods are 24 and 2L, respectively. If a downward force of
50 kN is applied to the rigid bar, the forces in the central and each of the outer

rods will be | CE 2007

rh

2. 16.67 KN each b. 30 kKN and 15 KN c. 30 kN and 10 kN d. 21.4 kN and 14.3 kN
07. ¢

Let P, :Force in the central rod P, : Force in each outerrods
B+2P =50 ..........(d)

Since the rigid bar is symmetric, the elongation of centralrod and outerrod is
SAITE.

BL. .B2L
Iy b e iy e s P R )
AE AE 3AE 2A4E
3P, +2B =50 =P=10kN, B=30kN
Force incentralrod, F=30kN  Forceineach of outerrod, P,=10 kN




08. The number of independent elastic constants for a linear elastic isotropic and

homogeneous material is CE 2010
a.4 b.3 c. 2 d. 1
08.c

For a linear elastic isotropic and homogeneous material,

E :2G(1+1] :SK[I—E]
m m

All the three elastic constants can be found if any two of them are known. Hence,
the number of independent elastic constant are 2.



09. The Poisson’s ratio is defied as CE2012

: axial stress b |ateral strian ' |ateral stress i axial strian

“Ilateral stress axial strian axial stress |ateral strian

09.b
Poisson’s ratio 15 defined as the ratio of lateral strain to axial strain.




10. A tapered circular rod of diameter varving from 20 mm to 10 mm is connected to
another uniform circular rod of diameter 10 mm as shown in the following figure.
Both bars are made of same matenal with the modulus of elasticity,
E=2:10°MPa. When subjected to a load 2=30xkN. the deflection at point A is

......... ITIm CE1 2015

iy =20 mmam

e =110 ey
1L.3m

P=303kN
10. 15
Diameters at the ends of tapered bar: &, =20 mm, 4,=10mm_IL =15m.

Diameter of the uniform bar, &,=10mm, L,=2m

Axial load, P =30xkIN
Deflection of point 4, & =8 + &,
4 PI. 2L 4 PI i 4PL

- mEdd, AE aEdd, mEd;
4 =30 2000 4 =30 =x1500

— - + < —=6+9=15mm
A 2107 <2010 a(10) x2x10°




11. An elastic isotropicbody is in a hydrostatic state of stress as shown in the figure.
For no change in the volume fo occur, what should be is Poisson’s ratio?

&y

e
- CE2 2016

a. 0.00 b. 0.25 ¢. 0.50 d. 1.00
11.¢
Volumetric strain, ¢ =e, +e, +e,

For a hydrostatic state of stress, 6, =0,=0, =0
o T o
Strain in x-direction, e, = 7 (1—2xu)

3T
e =—(1-2
, E( 1)

For no change in volume, ¢, =0

%ff(l_gﬂ):n:q—z#:n =S =05



12. An elastic bar of length 7., uniform cross sectional area A, coefficient of thermal
expansion & , and Young’s modulus Eis fixed at the two ends. The temperature
of the bar 1s increased by T, resulting in an axial stress o . Keeping all other
parameters unchanged,if the length of the baris doubled, the axial stress would be

a. o h. 2o ¢ 50 d. 0.25c0 CE1 2017
12.a

L: Length of the bar

A : Uniform cross sectional area

¢ : Coefficient of thermal expansion

E : Young’s modulus

T : Rise of temperafure

¢ . Axial stress induced in the bar

Thermal stress, c=a.T. E

o doesnot depends on the length of the bar.
If the length of the baris doubled, there is no change in axial stress.



2.1 SIMPLE STRESSES AND STRAINS (GATE ME)

01. A block of steel is loaded by a tangential force on its top surface while the bottom
surface is held rigidly. The deformation of the block is due to GATE ME 1992

b e e

a. shear only b. bending only ¢. shear and bending d. torsion

01.c.

