SIGNALS AND SYSTEMS

 For
Graduate Aptitude Test in Engineering

$$
\underset{\substack{\text { Py } \\ \text { Drofessor of ECE } \\ \text { JNTUK }}}{\text { N. Balaji }}
$$

Session: 5

Topic : Fourier transform
Date : 15.05.2020

$$
\underset{\text { Professor of ECE }}{\text { Dr. N. Balaji }}
$$

Syllabus

Continuous-time signals: Fourier series and Fourier transform representations, sampling theorem and applications; Discrete-time signals: discrete-time Fourier transform (DTFT), DFT, FFT, Ztransform, interpolation of discrete-time signals;
LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques.

Contents

- Fourier Series - Observations and Limitations
- Fourier Transform
- Use of Fourier Transform
- Existence of Fourier Transform
- Properties of Fourier Transform
- Finding Fourier Transform of a Given Signal
- Example Problems
- GATE Previous Questions

Fourier Series - Observations and Limitations

Real world signals are rarely periodic.

Transient behaviour is common in Electronics and Communication Engineering

> The discrete spectrum is sparse and cannot carry complex information

A different representation is needed for non-periodic signals.

Aperiodic Signal Representation in Frequency Domain

- A periodic continuous-time signal can be represented in frequency domain using Fourier series.
- But in general, signals are non periodic.
- To address this, we use Fourier transform

Fourier Transform

- Transformation is the process in which either a time domain signal is converted to frequency domain or frequency domain signal is Converted to time domain so that the signal analysis becomes easy.
- For any non-periodic signal as $T \rightarrow \infty$ implies $w_{0} \rightarrow 0$
- The discrete spectrum of Fourier Series is converted to continuous spectrum in Fourier Transform.
- Extension of Fourier Series is Fourier Transform
- Fourier Transform is an extension of F.S to non-periodic signals.

Fourier Integral

$$
\begin{aligned}
f_{T}(t) & =\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t} \quad c_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f_{T}(t) e^{-j n \omega_{0} t} d t \\
& =\sum_{n=-\infty}^{\infty}\left[\frac{1}{T} \int_{-T / 2}^{T / 2} f_{T}(\tau) e^{-j n \omega_{0} \tau} d \tau\right] e^{j n \omega_{0} t} \quad \omega_{0}=\frac{2 \pi}{T} \quad \Rightarrow \frac{1}{T}=\frac{\omega_{0}}{2 \pi} \\
& =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty}\left[\int_{-T / 2}^{T / 2} f_{T}(\tau) e^{-j n \omega_{0} \tau} d \tau\right] \omega_{0} e^{j n \omega_{0} t} \\
& =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty}\left[\int_{-T / 2}^{T / 2} f_{T}(\tau) e^{-j n \omega_{0} \tau} d \tau\right] e^{j n \omega_{0} t} \Delta \omega \quad \text { Let } \quad \Delta \omega=\omega_{0}=\frac{2 \pi}{T} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f_{T}(\tau) e^{-j \omega \tau} d \tau\right] e^{j \omega t} d \omega
\end{aligned}
$$

Fourier Integral

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \underbrace{\left[\int_{-\infty}^{\infty} f(\tau) e^{-j \omega \tau} d \tau\right]}_{F(\omega)} e^{j \omega t} d \omega
$$

$$
\begin{aligned}
f(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(j \omega) e^{j \omega t} d \omega & \text { Synthesis } \\
F(j \omega) & =\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t & \text { Analysis }
\end{aligned}
$$

Fourier Series vs. Fourier Integral

Fourier
Series:

$$
\begin{array}{ll}
\hline f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{0} t} & \text { Period Function } \\
c_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f_{T}(t) e^{-j n \omega_{0} t} d t & \text { Discrete Spectra }
\end{array}
$$

Fourier Integral:

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(j \omega) e^{j \omega t} d \omega
$$

Non-Period
Function

$$
F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \quad \text { Continuous Spectra }
$$

Fourier Transform Pair

Inverse Fourier Transform:

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega \text { Synthesis }
$$

Fourier Transform:

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \quad \text { Analysis }
$$

Fourier Transform

- Fourier Transform

$$
\begin{aligned}
& x(t) \rightleftharpoons X(\omega) \\
& X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

$$
\left.\begin{array}{rlrl}
\omega & =2 \pi f & 2 \pi \delta(\omega) & =\delta(f) \\
d \omega & =2 \pi d f & \text { Proof: } & 2 \pi \delta(\omega)
\end{array}\right)=2 \pi \delta(2 \pi f)
$$

Example Problem

- If $\mathrm{X}(\mathrm{t})$ is a voltage waveform, then what are the units of $X(f)$
- Sol:

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) \cdot e^{-j 2} d t \\
& =\text { volts. sec }
\end{aligned}
$$

- So $X(f)$ unit is volts.sec or volts $/ \mathrm{Hz}$

Conditions for existence of Fourier Transform

- Conditions for existence of F.T.: (Dirichlet's Conditions)

1. Signal should have finite number of maxima \& minima over finite interval.
2. Signal should have finite number of discontinuities over finite interval.
3. Signal should have absolutely integrable.

$$
\text { i.e. } \int_{-\infty}^{\infty}|x(t)| d t<\infty \quad \rightarrow \quad \text { Impulse signal }
$$

- Dirichlet's conditions are sufficient but not necessary.

Calculate Fourier Transform for a given Signal

- Q: Calculate Fourier Transform for the signal

$$
x(t)=e^{-a t} u(t), a>0
$$

- Sol:

$$
\begin{aligned}
X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-j \omega t} d t \\
& =\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t=\int_{0}^{\infty} e^{-(a+j \omega) t} d t=\int_{0}^{\infty} e^{-(a+j \omega) t} d t \\
& =\left[\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right]_{0}^{\infty}=\frac{e^{-(a+j \omega) \infty}-e^{0}}{-(a+j \omega)}
\end{aligned}
$$

Solution

$$
\begin{array}{lr}
=\left[\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right]_{0}^{\infty}=\frac{e^{-(a+j \omega) \infty}-e^{0}}{-(a+j \omega)} & e^{-(a+j \omega) \infty}=e^{-a \infty} \cdot e^{-j \omega \infty} \\
=\frac{0-1}{-(a+j \omega)} & e^{-a \infty}=0, a>0
\end{array}
$$

$$
\therefore X(\omega)=\frac{1}{(a+j \omega)}
$$

$$
e^{-j \infty}=\cos \infty-j \sin \infty
$$

- The $\cos \& \sin$ functions are not defined in the given range.
- At $t= \pm \infty$, complex exponentials \& sinusoidal functions are undefined

Fourier Transform of Right-Sided Exponential

$$
\begin{aligned}
& x(t)=e^{-a t} u(t), a>0 \\
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{0}^{\infty} \underbrace{e^{-a t} e^{-j \omega t}}_{e^{-(a+j \omega) t}} d t \\
& =-\left.\left(\frac{1}{a+j \omega}\right) e^{-(a+j \omega) t}\right|_{0} ^{\infty}=\frac{1}{a+j \omega} \\
& \text { Even symmetry } \\
& \text { Odd symmetry }
\end{aligned}
$$

Properties of Fourier Transform

Linearity $\rightarrow a_{1} x_{1}(t)+a_{2} x_{2}(t) \rightleftharpoons a_{1} X_{1}(w)+a_{2} X_{2}(w)$
Time reversal $\rightarrow x(-t) \rightleftharpoons X(-w)$
Conjuction $\rightarrow x^{*}(t) \rightleftharpoons X^{*}(-w)$
Time shif ting $\rightarrow x\left(t-t_{0}\right) \rightleftharpoons X(w) e^{-j w t_{0}}$
Time scaling $\rightarrow x(a t)(a \neq 0) \rightleftharpoons \frac{1}{|a|} X\left(\frac{w}{a}\right)$
Freq. shif ting $\rightarrow e^{-w_{0} t} x(t) \rightleftharpoons X\left(w+w_{0}\right)$
Diff. in time $\rightarrow \frac{d^{n} x(t)}{d t^{n}} \rightleftharpoons(j w)^{n} X(w)$

