
C.Naga Raju
B.Tech(CSE),M.Tech(CSE),PhD(CSE),MIEEE,MCSI,MISTE

Professor
Department of CSE

YSR Engineering College of YVU
Proddatur

Lexical Analysis

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Contents
• Introduction to lexical Analysis

• Specification of tokens

• Recognition of tokens using transition diagrams

• Regular expressions

• Regular languages

• Examples

• GATE solved problems on lexical analysis

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• LEXICAL ANALYSIS OR SCANNER OR LINEAR ANALYSIS

• Lexical analysis is the first phase of a compiler

• It Reads one character at a time from the source program

from left to right and generate lexemes

• A lexeme is the process of forming the words based on

pattern rules and convert them into tokens

• These tokens are divided into keywords, identifiers,

operators, delimiters and punctuation symbols

• each token is represented with pair of values <identifier,

number>

• It Recognize the various Tokens with the help of regular

expressions and pattern rules. and It classifies the various

Tokens

• 6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Representation of Lexical Analysis

Lexical

Analyzer

if (x1 * x2 < 1.0)

{

y = x1;

}

KEY:if

LPAREN

: (

ID:x1

OP:*

ID: x2

RELOP:

<

NUM:1.0

LBRACE

: {

RPAREN

:)

ID :

y

ASSIGN

: =

ID :

x1

RBRAC

E: }

DELIMI

TER : ;6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

//Consider the program

int main() {

// 2 variables

int a, b;

a = 10;

return 0;

}

'int' 'main' '(' ')' '{' 'int' 'a' ',' 'b' ';' 'a' '=' '10' ';' 'return' '0' ';' '}‘

• It Remove comments and white spaces

• It Interacts with the symbol table

• sends lexical errors to error handling table
6/14/2020

Prof.C.NagaRaju YSREC of YVU

9949218570

Pattern :A pattern is a description form of the lexemes

identifier L(L|d)* (l| _) (L|_|d)*

Lexeme :A lexeme is the process of forming the words using
patterns

example: a,b,c,sum ,< ,<=,>,>=,==,!=, &&,|| !, 20,45 ,if,for,break etc.

Token : similar lexemes are grouped into single logical units called as
Token.

For example relop is token for all relational operators

examples:

1) a,b,c,sum are represent with common name identifier token

2) <,<=,>,>=,==,!= are represent with common name relop token

3) 20,30 are const token

4) If , for, break are keyword tokens

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Tokens are recognized by regular grammar and Tokens are

implemented by finite automata

• Recognition of tokens

• In any programming language reorganization of tokens is

the first and most important step:

• Ex:

stmt -> if expr then stmt

| if expr then stmt else stmt

| Ɛ

expr -> term relop term

| term

term -> id

| number

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Overall
Regular

Expression
Token Attribute-Value

ws

if

then

else

id

num

<

<=

=

< >

>

>=

-

if

then

else

id

num

relop

relop

relop

relop

relop

relop

-

-

-

-

pointer to table entry

pointer to table entry

LT

LE

EQ

NE

GT

GE

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Lexical Errors

• Some errors are out of power of lexical

analyzer to recognize:

– fi (a == f(x)) …

• However it may be able to recognize errors

like:

– d = 2r

• Such errors are recognized when no pattern

for tokens matches a character sequence

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Error Recovery
• Panic mode: successive characters are

ignored until we reach to a well formed

token

• Delete one character from the remaining

input

• Insert a missing character into the

remaining input

• Replace a character by another character

• Transpose two adjacent characters

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Specification Of Tokens
• In compiler design regular expressions are

used to formalize the specification of tokens

• Regular expressions are used for specifying

regular languages

• Example:

• (Letter|_)(letter|_ | digit)*

• Each regular expression is a pattern specifying

the form of strings

• One or more instances: (r)+

• Zero or more instances: r*

• Character classes: [abc]

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Components for Construction of the patterns

digit -> [0-9]

Capital letter -> [A-Z]

Small letters[a-z_]

Key words patterns

• whitespaces: ws -> (blank | tab | newline)+

• These patterns may be represented with

1)transistion diagrams

2) Regular expressions

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Transition Diagram

✓ Pictorial representation of labeled directed graph called a

Transition Diagram

✓ Circles represent states. They represent how much of

the input string we have processed.