If a block is subjected to a tangential force F on its top face, an equal and opposite
force of magnitude F is exerted at the rigid surface has a tendency to rotate in
clockwise direction. It is also subjected to a bending moment of F.h, where h is
the height of steel block. Shear force and bending moment causes relative
displacement of the material in the direction of the face.



02. A large uniform plate containing a rivet-hole is subjected to uniform uni-axial

tension of 95 MPa.The maximum stress in the plateis : GATE ME 1992
Lo I N
|10 em () Smm) -
. l * -

a. 100 MPa b. 285 MPa c. 190 MPa d. Indeterminate

02. a.
o, 1 Axial stress in the plate across the rivet

A, : Cross sectional area of plate hole across the rivet hole.

o : Axial stress in the plate =95 MPa
A : cross sectional area of plate

P = maximum stress induced in the plate across the rivet hole.
P : Load carrving capacity of the plate

P=gA=0,4, = 95x100f =0, x95xf = &, =100 MPa



03 _Figure below shows angid barhinged at A and supportedin a honzontal by two
verficalidentical steel wires. Meglect the weight ofthe beam The tension f; and

I, inductedinthese wires by a verticalload F applied as shown are
FHERRARRAEE

i 3
g

4 b

b Ty b Ty I
3 : %_]A
i
= | g |l I —_—
£ GATE ME 1004
.._E,..'_."E;=E._"=£ h_E;: Pﬂ! r?}:i
2 a +& a + &
Pif Pal Pil
e =i h == d-I-:q—;
L@+ @+ ) 2@+ )
03.h

i
L]

The defarmahon ofthenmd baris shownimn fig.

8§ &, TL TL _ _a
z & AR Ak Al

a &
Takingmorments of all forces about the hinge 4
M =0=fat+l b—Pl=0 o T a+T b=Fl; E-§+E-5= PI
L(f+8*)=Pol; L= Py g R B
d a +& a+& b a+b



04. A freebar oflength L umformly heated from(°C toa tenparatire £ 'C.  Js the
coefficient ofmear expansion and E1s the modulus of elashieity. The stressin the

harls GATE ME 1993
1.0t b, ﬂE . ZEI0 d None ofthe above
04.¢

No stress mducedmthe barasthebaris freeto allowtg sxpand



03. The relationshup Young'smodulus  £), Bull-modulus( £') and Poisson'’s
ratio{ )15 v Enhy GATE ME 200

£ Young smodulus,
K - Bulk modulus
1. Ponsonsratio



06

6.

. Twro identical circular rods of same diameter and same l=ength are subjected to

same marsnitude of axial tensils force. One of the rods is mads out of mild st==l
having the modulus of elasticity of 206 (Pa. The other rod is mads out of cast
iron having the modunlus of elasticiter of 100 GPa. Assume both the materials to be
bomogensons and isotropic and the axial force causas the same amount of
uniform stressin both the rods. The strassas developead are writhin the proportionsal
Limait of the respeactive matarials. Which of the following obsarvations is corract?
a. Both rods elonegate by the same amount ATE MME 2003
b. hiild st==l rod slongates mora than the castiron

c. Cast iron rod elongates mora than the mild steal rod

d. As the stresses are agual strains are also egual in both the rods

.

For mild staal,

! = i3 i Y =

MModulus of slasticity, E, =206 GG Pz

For cast Iron,

- i - - L —_
. 1

i et o ="y % |

hModulus of elasticity, E, =100GEa

Elongation, &L = E — oL oc i
AFE E
R=B=P L—L-I A=—A-4

L _E  _ 100

= =0 485
o L o 200
Thearaefore, elonegation of cast Iron is more than the slongation of mild steesl rod.
Strain, &= e 8o —
E E

e E 206

Strain in cast iron is mmore than the strain in mild st==l.