Properties of Fourier Transform

Integration in time $\rightarrow \int_{-\infty}^{t} x(t) \mathrm{d} t \rightleftharpoons \frac{X(w)}{j w}+\pi X(0) . \delta(w)$
Convolution in time $\rightarrow x_{1}(t) * x_{2}(t) \rightleftharpoons\left[X_{1}(w) \cdot X_{2}(w)\right]$
Multiplication in time $\rightarrow x_{1}(t) \cdot x_{2}(t) \rightleftharpoons \frac{1}{2 \pi}\left[X_{1}(w) * X_{2}(w)\right]$

$$
x_{1}(t) \cdot x_{2}(t) \rightleftharpoons\left[X_{1}(f) * X_{2}(f)\right]
$$

Diff.in freq. $\rightarrow t^{n} x(t) \rightleftharpoons(j)^{n} \frac{d^{n} X(w)}{d w^{n}}$
Parsval's energy theorem $\rightarrow E=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(w)|^{2} \mathrm{~d} w$

Properties of Fourier Transform

$$
\begin{aligned}
& \text { Modulation } \rightarrow x(t) \cos w_{0} t \rightleftharpoons \frac{1}{2}\left[X\left(w+w_{0}\right)+X\left(w-w_{0}\right)\right] \\
& \qquad x(t) \sin w_{0} t \rightleftharpoons \frac{1}{2}\left[X\left(w+w_{0}\right)-X\left(w-w_{0}\right)\right] \\
& \text { Area of time - domain } \rightarrow X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} \mathrm{~d} t \\
& X(0)=\int_{-\infty}^{\infty} x(t) \mathrm{d} t
\end{aligned}
$$

Properties of Fourier Transform

$$
\begin{aligned}
& \text { Area under Freq. Domain } \rightarrow \\
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(w)^{j w t} \mathrm{~d} w \\
& x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(w) \mathrm{d} w \\
& \int_{-\infty}^{\infty} X(w) \mathrm{d} w=2 \pi \times(0)
\end{aligned}
$$

$$
\text { Area under } X(w)=2 \pi x(t)_{t=0}
$$

Proof of Properties of Fourier Transform-Linearity

1. Linearity (Superposition)

$$
\begin{aligned}
& \text { If } X_{1}(t) \Leftrightarrow X_{1}(\omega) \quad \text { and } \quad X_{2}(t) \Leftrightarrow X_{2}(\omega) \\
& \text { Then, } a_{1} x_{1}(t)+a_{2} x_{2}(t) \Leftrightarrow a_{1} X_{1}(\omega)+a_{2} X_{2}(\omega)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] e^{-\int \omega t} d t & =a_{1} \int_{-\infty}^{\infty} x_{1}(t) e^{-j \omega t} d t+a_{2} \int_{-\infty}^{\infty} x_{2}(t) e^{-\int \omega t} d t \\
& =a_{1} x_{1}(\omega)+a_{2} x_{2}(\omega)
\end{aligned}
$$

Proof of Properties of Fourier Transform- Time Shifting

2. Time Shifting

$$
\text { If } x(t) \Leftrightarrow X(\omega)
$$

$$
\text { Then, } \quad x\left(t-t_{0}\right) \Leftrightarrow X(\omega) \mathrm{e}^{-j \omega t_{t}}
$$

$$
\begin{aligned}
\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t & =\int_{-\infty}^{\infty} x(\tau) e^{-j \omega(\tau+t)} d \tau \\
& =e^{-j \omega t_{0}} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \\
& =e^{-j \omega t_{0}} X(\omega)
\end{aligned}
$$

Proof of Properties of Fourier Transform- Time Scaling

3. Time Scaling

$$
\begin{aligned}
& \text { If } x(t) \Leftrightarrow X(\omega) \quad \text { then } \\
& \left.x x(a t) \Leftrightarrow \begin{array}{c}
1 x\left({ }^{\omega}\right) \\
\\
\hline
\end{array} \right\rvert\, \begin{array}{c}
a \mid \\
\hline
\end{array}
\end{aligned}
$$

Proof:.	Let	$\boldsymbol{z}=\boldsymbol{a} t$	then	$t=\tau / \boldsymbol{a}$	and

If, $a>0$ then

$$
\begin{aligned}
\int_{-\infty}^{T} x(a t) e^{-j a t} d t & =\int_{-\infty}^{T} x(\tau) e^{-j \frac{\omega}{a}} \frac{1}{a} d \tau \\
& =\frac{1}{a} \times\left(\frac{\omega}{a}\right)
\end{aligned}
$$

Proof of Properties of Fourier Transform- Duality

4. Duality (Symmetry)

$$
\text { If } x(t) \Leftrightarrow X(\omega) \text { then }
$$

$$
X(t) \Leftrightarrow 2 \pi x(-\omega) \quad \text { or } \quad X(t) \Leftrightarrow X(-f)
$$

Proof: \quad Since t and ω are arbitrary variables in the inverse Fourier transform

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j a t} d \omega
$$

we can replace ω with t and t with - ω to get

$$
x(-\omega)=\frac{1 \infty}{2 \pi} \int_{-\infty}^{\infty} X(t) e^{-\omega / \omega} d t
$$

Therefore,

$$
F\{X(t)\}=\int_{-\infty}^{\infty} X(t) e^{-/ \omega x} d t=2 \pi x(-\omega)
$$

Proof of Properties of Fourier Transform- Time Reversal

Time Reversal

$$
\text { If } x(t) \Leftrightarrow X(\omega) \text { then }
$$

$$
X(-t) \Leftrightarrow X(-\omega)
$$

Proof:	Let $-t=\tau$. Then $t=-\tau$ and $d t=-d \tau$

$$
\int_{-\infty}^{\infty} x(-t) e^{-j \omega t} d t=-\int_{-\infty}^{\infty} x(\tau) e^{-j(-\omega) \tau} d \tau=X(-\omega)
$$

Proof of Properties of Fourier Transform- Frequency Shifting

Frequency Shifting

If $x(t) \Leftrightarrow X(\omega)$ then

$$
X(t) e^{-j \omega_{t} t} \Leftrightarrow X(\omega-\omega)
$$

Proof:

$$
\int_{-\infty}^{\infty} x(t) e^{j \omega t} e^{j \omega t} d t=\int_{-\infty}^{\infty} x(t) e^{-j(\omega-\omega) t} d t=X\left(\omega-\omega_{c}\right)
$$

Example: Determine the Fourier transform of $\cos \omega_{c} t$ and $\sin \omega_{c} t$

$$
x(t)=\cos \omega t=\frac{1}{2} e^{j \omega t}+\frac{1}{2} e^{-j \omega t} \Leftrightarrow X(\omega)=\pi\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]
$$

or

$$
x(t)=\cos \omega t=\frac{1}{2} e^{j \omega_{t} t}+\frac{1}{2} e^{-j \omega_{t} t} \Leftrightarrow X(f)=\frac{1}{2}\left[\delta\left(f-f_{\sigma}\right)+\delta(f+f)\right]
$$

The phase spectrum is zero everywhere.

$$
x(t)=\sin \omega t=\frac{1}{2 j} e^{j \omega t}-\frac{1}{2 j}-e^{\omega t} \mathrm{c} \quad \Leftrightarrow X(\omega)=-j \pi[\delta(\omega-\omega)-\delta(\omega+\omega)]
$$

$$
x(t)=\sin \omega_{c} t=\frac{1}{2 j} e^{j \omega_{0} t}-\frac{1}{2 j} e^{-j \omega_{0} t} \quad \Leftrightarrow X(f)=\frac{-i}{2}[\delta(f-f)-\delta(f+f)]
$$

Proof of Properties of Fourier Transform- Modulation

7. Modulation

If $x(t) \Leftrightarrow X(\omega) \quad$ then
$\left.x(t) \cos (\omega t) \Leftrightarrow{ }^{1} \frac{1}{2} X(\omega-\omega)+X(\omega+\omega)\right]$
Proof:

$$
\begin{aligned}
& \begin{aligned}
\int_{-\infty}^{\infty} x(t) \cos \left(\omega_{c} t\right) \mathrm{e}^{-j \omega t} d t & \left.=\int_{-\infty}^{\infty} x(t) \frac{1}{2} L \mathrm{e}^{-/ \omega_{l} t}+\mathrm{e}^{j \omega t}\right\rfloor^{-j \omega t} d t \\
& =\frac{1}{2}\left[\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-\int\left(\omega-\omega_{2}\right) t} d t+\int_{-\infty}^{\infty} x(t) \mathrm{e}^{-\int\left(\omega+\omega_{c}\right) t} d t \mid\right]
\end{aligned} \\
& =\frac{1}{2}\left[X\left(\omega-\omega_{d}\right)+X(\omega+\omega)\right]
\end{aligned}
$$

Proof of Properties of Fourier Transform- Time Differentiation

General case
$\frac{d^{n} x(t)}{d t^{n}} \Leftrightarrow(j \omega)^{n} X(\omega)$