✓ Arrows represent transitions from one state to the next

state when the character labeling the arrow is matched.

✓ State 1 is the starting state.

✓ Final or Accepting states are represented by double

circles.
6/14/2020

Prof.C.NagaRaju YSREC of YVU

9949218570

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Transition Diagram : Identifier & Identifier with erroneous

❖ It shows that the string of characters "tmp8" form a

legal identifier

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Transition Diagram : C Comments

❖ C comments are of the

form

/* ... (no */s) ... */

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Transition diagram for Natural Numbers

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Transition diagram for Signed Natural Numbers

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Transition diagram for Signed Real Numbers

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Transition diagram for signed Floating Point

numbers

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Transition Diagram : Unsigned floating number

dig
i
t

dig
i
t

dig
i
t

others *

dig
i
t

dig
i
t

dig
i
t

others *.

dig
i
t

dig
i
t

dig
i
t

dig
i
t

dig
i
t

dig
i
t

dig
i
t

.

E

E others *+
-

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Transition Diagram : White Spaces

del
i
m

oth
e
r

del
i
m

*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Transition Diagram : RELOP

> =

othe
r

token is relop, lexeme is >=

token is relop, lexeme is
>

*

<

>

>

=
=

=

othe
r

othe
r

*

*

token is relop, lexeme is >=

token is relop, lexeme is
>

token is relop, lexeme is
<

token is relop, lexeme is
<>

token is relop, lexeme is
<=

token is relop, lexeme is
=

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Regular Expressions

Regular Expressions are used to denote regular languages.

❖ An expression is regular if it satisfies the following conditions

❖ Let Σ be a Non-empty Alphabet.

1. Є is a regular expression

2. ∅ is a regular expression.

3. For each a ∈ Σ , a is a regular expression.

4. If R1 and R2 are regular expressions, then R1 ∪ R2 is a

regular expression.

5. If R1 and R2 are regular expressions, then R1 ∩ R2 is a

regular expression.

6. If R is a regular expression, then R∗ is a regular expression.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Rules for construction of Regular expressions

• where R is regular expression ∅ is empty set

and ∈ is null set

1)∅+R=R+ ∅=R

2) ∅.R=R .∅= ∅

3) ∅*= ∈

4) ∈.R=R. ∈=R

5) ∈*= ∈

6) ∈+R.R*=R*.R+ ∈=R*

7)(a+b) *=(a*+b*) *

8)(a*.b*)=(a*b*) *

9)(a+b*)*=a*(ba)*=b*(ab*)*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Regular languages

❖ A Languages defined by Regular Expressions are called

Regular Languages.

❖ A Language is regular if and only if some regular

expressions describes it ex: finite automata.

❖ Let Σ be a Non-empty Alphabet.

1. The Regular Expression Є describes the language

{Є}.

2. The Regular Expression ∅ describes the language ∅.

3. For each a ∈ Σ, the Regular Expression a describes

the language {a}.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Closure Properties of Regular Languages

Union : If L1 and L2 are two regular languages, their union L1 ∪ L2 will

also be regular.

• For example, L1 = {an | n ≥ 0} and L2 = {bn | n ≥ 0}

L3 = L1 ∪ L2 = {an ∪ bn | n ≥ 0} is also regular.

• Intersection : If L1 and L2 are two regular languages, their intersection

L1 ∩ L2 will also be regular.

• For example,L1={am bn | n ≥ 0 and m ≥ 0} and L2= {bn am | n ≥ 0 and m≥0}

L3 = L1 ∩ L2 = {am bn | n ≥ 0 and m ≥ 0} is also regular.

• Concatenation : If L1 and L2 are two regular languages, their

concatenation L1.L2 will also be regular.

• For example, L1 = {an | n ≥ 0} and L2 = {bn | n ≥ 0}

L3 = L1.L2 = {am . bn | m ≥ 0 and n ≥ 0} is also regular.6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Kleene Closure : If L1 is a regular language then its Kleene

closure L1* will also be regular.

• For example,

L1 = (a ∪ b)

L1* = (a ∪ b)*

• Complement : If L(G) is regular language, then its complement

L’(G) will also be regular language.

• Complement of a language can be found by subtracting strings

which are in L(G) from all possible strings.