07. In terms of Poisson’s ratio () the ratio of Young’sModulus (£) to Shear

Modulus (G ) of elastic materials 1s GATE ME 2004
I 1
2. 2(1+ 4 b. 2(1- ¢. —(1+4 d. E(l_ﬂ)
07.a

Poisson’s ratto =

Young’s modulus = £
Shear modulus = G

E:2G(1+p):>%:2(1+;1)



08. The figure below shows a steel rod of 25 mm? cross sectional area. It is loaded at
fourpoints K, L. Mand N. Assume E__, = 200 GPa. The total change in length

of the rod due to loading is GATE ME 2004
ﬂ{ x REILN JECTI M 15
P 500 mm 3 2 00 mm
” | 1700 mem_
a. lum b.-10 um c. 16 um d. -20 um
08.b

The free body diagram for the baris shown in fig.

F -

&: Change in length of bar

=g+, + 0
100x500 150x800 50400 10°
- = - = -(50-120+20)
AE AE AE 25% 20010 ;
1 1 ;
x(-50)=——m =-0.01m =-10x10" mm =-10m

~ 25%200 7”100



09. A steel bar of 40 mm x 40 mm square cross-section is subjected to an axial
compressive load of 200 kN. If the length of the baris 2 m and E=200 GPa, the

clongation of the bar will be: GATE ME 2006
2. 1.25mm b. 2.70 mm c.4.05 mm d.5.40 mm
00.a

Axial compressive load, P=200 kN
Cross sectional area, A=40x 40 mm?

Lengthofthebar, [=2m
Modulus of elasticity £ =200GPa

2 -'. .l _' ™
[ = do i iaka

PE 3 3
Elongation of the bar, §=— = chiailv’ R B R

AE  40x40%200%10°




10. A bar having a cross sectional area of 700 mm?_is subjected to axial loads at the
pogitions indicated . The value of stress in the segment QR is:  GATE ME 2006

BIhY l 35 kN 47N ILEN

I_
[ e} k 3
a. 40 MPa b. 50 MPa c. 70 MPa d. 120 MPa
10. a
P =
BN e & s
The free body diagrams for the baris shown in fig.
o [ Giwe
—i.'J-—i [
s SN
2900 | _ l'_;:""
£ S

-
- N

Cross sectional area, 4 =700 mm®
Force in member QR, P = 28kN {T ensﬂe}

P 3
Stressin bar QR, u:rE,R:—:ZEHIEJ =40 N/mm”
A 700




11. A steel rod of length L and diameter D, fixed at both ends. is uniformly heated to
a temperature rise of AT . The Young's modulusis E and the coefficient of linear
expansionis OL.The thermal stressin the rod is

a. 0 b. aAT ¢. EaAT d. EaATL GATE ME 2007
11.¢

e

L: lengthof the bar

D : Diameter of the bar

AT : Rise of temperature

E : Modulus of elasticity of the material

& : coefficient of linear expansion change in lengthof bar, AL =L.o AT strain,
e=a.AT

Stressinthebar, o =e.E =a.AT.E



. A 200x100x50mm steel block is subjected to a hydrostatic pressure of 13MPa .
The Young’s modulus and Poisson’s ratio of the material are 200 GPa and 0.3

respectively. The change in the volume of the blockin mm’ is GATE ME 2007
a. 85 b. 90 c. 100 d. 110

. b.
Size of block: 200 = 100=50 mm

Hydrostatic pressure on block, ¢ =15MPa

Modulus of elasticity, £ =200 GPa

Poisson’s ratio, ££=0.3

Change in volume of the block, 6V =7
Yo, .

Volumetricstrain, e, = EJ 1-2 u]

BF . S50 5 oy e G

7 200x10°
AV =0x107 x¥ =9x107 x200x100% 50 — 90 mm”




13. Arod of length L and diamter D is subjectedtoa tensile load P. Which of the
following is suffiecient to calculate the resulting change in diameter?

2. Young’ modulus b. Shear modulus GATE ME 2008
c. Possion’s ratio d. Both Young’ modulus and Shear modulus
13.d
oL 1)
E} —— EE'IL PRt
L AE

e;=—jg; 6D=-pgD

To calculate change in diameter, Modulus of elasticity and poisons ratio are
required. Poisson’sratio be found if shear modulus is known. Hence both young's
modulus and shear modulus are required to calculate the change in diameter of the

bar.