Proof: \quad Taking the derivative of the inverse Fourier trans form

$x(t)=\int_{2 \pi}^{1 \infty} X(\omega) e^{j \omega t} d \omega$
We obtain $\quad$$d x(t)$ $d t$ $\int_{-\infty}^{1^{\infty}} \int_{-\infty} j \omega X(\omega) e^{j \omega t} d \omega$

Therefore

$$
\frac{d x(t)}{d t} \Leftrightarrow j \omega X(\omega)
$$

Proof of Properties of Fourier Transform- Convolution

11. Convolution

$$
\begin{aligned}
& Y(\omega)=\int_{-\infty}^{\infty} h(\tau)\left|\int_{-\infty} x(t-\tau) e^{-j \omega t} d t\right| d \tau \\
& Y(\omega)=\int_{-\infty}^{\infty} h(\tau) X(\omega) e^{-\mu \omega \tau} d \tau=X(\omega) \int_{-\infty}^{\infty} h(\tau) e^{-j \omega \tau} d \tau \\
&=X(\omega) H(\omega)
\end{aligned}
$$

Fourier Transform for Real Functions

If $f(t)$ is a real function, and $F(j \omega)=F_{R}(j \omega)+j F_{I}(j \omega)$
$\longrightarrow F(-j \omega)=F^{*}(j \omega)$

$$
\begin{aligned}
F(j \omega) & =\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t \\
F^{*}(j \omega) & =\int_{-\infty}^{\infty} f(t) e^{j \omega t} d t=F(-j \omega)
\end{aligned}
$$

Fourier Transform for Real Functions

If $f(t)$ is a real function, and $F(j \omega)=F_{R}(j \omega)+j F_{(}(j \omega)$
$\Longrightarrow F(-j \omega)=F^{*}(j \omega)$
$\Longrightarrow F_{R}(j \omega)$ is even, and $F_{(}(j \omega)$ is odd.

$$
F_{R}(-j \omega)=F_{R}(j \omega) \quad F_{l}(-j \omega)=-F_{l}(j \omega)
$$

\Longrightarrow Magnitude spectrum $|F(j \omega)|$ is even, and phase spectrum $\phi(\omega)$ is odd.

Fourier Transform for Real Functions

If $f(t)$ is real and even
$\longrightarrow F(j \omega)$ is real

Pf)

$\begin{aligned} \text { Even } & \longrightarrow f(t)=f(-t) \\ & \longmapsto F(j \omega)=F(-j \omega) \\ \text { Real } & \longrightarrow F(-j \omega)=F^{*}(j \omega)\end{aligned}$

$$
F(j \omega)=F^{*}(j \omega)
$$

If $f(t)$ is real and odd
$\Longrightarrow F(j \omega)$ is pure imaginary
Pf)
Odd
$\Longrightarrow f(t)=-f(-t)$
$\Longrightarrow F(j \omega)=-F(-j \omega)$
Real $\quad \Longrightarrow F(-j \omega)=F^{*}(j \omega)$
$\Longrightarrow \quad F(j \omega)=-F^{*}(j \omega)$

Example Problem -Fourier Transform of $e^{a t} u(-t)$ for $a>0$

$$
\text { 2) } e^{a t} \mathrm{u}(-\mathrm{t}) \quad \mathrm{a}>0 \quad \Rightarrow
$$

Using time reversal property

$$
\begin{aligned}
& F(x(t)) \stackrel{F \cdot T}{\leftrightarrow} X(\boldsymbol{\omega}) \\
& F(x(-t)) \stackrel{F \cdot T}{\leftrightarrow} X(-\boldsymbol{\omega}) \\
& X(-\boldsymbol{\omega})=\frac{1}{a-j \boldsymbol{\omega}} \\
& e^{a t} u(-t) \stackrel{F \cdot T}{\leftrightarrow} \frac{1}{a-j \boldsymbol{\omega}}
\end{aligned}
$$

Example Problem -Fourier Transform of $\delta(\boldsymbol{t})$

3) $x(t)=\delta(t)$
$X(\boldsymbol{\omega})=\int_{-\alpha}^{\alpha} \delta(t) \cdot e^{-i \omega t} \cdot d t$
$X(\boldsymbol{\omega})=e^{-i \omega(0)} \quad($ since $t=0$, time shifting property of impulse)
$X(\boldsymbol{\omega})=1$
\therefore

$\rightarrow 1$.

Spectrum of impulse is constant for the frequency

Example Problem -Fourier Transform of $e^{-a|t|} \quad a>0$

Que: $y(t)=e^{-a|t|} \quad a>0 \quad$ find $Y(\boldsymbol{\omega})$

$$
\begin{aligned}
& \text { Sol: } y(t)=e^{-a|t|} \\
&==e^{a t} \quad \mathrm{t}<0, \\
&=e^{-a t} \quad \mathrm{t}>0, \\
&=e^{a t} u(-t)+e^{-a t} u(t)
\end{aligned}
$$

$Y(\boldsymbol{\omega})=\frac{1}{a-j \boldsymbol{\omega}}+\frac{1}{a+j \boldsymbol{\omega}}$
$Y(\boldsymbol{\omega})=\frac{2 a}{a^{2}+\boldsymbol{\omega}^{2}} \quad\left[e^{-a \mid+1} \cdot a>0 \rightleftharpoons \frac{2 a}{q^{2}+\omega^{2}}\right.$

Duality Property

- The Duality Property tells us that if $\mathrm{x}(\mathrm{t})$ has a Fourier Transform $\mathrm{X}(\omega)$
- If we form a new function of time that has the functional form of the transform, $X(t)$, it will have a Fourier Transform $x(\omega)$ that has the functional form of the original time function (but is a function of frequency).

$$
\begin{aligned}
& x(t) \leftrightarrow X(\omega) \\
& X(t) \leftrightarrow 2 \pi x(-\omega)
\end{aligned}
$$

Duality Property

Property of duality

$$
\begin{aligned}
& x(t) \rightleftharpoons X(w) \quad(t=-w) \\
& X(t) \rightleftharpoons 2 \pi \mathrm{x}(-w) \\
& \mathrm{x}(\mathrm{t}) \rightleftharpoons \mathrm{X}(\mathrm{f}) \quad(\mathrm{t}=-\mathrm{f}) \\
& \mathrm{X}(\mathrm{t}) \rightleftharpoons \mathrm{x}(-\mathrm{f})
\end{aligned}
$$

Duality Property based Problem -Fourier Transform of $\frac{1}{a+j t}$

$$
\mathrm{Q}: \quad x(t)=\frac{1}{a+j t} \Longleftrightarrow \mathrm{x}(\omega)=\text { ? }
$$

Sol:

$$
\begin{array}{cc}
x(t)=\frac{1}{a+j t} & \\
(t=\omega) \\
\mathrm{e}^{-a t} u(t), a>0 & \begin{array}{c}
1 \\
a+j \omega \\
(t=-\omega)
\end{array} \\
(\omega=t) & 2 \pi \mathrm{e}^{a \omega} u(-\omega), a>0
\end{array}
$$

Duality Property based Problem -Fourier Transform of $\frac{2 a}{a^{2}+t^{2}}$

$\mathrm{Q}: \quad x(t)=\frac{2 a}{a^{2}+t^{2}} \Longleftrightarrow \mathrm{x}(\omega)=$?
Sol:

$$
\begin{aligned}
& x(t)=\frac{2 a}{a^{2}+t^{2}}(t=\omega) \\
&(t) \\
& \mathrm{e}^{-a|t|}, a>0 \begin{array}{l}
a^{2}+\omega^{2} \\
(t=-\omega)
\end{array} \\
& \frac{2 a}{a^{2}+t^{2}} \Longleftrightarrow 2 \pi \mathrm{e}^{-a|-\omega|}, a>0 \\
& \frac{2 a}{a^{2}+t^{2}} \Longleftrightarrow 2 \pi \mathrm{e}^{-a|\omega|}, a>0
\end{aligned}
$$

Duality Property based Problem- Fourier Transform of A_{0}

$$
\text { Q: } \quad x(t)=A_{0} \Longleftrightarrow \mathrm{x}(\omega)=\text { ? }
$$

Sol:

$$
\begin{aligned}
& A_{0} \delta(t) \Longleftrightarrow \begin{array}{l}
A_{0} \\
(\omega=t) \\
A_{0} \\
(t=-\omega) \\
A_{0}=\text { DC Signal } \\
2 \pi A_{0} \delta(-\omega)
\end{array} \quad 2 \pi A_{0} \delta(\omega) \\
& \uparrow \uparrow \omega
\end{aligned}
$$

Q:

Find the $Y(\omega)$ in terms of $x(\omega)$

$$
\begin{aligned}
& x(t) \longleftrightarrow \mathrm{X}(\omega) \\
& y(t) \longleftrightarrow \mathrm{Y}(\omega)
\end{aligned}
$$

(i) $y(t)=\mathrm{e}^{j 2 t} x(t)$

Sol: $\mathrm{Y}(\omega)=\mathrm{x}(\omega-2)$
(ii) $y(t)=x(-2 t)$

Sol: $\quad \mathrm{Y}(\omega)=\frac{1}{2} \mathrm{x}\left(\frac{-\omega}{2}\right)$
(iii) $y(t)=x(2 t-3)$

Sol: $y(t)=x(2 t-3)=x\left[2\left(t-\frac{3}{2}\right)\right]$
Scaling

$$
X_{1}(\omega)=\frac{1}{2} \mathrm{x}\left(\frac{\omega}{2}\right) \quad X_{2}(\omega)=\mathrm{x}(\omega) \mathrm{e}^{-j 1.5 \omega}
$$

$$
\mathrm{Y}(\omega)=\frac{1}{2} \mathrm{x}\left(\frac{\omega}{2}\right) \mathrm{e}^{-j .5 \omega}
$$

Frequency Shifting property

$$
\mathrm{e}^{-j \omega_{0} t} x(t) \longleftrightarrow \mathrm{x}\left(\omega+\omega_{0}\right)
$$

Time Scaling property

$$
x(a t), a \neq 0 \quad \square \quad \frac{1}{|a|} \times\left(\frac{\omega}{a}\right)
$$

Time Shifting property

$$
x\left(t-t_{0}\right) \quad \mathrm{e}^{-j \omega t_{0}} \mathrm{x}(\omega)
$$

(iv) If $y(t)=x(-2 t-4)$ Find its Fourier Transform

$$
\begin{array}{ll}
\text { Sol: } & y(t)=x[-2(t+2) \\
\text { Scaling } \\
& a=-2 \\
& \mathrm{Y}(\omega)=\frac{1}{2} \times\left(\frac{-\omega}{2}\right) \mathrm{e}^{j 2 \omega}
\end{array}
$$

Time Scaling: $x(a t), a \neq 0 \longleftrightarrow \frac{1}{|a|} \times\left(\frac{\omega}{a}\right)$

$$
\text { Time Shifting property: } \quad x\left(t-t_{0}\right) \longmapsto \mathrm{e}^{-j \omega t_{0}} \mathrm{x}(\omega)
$$

$$
Y(\omega)=?
$$

Sol:

$$
\begin{aligned}
& y(t)=-x[(2(t+1)] \\
& Y(\omega)=-\frac{1}{2} \mathrm{x}\left(\frac{\omega}{2}\right) \mathrm{e}^{j \omega} \quad \text { where } t_{0}=1
\end{aligned}
$$

Q:

$y(t)=x(t) * h(t)$
 $g(t)=x(3 t) * h(3 t)$

if $g(t)=A y(B t)$ then calculate A and B
Sol:
From equation (i)
$Y(\omega)=x(\omega) H(\omega)$
From equation (ii)

$$
\begin{aligned}
G(\omega) & =\left[\frac{1}{3} \mathrm{x}\left(\frac{\omega}{3}\right)\right]\left[\frac{1}{3} H\left(\frac{w}{3}\right)\right] \\
G(\omega) & =\frac{1}{9}\left[\mathrm{x}\left(\frac{\omega}{3}\right) H\left(\frac{w}{3}\right)\right] \\
G(\omega) & =\frac{1}{9}\left[\mathrm{Y}\left(\frac{\omega}{3}\right)\right] \quad \text { From equation (iii) } \\
& =\frac{1}{3}\left[\frac{1}{3}\left(\mathrm{Y}\left(\frac{\omega}{3}\right)\right)\right] \\
g(t) & =\frac{1}{3}[y(3 t)] \text { By comparing with } \quad g(t)=A y(B t) \\
A & =\frac{1}{3} \quad B=3
\end{aligned}
$$

Second method:

$$
\begin{gathered}
y(t)=x(t) * h(t) \\
x(a t) * h(a t)=\frac{1}{|a|} y(a t) \\
a=3 \\
x(3 t) * h(3 t)=\frac{1}{3}[y(3 t)]
\end{gathered}
$$

By comparing with $\quad g(t)=A y(B t)$

$$
A=\frac{1}{3} \quad B=3
$$

Q: $\quad x(t)=\operatorname{sgn}(t) \quad X(\omega)=$?

$$
\operatorname{sgn}(t)=\left\{\begin{array}{cc}
1 & , \quad t>0 \\
0 & , t=0 \\
-1 & , t<0
\end{array}\right\}=2 \mathrm{u}(t)-1
$$

Sol:

$$
\xrightarrow[\hat{h}_{2} \frac{d x(t)}{d t}=2 \delta(t)]{\substack{\text { dx(t)} \\ \mathrm{d} t \\=2 \delta(t) \\ j \omega \times(\omega)=2}}
$$

$$
x(t)=\operatorname{sgn}(t) \Longleftrightarrow \mathrm{x}(\omega)=\frac{2}{j w}
$$

Find the Fourier Transform of the following Function

Q:

Second method:

$$
y(t)=1+x(t)
$$

Sol:

$$
\begin{gathered}
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=2 \delta(t) \\
j \omega \mathrm{Y}(\omega)=2 \\
\mathrm{Y}(\omega)=\frac{2}{j w}
\end{gathered}
$$

FT
$\mathrm{Y}(\omega)=2 \pi \delta(\omega)+\mathrm{x}(\omega)$
$\mathrm{Y}(\omega)=2 \pi \delta(\omega)+\frac{2}{j w}$

Q:

Find the Fourier Transform of the following Function

Sol:

$$
\begin{aligned}
\frac{\mathrm{d} z(t)}{\mathrm{d} t}=2 \delta(t) & a v g & =\frac{4+2}{2} \\
j \omega \mathrm{Z}(\omega)=2 & & =3 \\
\mathrm{Z}(\omega)=\frac{2}{j w} & & =3 * 2 \pi \delta
\end{aligned}
$$

$$
\mathrm{Z}(\omega)=6 \pi \delta(\omega)+\frac{2}{j w}
$$

Second method:

$$
z(t)=3+x(t)
$$

FT
$\mathrm{Z}(\omega)=6 \pi \delta(\omega)+\mathrm{x}(\omega)$
$Z(\omega)=6 \pi \delta(\omega)+\frac{2}{j w}$

Find the Fourier Transform of the following Function

Example: FT of a Rectangular pulse

$$
\tau=\text { pulse width }
$$

Solution:

Note that

$$
p_{\tau}(t)=\left\{\begin{array}{lc}
1, & -\frac{\tau}{2} \leq t \leq \frac{\tau}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

Now apply the definition of the FT:

$$
\begin{aligned}
& P_{\tau}(\omega)=\int_{-\infty}^{\infty} p_{\tau}(t) e^{-j \omega t} d t=\int_{-\tau / 2}^{\tau / 2} e^{-j \omega \pi} d t \\
&=\frac{-1}{j \omega}\left[e^{-j \omega t}\right]_{\frac{\tau}{2}}^{2}
\end{aligned}=\frac{2}{\omega} \underbrace{\frac{e^{j \frac{\omega \tau}{2}}-e^{-j \frac{\omega \tau}{2}}}{j 2} \underbrace{\left[\begin{array}{c}
\text { Artificially } \\
\text { inserted } 2 \text { in } \\
\text { numerator and } \\
\text { denominator }
\end{array}\right.}_{\begin{array}{c}
\text { where } p(t) \text { is non- } \\
\text { zero... and use the } \\
\text { fact that it is } 1 \text { over } \\
\text { that region }
\end{array}}}
$$

Limit integral to

Fourier Transform of Rectangular or Gate Function

4) Rectangular (or) Gate function:-

$$
x(t)=A \operatorname{rect} .(U T)(0 r) A \pi(t / T) \longleftrightarrow A T \operatorname{SinC}(\omega T / 2)
$$

Q:

Sol:

$$
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=A \delta\left(t+\frac{\tau}{2}\right)-A \delta\left(t-\frac{\tau}{2}\right)
$$

$$
j \omega \mathrm{X}(\omega)=A \mathrm{e}^{j \omega \frac{\tau}{2}}-A \mathrm{e}^{-j \omega \frac{\tau}{2}}
$$

$$
\begin{aligned}
& =\frac{2 A}{\omega} \times\left[\frac{\sin \left(\frac{\omega \tau}{\tau}\right)}{\frac{\omega \tau}{2}}\right] \times \frac{\omega \tau}{2} \\
& =A \tau \times \operatorname{sa}\left(\frac{\omega \tau}{2}\right)
\end{aligned}
$$

$$
\mathrm{X}(\omega)=\frac{A}{j \omega}\left[\mathrm{e}^{j \omega \frac{\tau}{2}}-\mathrm{e}^{-j \omega \frac{\tau}{2}}\right]
$$

$x(\overline{0}) \rightleftharpoons \operatorname{Arca}\left(\frac{\omega z}{2}\right)$

$$
=\frac{A}{j \omega} \times 2 j \times \sin \left(\frac{\omega \tau}{2}\right)
$$

Find the Fourier Transform of the following Functions

Sol:

$$
\begin{aligned}
\mathrm{X}(\omega) & =A \tau \mathrm{X} \operatorname{sa}\left(\frac{\omega \tau}{2}\right) \\
& =5 \times 4 \mathrm{X} \operatorname{sa}\left(\frac{\omega 4}{2}\right) \\
\mathrm{X}(\omega) & =20 \mathrm{sa}(2 \omega)
\end{aligned}
$$

Q:

Sol:

$$
\begin{aligned}
& y(t)=x(t+6) \\
& \mathrm{Y}(\omega)=\mathrm{X}(\omega) \mathrm{e}^{j \omega 6} \\
& \mathrm{Y}(\omega)=20 \mathrm{sa}(2 \omega) \mathrm{e}^{j \omega 6}
\end{aligned}
$$

Find the Fourier Transform of the following Function

Q:

Sol:

$$
X_{1}(\omega)=40 \mathrm{sa}(4 \omega)
$$

$$
X_{2}(\omega)=12 \mathrm{sa}(3 \omega)
$$

$$
\begin{aligned}
x(t) & =x_{1}(t)+x_{2}(t) \\
X(\omega) & =X_{1}(\omega)+X_{2}(\omega) \\
& =40 \mathrm{sa}(4 \omega)+12 \mathrm{sa}(3 \omega)
\end{aligned}
$$

Q: $\quad x(t)=A_{0} s a(t) \longrightarrow$ Draw FT X (ω)

Sol:

$$
\mathrm{m} \tau \mathrm{sa}\left(\frac{t \tau}{2}\right) \longleftrightarrow A_{0} \mathrm{sa}(\mathrm{k} t)
$$

$$
\mathrm{m} \tau=A_{0} \quad \mathrm{k}=\frac{\tau}{2}
$$

Find the Fourier Transform of the following Function

Q: $\quad x(t)=3 \mathrm{sa}(4 t) \longrightarrow \mathrm{X}(\omega)$

Sol:
Compare with $A_{0} \mathrm{sa}(\mathrm{k} t)$

$$
A_{0}=3 \quad k=4
$$

$$
\frac{\pi A_{0}}{k}=\frac{3 \pi}{4}
$$

Fourier Transform of a Gaussian

$$
x(t)=e^{-a t^{2}}-\mathrm{A} \text { Gaussian, important in }
$$ probability,optics, etc.

Summary of Fourier Transform Properties

Signal $x(t)$	$\begin{aligned} & \text { Fourier transform of a signal } \\ & \qquad x(t) \end{aligned}$
$x(t)$	$X(v)$
$\delta(t)$	1
$u(t)$	$\frac{1}{j w}+\pi \delta(w)$
$\operatorname{sgn}(t)$	$\frac{2}{j w}$
A_{0}	$2 \pi A_{0} \delta(w)$
$e^{-a t} u(t), a>0$	$\frac{1}{a+j w}$
$e^{-a\|t\| u(t)}, a>0$	$\frac{2 a}{a^{2}+w^{2}}$

Summary of Fourier Transform Properties

Signal $x(t)$	Fourier transform of a signal $x(t)$
$\cos w_{0} t$	$\pi\left[\delta\left(w+w_{0}\right)+\delta\left(w-w_{0}\right)\right]$
$\sin w_{0} t$	$\pi j\left[\delta\left(w+w_{0}\right)-\delta\left(w-w_{0}\right)\right]$
periodic signal	$2 \pi \sum_{n=-\infty}^{n=\infty} c_{n} \delta\left(w-n w_{0}\right)$
$\sum \delta\left(t-n T_{0}\right)$	$w_{0} \sum_{n=-\infty}^{\infty} \delta\left(w-n w_{0}\right)$
$e^{j w_{0} t}$	$2 \pi \delta\left(w-w_{0}\right)$
$e^{-j w_{0} t}$	$2 \pi \delta\left(\mathrm{w}+w_{0}\right)$

The Fourier transform of $x(t)=u_{1}(t)+2 \delta(3-2 t)$ is

(where $u_{1}(t)$ the differentiation of an impulse)
a) $1+\mathrm{e}^{-j \frac{\omega}{2}}$
b) $2+3 \mathrm{e}^{-j \omega}$
c) $j \omega+\mathrm{e}^{-j \frac{3 \omega}{2}}$
d) $j \omega+\mathrm{e}^{-j \frac{2 \omega}{3}}$

Sol:

$$
u_{1}(t)=\frac{\mathrm{d} \delta(t)}{\mathrm{d} t}
$$

$$
2 \delta(3-2 t)=2 \delta(2 t-3)=2 \times \frac{1}{2} \delta\left(t-\frac{3}{2}\right)
$$

$$
=\delta\left(t-\frac{3}{2}\right)
$$

$$
F T\left(u_{1}(t)\right)=j \omega
$$

$$
F T(x(t))=j \omega+\mathrm{e}^{-j \frac{3 \omega}{2}}
$$

Problem and Solution

The Fourier transform of $\left[\frac{\delta\left[t-t_{0}\right.}{a}\right]$ is
(a) $|\mathrm{a}| e^{-j \omega \mathrm{t}_{0}}$
(b) $1 /|\mathrm{a}| e^{j \omega \mathrm{t}_{0}}$
(b) $\delta\left(\omega-\omega_{0}\right) e^{-j \omega \mathrm{t}_{0}}$
(d) $e^{-j \omega \mathrm{t}_{0}}$

Sol: $\delta\left(\frac{t-t_{0}}{a}\right)=|a| \cdot e^{-j \omega t_{0}}$

Problem

Match the following

List I (function in time-domain)

A. Delta function
B. Gate function
C. Normalized Gaussian function
D. Sinusoidal function

List II (F.T. of the function)

1. Delta function
2. Gaussian function
3. Constant function
4. Sampling function

A	B	C	D
(a) 1	2	4	3
(b) 3	4	2	1
(c) 1	2	2	3
(d) 3	4	4	1

Solution

Sol: Function In Time F.T. of Function

Delta function $\delta(\mathrm{t}) \Rightarrow$ constant function

$$
\rightarrow(3)
$$

Gate function $\pi(\mathrm{t}) \Rightarrow$ sampling function
$\rightarrow(4)$
Normalized Gaussian Function \Rightarrow Gaussian function \rightarrow (2)

Sinusoidal function \Rightarrow Delta function \rightarrow (1)

Problem

Match the following

List I (signals)

(A) $g(t-2)$
(B) $\operatorname{tg}(\mathrm{t})$
(C) $g(-t)$
(D) $G(3 t+1)$

List II (Transform)

(1) $\mathrm{jd} / \mathrm{d} \omega \mathrm{G}(\omega)$
(2) $1 / 3 \mathrm{G}(\omega / 3) e^{+j \omega / 3}$
(3) $e^{-j 2 \omega} \mathrm{G}(\omega)$
(4) $\mathrm{G}(-\omega)$

Solution

4. Ans: (b)

Sol: Signals

$$
\mathrm{g}(\mathrm{t}-2)
$$

$\mathrm{tg}(\mathrm{t})$
F.T

$$
\mathrm{G}(\omega) e^{-j 2 \omega} \rightarrow(3)
$$

Frequency differentiation

$$
\mathrm{j} \frac{d}{d \omega} \mathrm{G}(\omega) \rightarrow(1)
$$

Time reversal property

$$
\mathrm{G}(-\omega) \rightarrow(4)
$$

Scaling \& shifting property
$\frac{1}{3} \mathrm{G}\left(\frac{\omega}{3}\right) e^{\frac{+j}{3}} \rightarrow(2)$

Problem

Let $\quad x(t) \leftrightarrow X(\omega)=\left\{\begin{array}{l}1,|\omega|<1 \\ 0,|\omega|>1\end{array}\right.$
Consider $\mathrm{y}(\mathrm{t})=\frac{d^{2} x(t)}{d t^{2}}$. Then value of $\int_{-\infty}^{\infty}|\mathrm{y}(\mathrm{t})| 2 d t$ is
(a) $\frac{3}{\pi}$
(b) $\frac{2}{3}$
(c) $\frac{1}{5 \pi}$
(d) $\frac{1}{6 \pi^{2}}$

Solution

Sol: $Y(\omega)=(j \omega)^{2} \cdot X(\omega)$

$$
\left.\int_{-\infty}^{\infty}|\mathrm{y}(\mathrm{t})| 2 \mathrm{dt}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \right\rvert\, \mathrm{Y}(\omega \mid 2 d t
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \int_{-1}^{1} \omega^{4} d \omega=\left.\frac{1}{2 \pi} \frac{\omega^{5}}{5}\right|_{-1} ^{1} \\
& =\frac{1}{10}(2) \\
& =\frac{1}{5 \pi}
\end{aligned}
$$

Problem

A Signal $x(t)=8-8 \cos ^{2}(6 \pi t)$ is passed through an ideal LPF. The filter blocks frequencies above 5 Hz . Find the output?