• For example,

L(G) = {an | n > 3}

L’(G) = {an | n <= 3}6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 1

• Construct the regular expression over on alphabet S

= {a, b} here language has exactly string length of “2”

• Answer:-

• L1={aa,ab,ba,bb}

• =aa+ab+ba+bb

• =a(a+b)+b(a+b)

• =(a+b)(a+b)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 2

• Construct the regular expression over on alphabet S =

{a, b} where string length is at least “2”

• Answer:-

• L1={aa,ab,ba,bb,aaa-------}

• Example:- 2,3,4,5,6 ------------infinity lengths

• (a+b)(a+b)(a+b)*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 3

• Construct the regular expression over on alphabet

S = {a, b} where string length is at most “2”

• Answers:-

• At most 2 means 0, 1, 2

• {Є,a,b,aa,ab,ba,bb}

• (a+b+ Є)(a+b+ Є)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 4

• Construct the regular expression over on alphabet S

= {a, b} find even length strings

• Answer:-

• L={Є,aa,ab,ba,bb,aaaa,--------}

• ((a+b)(a+b))*=((a+b)2)*=(a+b)2x=(a+b)2n ,where n>=0

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 5

• Construct the regular expression over on alphabet S =

{a, b} where string length is odd

• Answer:- (a+b)2n+1|n0

• =(a+b)2n(a+b)

• ((a+b)2)*(a+b)

• ((a+b)(a+b))*(a+b)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 6

• Construct the regular expression over on alphabet S

= {a, b} where string length which is divisible by’3’

• Answer:-

• L={0,3,6,9,12-------}

• ((a+b)(a+b)(a+b))*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 7

• Construct the regular expression over on
alphabet S = {a, b} where the string starts
with ‘a’.

• Answer:- a(a+b)*

• L={a,aa,ab,aab,aabb-------}

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 8

• Construct the regular expression over on

alphabet S = {a, b} where string contains

exactly 2 a’s

• Answers:-

• b*ab*ab*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 9

• Construct the regular expression over on

alphabet S = {a, b} where the string

starting and ending with different symbols

• Answers:-a(a+b)*b + b(a+b)*a

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 10

• Construct the regular expression over on

alphabet S = {a, b} where string contains at

most 2 a’s

• Answers:- b*(Є +a)b*(Є +a)b*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 11

• Construct the regular expression over on

alphabet S = {a, b} where the string contains

even a’s

• Answers:- (b*ab*ab*)*+b*(b*ab*a)*b*

• Where,

• b*={b,bb,bbb-------}

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• Question 12

• Construct the regular expression over on alphabet S

= {a, b} such that no 2a’s and 2b’s should not come

together

• Answer:-

• L={Є,b,bbb,a,ab,aba,abab,ababab---------

ba,bab,baba,babab-----------}

• (b+ab)* + (b+ab)*

• (Є,b,bb,bbb----------ab,abab)

• (b+ab)*(Є +a)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Question 13

Construct the regular expression over on alphabet S = {a, b} such that no 2a’s and
2b’s should not come together

L={E,a,b,ab,ba,aba,bab-------}

Start with ends with

{a,aba,ababa----------} a a – (ab)*a (or) a(ba)*

{ab,abab,ababab-----} a b – (ab)* (or) a(ba)*b

{ba,baba----------------} b a – (ba)* (or) b(ab)*a

{babab,bababab------} b b – (ba)*b (or) b(ab)*

=(ab)*a+(ab)*+b(ab)*a+b(ab)*

=(ab)*(a+ Є) + b(ab)*(a+ Є)

=(Є +b)(ab)*(Є +a)

=(Є +a)(ba)*(Є +b)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ On binary regular expressions

❖ 0 is a regular expression.

❖ 1 is a regular expression.

❖ If 0 and 1 are regular expressions then 0∪1 is a

regular expression.

❖ if 0∪1 is a regular expression, (0∪1)∗ is a regular

expression.

❖ If 1 and 0 are regular expressions, 10 is a regular

expression.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ If 10 and 1 are regular expressions, 101 is a regular

expression.

❖ If (0∪1)∗ and 101 are regular expressions,

(0∪1)∗101 is a regular expression.

❖ If (0∪1)∗101 and (0∪1)∗ are regular expressions,

(0∪1)∗101(0∪1)∗ is a regular expression.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

❖ Observe that this language is also described by

the regular expression 01∗ ∪ 1∗.