14. A free bar of length L uniformly heated from 0°C toa temperature 1 C . eis the
coefficient of linear expansionand E is the modulus of elasticity . Thestress in

the baris GATE ME 2010
TE
a. alE b. e ¢, ZE10 d. None of the above
14.¢

If a body is allowed to expand or contract freely due to rise or fall of temperature,
no thermal stressesare induced in the body.



15. A steelrod of length L and diameter D, fixed at both ends. is uniformly heated
toa temperature rise of AT .The young’smodulusis E and the co-efficient of

linear expansionis &. The thermal stress in the rod is GATE ME 2010
a. 0 b. aAT ¢. EaAT d. EaATL
15.¢

S

' La AT
Thermal strain, e= Ch@gﬁln et R =& AT
Onigial length L

Thermal stress, o =e.E =a.AT.E




16. A =olid steel cube constrained on all six faces 1z heated so that the temperature
rises uniformly by AT If the thermal coefficient of the material is e, Young's
modulus is Eand the Poisson’™s ratio is v, the thermal stress developed in the

cube due to heating 1s GATE ME 2012
g c(ATYVE b _2a(ATE & _ 3e(AT)E Ty (AT )E
=TT =y T =TT 3(1-2v)

16. 3

Temperature rise = AT

Coefficient of thermal expansion, =a
Young's modulus =&

Poisson™s ratio = U

Thermal stress developed in the cube, ="

— gl

Let abe thn:e_sidn:a of the cube. Since the cube 15 constramned to expand on all six
faces, the stress induced 1n all the three directions will be the same.
G, =0,=0_=0

Strain in x direction, & =E—E-G'1.—E o
FE HE ° E
o
=a—{i=2
o
Thermal strain in x direction, & = —a AT
AT E

i AT = (L= s
. E{ £) o3 2




17. A rod of length L having uniform cross-sectional area A is subjected to a tensile
force P as shown in the figure below. If the Young’s moudlus of the material

varies lineraly from E, and E, alongthe length of the rod, the normal stress
developed at the section—SSis GATE ME 2013

e

Normal stress at SS. o= p

The stress induced in the bar does not depends on the variation of modulus of
Elasticity.



18. A metallic rod of 500 mm length and 50 mm diameter, when subjected to a
tensile force of 100 kN at the ends, experiences a n increase 1n its length by 0.5

mm and a reduction in its diameter by 0.015 mm. The Poisson’s ratio of the rod
material 1s GATE ME1 2014
18.0.3

Length of the rod, L=500mm
Diameter of therod, D =50 mm
Tensile force, P=100kN
Increase 1n length, 6L =0.5mm

Reductionin diameter, 60 =0.015mm
Poissonratio, u =?

Lateral strain =~ 6D/D  0.015 ’ 500
Longitudional stram S6L/L 50 0.5

Poisson’sratio, i = 0.3



19. A 200 mm long, stress free rod at room temperature 1s held between two
immovable rigid walls. The temperature of the rod is uniformly raised by 250° C.
If the Young's modulus and coefficient of thermal expansion are 200 GPa and
1%107 /° C, respectively, the magnitude of the longitudinal stress (in MPa)
developed in therod 1s GATE ME1 2014
19.500

Length of the rod, L=200mm

Rod 1s held between two immovable rigid walls.
Rise of temperature, 7'=250°C

Modulus of elasticity, £=200 GPa

Coefficient of thermal expansion, o =1x 10°/°C
Longitudional stress developed in the rod, =2

o=aTE =1x10" x250x 200 x10°= 500 N/mm? (Compressive)



20. If the Poisson'sratio of an elastic material 1s 0.4, the ratio of modulus of rigidity
to Young'smodulusis......... GATE ME4 2014
20.0.357

Poisson’sratio, =04
Modulus of rigidity (G) _,
Youngs modulus(E)
E=2G(1+y)=> E=2G(1+04) =2.8G
¢ = 1 =357
E 28




21. The number of independent elastic constants required to define the stress-strain
relationship for an 1sotropic elastic solids........ GATE ME4 2014

a2

For an 1sotropicelastic solid, two independent elastic constants required to define

the stress strain relationship.