Solution

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=8-8 \cos ^{2}(6 \pi \mathrm{t}) \\
& =8-8\left[\frac{1+\cos (12 \pi t)}{2}\right] \\
& \mathrm{x}(\mathrm{t})=8-4-4 \cos (12 \pi \mathrm{t}) \\
& \mathrm{x}(\mathrm{t})=4-4 \cos (12 \pi \mathrm{t})
\end{aligned}
$$

The frequencies of $x(t)$ are $0,6 \mathrm{~Hz}$

6 Hz frequency is not allowed only ' 0 Hz ' is allowed $\mathrm{y}(\mathrm{t})=4$

Problem

The transfer function of a system is given by
$H(\omega)=\frac{2+2 j \omega}{4+4 j \omega-\omega^{2}}$
Find the output if input is $\mathrm{x}(\mathrm{t})=e^{-t} u(t)$

Solution

$$
\begin{aligned}
& \text { Sol: } \mathrm{H}(\omega)=\frac{2+2 j \omega}{4+4 j \omega+(j \omega)^{2}}=\frac{2+2 j \omega}{(j \omega+2)^{2}} \\
& \mathrm{x}(\mathrm{t})=e^{-t} u(t)
\end{aligned}
$$

$$
X(\omega)=\frac{1}{1+j \omega}
$$

$$
Y(\omega)=H(\omega) \cdot X(\omega)=\frac{2+2 j \omega}{(2+j \omega)^{2}} \cdot \frac{1}{1+j \omega}
$$

$$
\mathrm{Y}(\omega)=\frac{2}{(2+\mathrm{j} \omega)^{2}} \quad \therefore \mathrm{y}(\mathrm{t})=2 \mathrm{t} e^{-2 t} u(t)
$$

Problem

Find the frequency and impulse response of a filter whose input - output relation is described by the following equation

$$
Y(\mathrm{t})=\mathrm{x}(\mathrm{t})-2 \int_{-\infty}^{t} y(\lambda) e^{(t-\lambda)} u(\mathrm{t}-\lambda) \mathrm{d} \lambda
$$

Solution

Sol: $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})-2 \int_{-\infty}^{t} y(\lambda) \cdot e^{-(t-\tau)} u(t-\lambda) d \lambda$

$$
\begin{aligned}
& \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})-2\left[\mathrm{y}(\mathrm{t}) * e^{-t} \mathrm{u}(\mathrm{t})\right] \\
& \mathrm{Y}(\omega)=\mathrm{X}(\omega)-2\left[\frac{Y(\omega)}{1+j \omega}\right]
\end{aligned}
$$

$$
Y(\omega)\left[1+\frac{2}{1+j \omega}\right]=X(\omega)
$$

$$
H(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{1+j \omega}{3+j \omega}
$$

$$
H(\omega)=1-\frac{2}{3+j \omega}
$$

$$
\mathrm{h}(\mathrm{t})=\delta(\mathrm{t})-2 e^{-3 t} \mathrm{u}(\mathrm{t})
$$

Problem

The output and input of a causal LTI system are related by the Differential equation
$\frac{d^{2} y(t)}{d t^{2}}+\frac{6 d y(t)}{d t}+8 y(t)=2 x(t)$
(a) Find the Impulse Response
(b) Find the response if $\mathrm{x}(\mathrm{t})=\mathrm{t} e^{-2 t} u(t)$

Solution

Sol: \quad a) $\frac{d^{2} y(t)}{d t^{2}}+\frac{6 d y(t)}{d t}+8 y(t)=2 x(t)$

$$
(\mathrm{j} \omega)^{2} \mathrm{Y}(\omega)+6 \mathrm{j} \omega \mathrm{Y}(\omega+8 \mathrm{Y}(\omega)=2 \mathrm{X}(\omega)
$$

$$
\begin{aligned}
& \mathrm{H}(\omega)=\frac{2}{(j \omega) 2+6 j \omega+}=\frac{2}{(j \omega+2)(j \omega+4)} \\
& \mathrm{H}(\omega)=\frac{A}{(j \omega+2)}+\frac{B}{(j \omega+4}=\frac{1}{(j \omega+2)}-\frac{1}{j \omega+4} \\
& \mathrm{~h}(\mathrm{t})=\left(e^{-2 t}-e^{-4 t}\right) \mathrm{u}(\mathrm{t})
\end{aligned}
$$

b) $\mathrm{x}(\mathrm{t})=\mathrm{t} e^{-2 t} \mathrm{u}(\mathrm{t})$

$$
X(\omega)=\frac{1}{(2+j \omega) 2}
$$

$$
Y(\omega)=H(\omega) \cdot X(\omega)=\frac{2}{(j \omega+2) 3(j \omega+4)}
$$

$$
Y(\omega)=\frac{1 / 4}{(j \omega+2)}-\frac{1 / 2}{(j \omega+2) 2}+\frac{1 / 2}{(j \omega+2) 3}-\frac{1 / 4}{4+j \omega}
$$

$$
\mathrm{y}(\mathrm{t})=\left(\frac{1}{4} e^{-2 t}-\frac{t}{2} e^{-2 t}+\mathrm{t}^{2} e^{-2 t}-\frac{1}{4} e^{-4 t}\right) \mathrm{u}(\mathrm{t})
$$

Problem

A LTI continuous-time system has frequency response $\mathrm{H}(\omega)$, it is know that the input $\mathrm{x}(\mathrm{t})=1+4 \cos (2 \pi t)+8 \sin \left(3 \pi t-90^{0}\right)$ produces the response
$y(t)=2-2 \sin (2 \pi t)$. Then $H(\omega)$ at $\omega=3 \pi$ is
(a) 0
(b) 1
(c) $(1 / 2) e^{-j \pi / 2}$
(d) None of these

Solution

Sol: If input $\mathrm{x}(\mathrm{t})=\cos \omega_{0} \mathrm{t}$
Frequency response $H(\omega)$, then output

$$
\mathrm{y}(\mathrm{t})=\left|\mathrm{H}\left(\omega_{0}\right)\right| \cdot \cos \left(\omega_{0} \mathrm{t}+\angle H\left(\omega_{0}\right)\right)
$$

So $\left.H(\omega)\right|_{\omega=3 \pi}=0$. Because, there is no term of ' $3 \pi^{\prime}$ in $\mathrm{y}(\mathrm{t})$

Problem

$X(\omega)$ is the Fourier transform of $x(t)$ shown below. The value of $\int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega$ (rounded off to two decimal places) is

Solution

$$
\begin{aligned}
\int_{-\infty}^{\infty}|x(\omega)|^{2} d \omega & =2 \pi \int_{-\infty}^{\infty}|x(t)|^{2} d t=2 \pi \int_{-\infty}^{\infty}|y(t)|^{2} d t \\
& =2 \times 2 \pi \int_{-2}^{0}|y(t)|^{2} d t \\
& =2 \times 2 \pi\left[\int_{-2}^{-1}(t+2)^{2} d t+\int_{-1}^{0}(2 t+3)^{2} d t\right] \\
& =4 \pi\left[\left\{\frac{(t+2)^{3}}{3}\right\}_{-2}^{-1}+\left\{\frac{(2 t+3)^{3}}{3 \times 2}\right\}_{-1}^{0}\right] \\
& =4 \pi\left[\frac{1-0}{3}+\frac{3^{3}-1}{6}\right]=4 \pi\left[\frac{1}{3}+\frac{26}{6}\right] \\
& =4 \pi \times\left[\frac{1}{3}+\frac{26}{6}\right]=4 \pi \times\left[\frac{1}{3}+\frac{13}{3}\right] \\
& =4 \pi \times \frac{14}{3}=\frac{56 \pi}{3}
\end{aligned}
$$