❖ The regular expression 1∗∅ describes the

language ∅.

❖ The regular expression ∅∗ describes the language

{Є}.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Operations On Languages
• The Concatenation of languages L1 and

L2 is

• The N-th Power of Ln is

• The Union of L1 and L2 is

L1L2 = {st: s L1, t L2}

Ln = {s1s2...sn: s1, s2, ..., sn L}

L1 L2 = {s: s L1 or s L2}
6/14/2020

Prof.C.NagaRaju YSREC of YVU

9949218570

Example

String Concatenation
st = 011101s = 011 t = 101

s = a1…an st = a1…anb1…bmt = b1…bm

ts = 101011

ss = 011011

sst = 011011101

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Example
L1 = {0, 01} L2 = {e, 1, 11, 111, …}

L1L2

L1
2 L2

2

L1 L2

= {0, 01, 011, 0111, …} {01, 011, 0111, …}

= {0, 01, 011, 0111, …}

0 followed by any number of 1s

= L2

L2
n = L2 (n ≥ 1)

= {00, 001, 010, 0101}

any number of 1s

= {0, 01, e, 1, 11, 111, ...}

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Operations on Languages

• The star of L are all strings made up of zero or more

chunks from L:

✓ This is always infinite, and always contains e

• Example: L1 = {01, 0}, L2 = {e, 1, 11, 111, …}.

What is L1
* and L2

*?

L* = L0 L1 L2 …

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Example
L1 = {0, 01} L2 = {e, 1, 11, 111, …}

L1
2 L2

2 = L2

L2
n = L2 (n ≥ 1)

= {00, 001, 010, 0101}

any number of 1s

L1
*: 00100001

00110001

is in L1
*

is not in L1
*

L1
* are all strings that start

with 0 and do not contain

consecutive 1s

10010001 is not in L1
*

L2
* = L2

0 L2
1 L2

2 …

= {e} L2
1 L2

2 …

= L2

L2
* = L2

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Constructing Languages With Operations

• Let’s say S = {0, 1}

• We can construct languages by starting
with simple ones, like {0}, {1} and
combining them

{0}({0}{1})*

({0}{1}*)({1}{0}*)

0(0+1)*

01*+10*

all strings that start with 0

0 followed by any number of 1s, or

1 followed by any number of 0s

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples

01*

(01*)(01)

0 followed by any number of 1s

= 0(1*) = {0, 01, 011, 0111, …}

= {001, 0101, 01101, 011101, …}

0 followed by any number of 1s and then 01

S = {0, 1}

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples

(0+1)* = {e, 0, 1, 00, 01, 10, 11, …} any string

0+1 = {0, 1}

(0+1)*01(0+1)*

strings of length 1

any string that contatins the pattern 01

(0+1)*010 any string that ends in 010

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples

(0+1)(0+1)

(0+1)(0+1)(0+1)

strings of length 2

strings of length 3

((0+1)(0+1))*+((0+1)(0+1)(0+1))*

((0+1)(0+1))* strings of even length

((0+1)(0+1)(0+1))* strings of length a multiple of 3

all strings whose length is even or a mutliple of 3

= strings of length 0, 3, 6, 9, 12, ...

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples

((0+1)(0+1)+(0+1)(0+1)(0+1))*

(0+1)(0+1)

(0+1)(0+1)(0+1)

strings of length 2

strings of length 3

(0+1)(0+1)+(0+1)(0+1)(0+1) strings of length 2 or 3

strings that can be broken in blocks,

where each block has length 2 or 3

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples

((0+1)(0+1)+(0+1)(0+1)(0+1))*

strings that can be broken in blocks,

where each block has length 2 or 3

0011010 011e 1 011010110✓ ✓ ✓ ✓ ✓✗

this includes all strings except those of length 1

((0+1)(0+1)+(0+1)(0+1)(0+1))* = all strings except 0 and 1

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples

(1+01+001)*(e+0+00)

ends in at most two 0s

there can be at most two 0s between

consecutive 1s

Guess: (1+01+001)*(e+0+00) = {x: x does not contain 000}

there are never three consecutive 0s

0110010110 001001000e

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples
• Write a regular expression for

all strings with two consecutive 0s.
S = {0, 1}

(0+1)*00(0+1)*

(anything) 00 (anything else)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples
• Write a regular expression for

all strings that do not contain two
consecutive 0s.