22. A rod 1s subjected to a uni-axial load within linear elastic limit. When the change
in the stress 1s 200 MPa, the change in the strain 1s 0.001. If the Poisson’s ratio of
the rod 1s 0.3, the modulus of rigidity (in GPa) is.... GATE ME 2015

22.76.9
Change 1n stress, oo =200MPa
Change in strain e =0.001
Poisson’sratio, ¢ =0.3
Modulus of rigidity, G =2

. s6 200
Modulus of elasticity, E=— =22 == =200 x 10> MPa =200 GPa

e Se 0.001
E=2G(1+u) =200=2G(1+0.3) = 200=2.6G = G=76.9 GPa




23. A horizontal bar with a constant cross-section is subjected to loadingas shown in

the figure. The Young’s moduli for the sections AB and BC are 3E and E.
respectively.

B s S i
:'r! i
l-l-

-
*-L i !
3 . = _u

Forthe deflectionat C to be zero, the ratio P/ F is GATEMEI1 2016

23.4

Deflectionof C. §=6,, + 65,
(P-F)L FL _ P-F

3| — =
A=x3E AE

0=

== P =0 ::=P=4F:=§=4



24

A circular metallic rod of length 250 mm is placed between two rigid immovable
walls as shown in the figure. The rod is in perfect contact with the wall on the left
side and there is a gap of 0.2 mm between the rod and the wall on the right side. If
the temperature of the rod is increased by 200 C, the axial stress developed in the
rod is MPa.

Young's modulus of the material of the rod is 200 GPa and the coefficient of
thermal expansion is 107 per °C. GATE ME2 2016

— e |"Ir 0.2 mrm

240

Length of therod, L=250 mm

The rod is placed between two rigid immovwvable walls.

Gap between wall androd. &, =0.2mm

Rise of temperature, T = 200°C

Axial stress developedin therod. =7

Young's modulus, E= 200 GPa

Coefficient of thermal expansion. e =107 /*C

Free expansion of the bar due torise of temperature &, = Lad
=250 = 10 »x 200 =0.5 mm

Expansion of the bar prevented, & =0.5-0.2 =0.3mm

25
Fl s X0 g o = 240MPa (Compressive)

5: e e—
AE 200=10°




P
LA

[
LA

_ A horizontal bar, fixed at one end { x=0), has a length of 1 m. and cross-
sectional area of 100 mm?. Its elastic modulus varies along its length as given by
E(x)=100e *GPa. where xis the length coordinate (in m) along the axis of the

bar. An axial tensile load of 10 kN is applied at the free end (x=1) The axial

displacement of the free end is ..... mm_ GATE ME 2017
.1.718

Length of bar, L=1m
Cross sectional area, A = 100 mm?

Elastic modulus, E(x)=100e™ GPa

Axial displacement of the free end, 5L =7

Let us consider the elemental length dx which is at a distance of x from the free
end.

E[cir}=p{ir
AEx
L
= [ Al PV A R T
“{E}: 41[:1[:12* 1[][];1-3 1004 H IDD;{
10x10°

=———(-1)=1.718mm
100100



26. The Poisson’s ratio for a perfectlv incompressible linear elastic material is

a 1 b. 0.5 c. 0 d. infinity GATE ME 2017



27. A steel bar 1s held by two fixed supports as shown in the figure and 1s subjected to

an increase of temperature AT =100"C . If the coefficient of thermal expansion

and Young's modulus of elasticity of steel are 11x 10-%/°C and 200 GPa,
respectively, the magnitude of thermal stress (in MPa) mduced in the bar is ...