Ans. (58.61)

$$
\begin{aligned}
\int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega & =2 \pi \int_{-\infty}^{\infty}|x(t)|^{2} d t=2 \pi \int_{-\infty}^{\infty}|y(t)|^{2} d t \\
& =2 \times 2 \pi \int_{-2}^{0}|y(t)|^{2} d t \\
& =2 \times 2 \pi\left[\int_{-2}^{-1}(t+2)^{2} d t+\int_{-1}^{0}(2 t+3)^{2} d t\right] \\
& =4 \pi\left[\left\{\frac{(t+2)^{3}}{3}\right\}_{-2}^{-1}+\left\{\frac{(2 t+3)^{3}}{3 \times 2}\right\}_{-1}^{0}\right] \\
& =4 \pi\left[\frac{1-0}{3}+\frac{3^{3}-1}{6}\right]=4 \pi\left[\frac{1}{3}+\frac{26}{6}\right] \\
& =4 \pi \times\left[\frac{1}{3}+\frac{26}{6}\right]=4 \pi \times\left[\frac{1}{3}+\frac{13}{3}\right] \\
& =4 \pi \times \frac{14}{3}=\frac{56 \pi}{3}
\end{aligned}
$$

Problem and Solution

The Fourier transform of a signal $h(t)$ is $H(j \omega)=(2 \cos \omega)(\sin 2 \omega) / \omega$. The value of $h(0)$ is
(A) $1 / 4$
(B) $1 / 2$
(C) 1
(D) 2

Option (C) is correct.

$$
H(j \omega)=\frac{(2 \cos \omega)(\sin 2 \omega)}{\omega}=\frac{\sin 3 \omega}{\omega}+\frac{\sin \omega}{\omega}
$$

We know that inverse Fourier transform of $\sin c$ function is a rectangular function.

So, inverse Fourier transform of $H(j \omega)$

$$
\begin{aligned}
& h(t)=h_{1}(t)+h_{2}(t) \\
& h(0)=h_{1}(0)+h_{2}(0)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Problem and Solution

The signal $x(t)$ is described by

$$
x(t)= \begin{cases}1 & \text { for }-1 \leq t \leq+1 \\ 0 & \text { otherwise }\end{cases}
$$

Two of the angular frequencies at which its Fourier transform becomes zero are
(A) $\pi, 2 \pi$
(B) $0.5 \pi, 1.5 \pi$
(C) $0, \pi$
(D) $2 \pi, 2.5 \pi$

Problem and Solution

Option (A) is correct.
We have

$$
X(t)= \begin{cases}1 & \text { for }-1 \leq t \leq+1 \\ 0 & \text { otherwise }\end{cases}
$$

Fourier transform is

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-\mu \omega t} X(t) d t & =\int_{-1}^{1} e^{-\omega \omega t} 1 d t=\frac{1}{-j \omega}\left[e^{-\mu \omega}\right]_{-1}^{1} \\
& =\frac{1}{-j \omega}\left(e^{-\jmath \omega}-e^{\omega \omega}\right)=\frac{1}{-j \omega}(-2 j \sin \omega)=\frac{2 \sin \omega}{\omega}
\end{aligned}
$$

This is zero at $\omega=\pi$ and $\omega=2 \pi$

Problem and Solution

Statement for Linked Answer Question

The impulse response $h(t)$ of linear time - invariant continuous time system is given by $h(t)=\exp (-2 t) u(t)$, where $u(t)$ denotes the unit step function.
Q.

The frequency response $H(\omega)$ of this system in terms of angular frequency ω, is given by $H(\omega)$
(A) $\frac{1}{1+j 2 \omega}$
(B) $\frac{\sin \omega}{\omega}$
(C) $\frac{1}{2+j \omega}$
(D) $\frac{j \omega}{2+j \omega}$
Q.

The output of this system, to the sinusoidal input $x(t)=2 \cos 2 t$ for all time t, is
(A) 0
(B) $2^{-0.25} \cos (2 t-0.125 \pi)$
(C) $2^{-0.5} \cos (2 t-0.125 \pi)$
(D) $2^{-0.5} \cos (2 t-0.25 \pi)$

Problem and Solution

Sol.
Option (C) is correct.

$$
\begin{aligned}
h(t) & =e^{-2 t} u(t) \\
H(j \omega) & =\int_{-\infty}^{\infty} h(t) e^{-\mu t} d t \\
& =\int_{0}^{\infty} e^{-2 t} e^{-\mu t} d t=\int_{0}^{\infty} e^{-(2+\mu \omega t} d t=\frac{1}{(2+j \omega)}
\end{aligned}
$$

Sol. Option (D) is correct.

$$
H(j \omega)=\frac{1}{(2+j \omega)}
$$

The phase response at $\omega=2 \mathrm{rad} / \mathrm{sec}$ is

$$
\angle H(j \omega)=-\tan ^{-1} \frac{\omega}{2}=-\tan ^{-1} \frac{2}{2}=-\frac{\pi}{4}=-0.25 \pi
$$

Magnitude response at $\omega=2 \mathrm{rad} / \mathrm{sec}$ is

Input is

$$
|H(j \omega)|=\sqrt{\frac{1}{2^{2}+w^{2}}}=\frac{1}{2 \sqrt{2}}
$$

Output is

$$
x(t)=2 \cos (2 t)
$$

$$
=\frac{1}{2 \sqrt{2}} \times 2 \cos (2 t-0.25 \pi)
$$

$$
=\frac{1}{\sqrt{2}} \cos [2 t-0.25 \pi]
$$

Problem and Solution

Let $x(t) \longleftrightarrow X(j \omega)$ be Fourier Transform pair. The Fourier Transform of the signal $x(5 t-3)$ in terms of $X(j \omega)$ is given as
(A) $\frac{1}{5} e^{-\frac{\beta \omega}{5}} X\left(\frac{j \omega}{5}\right)$
(B) $\frac{1}{5} e^{\frac{\beta \omega}{5}} X\left(\frac{j \omega}{5}\right)$
(C) $\frac{1}{5} e^{-\beta \omega} X\left(\frac{j \omega}{5}\right)$
(D) $\frac{1}{5} e^{\beta \omega} X\left(\frac{j \omega}{5}\right)$

Problem and Solution

Option (A) is correct.

$$
X(t) \stackrel{F}{\longleftrightarrow} X(j \omega)
$$

Using scaling we have

$$
x(5 t) \stackrel{F}{\longleftrightarrow} \frac{1}{5} X\left(\frac{j \omega}{5}\right)
$$

Using shifting property we get

$$
x\left[5\left(t-\frac{3}{5}\right)\right] \stackrel{F}{\rightleftarrows} \frac{1}{5} X\left(\frac{j \omega}{5}\right) e^{-\frac{\beta \omega}{5}}
$$

Problem and Solution

Let $x(n)=\left(\frac{1}{2}\right)^{n} u(n), y(n)=x^{2}(n)$ and $Y\left(e^{j \omega}\right)$ be the Fourier transform of $y(n)$ then $Y\left(e^{j 0}\right)$
(A) $\frac{1}{4}$
(B) 2
(C) 4
(D) $\frac{4}{3}$

Problem and Solution

Option (C) is correct.

$$
\begin{aligned}
F(s) & =\frac{\omega_{0}}{s^{2}+\omega^{2}} \\
L^{-1} F(s) & =\sin \omega_{o} t \\
f(t) & =\sin \omega_{0} t
\end{aligned}
$$

Thus the final value is $-1 \leq f(\infty) \leq 1$

Problem and Solution

The output $y(t)$ of a linear time invariant system is related to its input $x(t)$ by the following equations

$$
y(t)=0.5 x\left(t-t_{d}+T\right)+x\left(t-t_{d}\right)+0.5 x\left(t-t_{d}+T\right)
$$

The filter transfer function $H(\omega)$ of such a system is given by
(A) $(1+\cos \omega T) e^{-\mu \omega_{0}}$
(B) $(1+0.5 \cos \omega T) e^{-\mu \omega_{0}}$
(C) $(1-\cos \omega T) e^{-\mu \omega t}$
(D) $(1-0.5 \cos \omega T) e^{-\mu \omega t s}$

Problem and Solution

Option (A) is correct.