S = {0, 1}

... at most one 0 in every block ending in 1

... and at most one 0 in the last block

(1 + 01)

(e + 0)

(1 + 01)*(e + 0)

0110101101010

blocks ending in 1 last block

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Examples
• Write a regular expression for

all strings with an even number of 0s.

S = {0, 1}

even number of zeros = (two zeros)*

two zeros = 1*01*01*

(1*01*01*)*

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

GATE Questions

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

•1)The number of tokens in the following C statement is

•printf("i = %d, &i = %x", i, &i); (GATE 2000)

• A.3

• B.26

• C.10

• D.21

•1)Printf 2) (3)"i = %d, &i = %x“ 4) , 5) I 6), 7) & 8) I 9)) 10) ;

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

•2) In a compiler, keywords of a language are

recognized during (2011)

• A.parsing of the program

• B.the code generation

• C.the lexical analysis of the program

• D.dataflow analysis

• Answer is C

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

GATE CS 2011 Lexical analysis

3) The lexical analysis for a modern computer language such

as Java needs the power of which one of the following

machine models in a necessary and sufficient sense?

A. Finite state automata

B. Deterministic pushdown automata

C. Non-Deterministic pushdown automata

D. Turing Machine

OPTION A

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

4) Consider the following statements:

(I) The output of a lexical analyzer is groups of characters.

(II) Total number of tokens in printf("i=%d, &i=%x", i, &i); are

11.

(III) Symbol table can be implementation by using array and

hash table but not tree.

Which of the following statement(s) is/are correct?

A. Only (I)

B. Only (II) and (III)

C. All (I), (II), and (III)

D. None of these

OPTION D

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

5) Which one of the following statements is FALSE?

A. Context-free grammar can be used to specify both

lexical and syntax rules.

B. Type checking is done before parsing.

C. High-level language programs can be translated to

different Intermediate Representations.

D. Arguments to a function can be passed using the

program stack.

Option B

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• 7)The output of a lexical analyzer is

A. A parse tree

B. Intermediate code

C. Machine code

D. A stream of tokens

Option D

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• 8) Consider the following statements related to compiler

construction :

• I. Lexical Analysis is specified by context-free grammars and

implemented by pushdown automata.

• II. Syntax Analysis is specified by regular expressions and

implemented by finite-state machine.

• Which of the above statement(s) is/are correct ?

• Only I

• Only II

• Both I and II

• Neither I nor II

• Option D6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• 9) Which of the following statement(s) regarding a linker

software is/are true ?

• I A function of a linker is to combine several object modules into

a single load module.

• II A function of a linker is to replace absolute references in an

object module by symbolic references to locations in other

modules.

• A) Only I B) Only II C) Both I and II

• D) Neither I nor II

• Option (A) is correct.
6/14/2020

Prof.C.NagaRaju YSREC of YVU

9949218570

10) From the given data below

: a b b a a b b a a b which one of the following is not a

word in the dictionary created by LZ-coding (the initial

words are a, b)?

A. a b

B. b b

C. b a

D. b a a b

B and D are correct.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• 11) The number of tokens in the following C statement is

printf("i=%d, &i=%x", i&i);

A. 13

B. 6

C. 10

D. 9

• printf ("i=%d, &i=%x" , i & i) ;

• 1 2 3 4 5 6 7 8 9

• Total nine tokens are present. So, correct option is (D)

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

• 12) In compiler optimization, operator strength

reduction uses mathematical identities to replace

slow math operations with faster operations. Which

of the following code replacements is an illustration

of operator strength reduction ?

A. Replace P + P by 2 * P or Replace 3 + 4 by 7.

B. Replace P * 32 by P < < 5

C. Replace P * 0 by 0

D. Replace (P < <4) – P by P * 15

option (B) is correct.
6/14/2020

Prof.C.NagaRaju YSREC of YVU

9949218570

• 13) Debugger is a program that

A. allows to examine and modify the contents of

registers

B. does not allow execution of a segment of program

C. allows to set breakpoints, execute a segment of

program and display contents of register

D. All of the above

option (C) is correct.

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

Thank U

6/14/2020
Prof.C.NagaRaju YSREC of YVU

9949218570