GATE ME 2017
27. 30

Steel bar 15 held by two fixed supports
[ncrease in temperature, 7'=100° C

Coefficient of thermal expansion, ¢=11x10"/*C

Young’s modulus of elasticity, £=200 GPa
Thermal stress induced 1n the bar, =7

o= aTE =11 105 x 100x200x10° = 220 MPa



28. A rod of length 20 mm 1s stretched to make a rod of length 40 mm. Subsequently,
it 1 compressed to make a rod of final length 10 mm. Consider the longitudinal
tensile strain as positive and compressive strain as negative. The total true

longitudimal strain 1n the rod 1s GATE ME 2017
. -0.5 b. -0.69 c.-0.75 d.-1.0

28.
[nitial length of rod, L =20 mm

Stretched length of rod, L, =40 mm

Final length of rod, L, =10 mm
Total true strain tn the rod, e=?



29 A bar of uniform cross section and weighing 100 N is held horizontally using two
massless and inextensible strings S1 and 52 as shown in the figure.
Rigid support

F ol ol o i G S N A S R A ol il ol L o A

.02 L2
The tensions in the strings are GATE ME1 2018
a. 71=100N and I,=0N b. ;=0Nand I, =100 N
c. 1=75Nand I; =25 N d7=25Nand I =75 N

. P R -
= -i: n'.'.a-"-—l"-.l'd--'-. -"f.a.l':-".._.'_q"'-".-.a. s l|"'-.—'-.—-J-

Fo
R B

T %
}__'I_. 4T
-' 1 P,
g e = EEEST i =2 =
G | [ — T
e ¥io0n
L=t —_ — P - - Cxe bl _E;Lg"l._cfw.ﬂ-'-n'-ﬂ
SF-0=>T+T,=100.._ .. i



30. A bimetallic cvlindrical bar of cross sectional area 1 m2 is made by bonding Steel

30.

(Young s modulus = 210 GPa) and Aluminium (Y oung's modulus = 70 GPa) as
shown in the figure. To maintain tensile axial strain of magnitude 10-% in Steel
bar and compressive axial strain of magnitude 10-% in Aluminum bar, the

magnitude of the required force P (in kN) along the indicated direction is

L2 L2
Z7 _t—»r L
E A Steel Aluminium ""‘-E
" perfectly bonded interface - GATE ME2 2018
a. 70 b. 140 c. 210 d. 280
210

Cross sectional area, A= 1 m?

Young’'s modulus of steel, £, =210 GPa
Young's modulus of Aluminum. E ;=70 GPa

Tensional axial strain in steel, e, = 10-°

Compressive axial strain in Aluminum, e, = 10

€: =€y

FAEEN T Y _

[PV _(P) LB _ P p_pE _p 20y
VAE). \LAE), dAE. AE, E, 70
ﬂ+ﬂ;=P:>3ﬂ_.+ﬂ_.=P:>P£=§=E=%_P

(P ; P 5

b—z| =167" =10"° = P=210x 10 N=210kN

_1 :} '] 3
AR 1x10° % 210x10°



31_A solid cube of side 1 m is kept at a room temperature 32°C. The coefficient of

linear thermal expansion of the cube material is 1x10°/°C_ and the bulk modulus
is 200 GPa. If the cube is constrained all around and heated uniformly to 42°C,

then the magnitude of volumetric (mean) stress (in MPa) induced due to heating

is._.. GATE ME1 2019
31.60

Side of solid cube, a=1m

Initial temperature, T; =32°C

Coefficient linear thermal expansion, o =1x 102/°¢C

Bulk modulus, k=200GPa

Final temperature, T, =42°C

Rise of temperature, T=42-32=10C

Strain in each direction due to temperatures,

e =e =@ =a T =1x102x10=10"*

Volumetric strain, e, = e, +e, +e =3x10"*

3T 3T
Also e =—(1-2i)=e =— —eg =
. 8 E{ u) = e, 1 ’

Ix10%=— 2 __ = 5 =60 MPa
200x10°

=9