$$
y(t)=0.5 x\left(t-t_{d}+T\right)+x\left(t-t_{d}\right)+0.5 x\left(t-t_{d}-T\right)
$$

Taking Fourier transform we have
or

$$
\begin{aligned}
Y(\omega) & =0.5 e^{-\mu\left(-t_{0}+T\right)} X(\omega)+e^{-\mu t_{0}} X(\omega)+0.5 e^{-\mu \omega\left(-t_{0}-T\right)} X(\omega) \\
\frac{Y(\omega)}{X(\omega)} & =e^{-\mu t_{0}}\left[0.5 e^{\omega T}+1+0.5 e^{-\mu \omega T}\right] \\
& =e^{-\mu t_{0}}\left[0.5\left(e^{\omega T}+e^{-\mu T}\right)+1\right]=e^{-\mu t_{0}}[\cos \omega T+1] \\
H(\omega) & =\frac{Y(\omega)}{X(\omega)}=e^{-\mu t_{0}}(\cos \omega T+1)
\end{aligned}
$$

Problem and Solution

For a signal $X(t)$ the Fourier transform is $X(f)$. Then the inverse Fourier transform of $X(3 f+2)$ is given by
(A) $\frac{1}{2} \times\left(\frac{t}{2}\right) e^{\beta 3 \pi t}$
(B) $\frac{1}{3} \times\left(\frac{t}{3}\right) e^{-\frac{j 4 \pi t}{3}}$
(C) $3 x(3 t) e^{-j 4 \pi t}$
(D) $x(3 t+2)$

Problem and Solution

Option (B) is correct.

$$
X(t) \stackrel{F}{\stackrel{F}{\longrightarrow}} X(f)
$$

Using scaling we have

$$
x(a t) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{f}{a}\right)
$$

Thus

$$
x\left(\frac{1}{3} f\right) \stackrel{F}{\longleftrightarrow} 3 X(3 f)
$$

Using shifting property we get

$$
\text { Thus } \begin{aligned}
& e^{-\int 2 \pi f_{5} t} X(t)=X\left(f+f_{0}\right) \\
& \frac{1}{3} e^{-\int_{3} \pi t} X\left(\frac{1}{3} t\right) \stackrel{F}{\longrightarrow} X(3 f+2) \\
& e^{-\int 2 \pi \frac{2}{3} t} X\left(\frac{1}{3} t\right) \stackrel{F}{\longrightarrow} 3 X\left(3\left(f+\frac{2}{3}\right)\right) \\
& \frac{1}{3} e^{-\int \pi \frac{\pi}{3} t} X\left(\frac{1}{3} t\right) \stackrel{F}{\longrightarrow} X\left[3\left(f+\frac{2}{3}\right)\right]
\end{aligned}
$$

Problem and Solution

The Fourier transform of a conjugate symmetric function is always
(A) imaginary
(B) conjugate anti-symmetric
(C) real
(D) conjugate symmetric

Option (C) is correct.
The Fourier transform of a conjugate symmetrical function is always real.

Problem and Solution

Let $x(t)$ be the input to a linear, time-invariant system. The required output is $4 \pi(t-2)$. The transfer function of the system should be
(A) $4 e^{j 4 \pi f}$
(B) $2 e^{-\beta \pi t}$
(C) $4 e^{-\mu 4 \pi t}$
(D) $2 e^{j 8 \pi f}$

Problem and Solution

Option (C) is correct.

$$
y(t)=4 x(t-2)
$$

Taking Fourier transform we get

| | $Y\left(e^{j 2 \pi f}\right)$ | $=4 e^{-\rho 2 \pi / 2} X\left(e^{j 2 \pi f}\right)$ |
| ---: | :--- | ---: | :--- |
| or \quad | $\frac{Y\left(e^{j 2 \pi f}\right)}{X\left(e^{j 2 \pi f}\right)}$ | $=4 e^{-4 / \pi f}$ |
| | Thus $\quad H\left(e^{j 2 \pi f}\right)$ | $=4 e^{-4 / \pi f}$ |

Time Shifting property

Problem and Solution

The Fourier transform $F\left\{e^{-1} u(t)\right\}$ is equal to $\frac{1}{1+j 2 \pi f}$. Therefore, $F\left\{\frac{1}{1+j 2 \pi t}\right\}$ is
(A) $e^{f} u(f)$
(B) $e^{-f} u(f)$
(C) $e^{f} u(-f)$
(D) $e^{-f} u(-f)$

Option (C) is correct.
From the duality property of fourier transform we have If

Then

$$
X(t) \xrightarrow{F T} X(f)
$$

$$
X(t) \stackrel{F T}{\longrightarrow} X(-t)
$$

Therefore if

$$
e^{-t} u(t) \stackrel{F T}{ } \frac{1}{1+j 2 \pi f}
$$

Then

$$
\frac{1}{1+j 2 \pi t} \stackrel{F T}{\stackrel{F}{\sim}} e^{f} u(-f)
$$

Option (C) is correct.
From the duality property of fourier transform we have
If
Then
Therefore if

Then

$$
\begin{aligned}
x(t) & \stackrel{F T}{\longleftrightarrow} X(f) \\
X(t) & \stackrel{F T}{\longleftrightarrow} X(-f) \\
e^{-t} u(t) & \stackrel{F T}{\longleftrightarrow} \frac{1}{1+j 2 \pi f} \\
\frac{1}{1+j 2 \pi t} & \stackrel{F T}{\longleftrightarrow} e^{f} u(-f)
\end{aligned}
$$

Problem and Solution

The Fourier Transform of the signal $x(t)=e^{-3 t^{2}}$ is of the following form, where A and B are constants :
(A) $A e^{-8|f|}$
(B) $A e^{-B F^{*}}$
(C) $A+B|f|^{2}$
(D) $A e^{-B f}$

Option (B) is correct. Since normalized Gaussion function have Gaussion FT
Thus

$$
e^{-a t^{2} * T T} \sqrt{\frac{\pi}{a}} e^{-\frac{z^{2} 7}{4}}
$$

Problem and Solution

If $[f(t)]=F(s)$, then $[f(t-T)]$ is equal to
(A) $e^{s T} F(s)$
(B) $e^{-s T} F(s)$
(C) $\frac{F(s)}{1-e^{s T}}$
(D) $\frac{F(s)}{1-e^{-5 T}}$

Option (B) is correct.

$$
\text { If } \quad \mathcal{L}[f(t)]=F(s)
$$

Applying time shifting property we can write

$$
\mathcal{L}[f(t-T)]=e^{-s T} F(s)
$$

Problem and Solution

A signal $X(t)$ has a Fourier transform $X(\omega)$. If $x(t)$ is a real and odd function of t, then $X(\omega)$ is
(A) a real and even function of ω
(B) a imaginary and odd function of ω
(C) an imaginary and even function of ω
(D) a real and odd function of ω

Option (A) is correct.

Problem and Solution

The Fourier transform of a real valued time signal has
(A) odd symmetry
(B) even symmetry
(C) conjugate symmetry
(D) no symmetry

Option (C) is correct.
The conjugation property allows us to show if $x(t)$ is real, then $X(j \omega)$ has conjugate symmetry, that is

$$
X(-j \omega)=X^{*}(j \omega) \quad[X(t) \text { real }]
$$

Proof:

$$
X(j \omega)=\int_{-\infty}^{\infty} X(t) e^{-\mu \omega t} d t
$$

replace ω by $-\omega$ then

$$
\begin{aligned}
& \qquad X(-j \omega)=\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t \\
& \qquad X^{*}(j \omega)=\left[\int_{-\infty}^{\infty} x(t) e^{-\mu \omega t} d t\right]^{*}=\int_{-\infty}^{\infty} x^{*}(t) e^{\mu t t} d t \\
& \text { if } x(t) \text { real } X^{*}(t)=x(t) \\
& \text { then } \quad X^{*}(j \omega)=\int_{-\infty}^{\infty} x(t) e^{\mu \omega t} d t=X(-j \omega)
\end{aligned}
$$

Sources, References and Acknowledgement

i) Lecture slides of Michael D. Adams
ii) Lecture slides of Prof. Paul Cuff
iii) A.V. Oppenheim, A.S. Willsky and S. H. Nawab, "Signals and Systems", PHI, 2 ${ }^{\text {nd }}$ Edition, 1997.
iv) GATE Previous Questions with Solutions, Nodia Publications
v) MIT Open Courseware http://ocw.mit.edu
vi) https://www.aceenggacademy.com/
vii) https://www.madeeasy.in/

- Disclaimer: The material presented in this presentation is taken from various standard Textbooks and Internet Resources and the presenter is acknowledging all the authors.

