Lexical Analysis

C.Naga Raju

B.Tech(CSE),M.Tech(CSE),PhD(CSE), MIEEE,MCSI,MISTE
Professor

Department of CSE
YSR Engineering College of YVU
Proddatur

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Contents

Introduction to lexical Analysis

Specification of tokens

Recognition of tokens using transition diagrams
Regular expressions

Regular languages

Examples

GATE solved problems on lexical analysis

LEXICAL ANALYSIS OR SCANNER OR LINEAR ANALYSIS
Lexical analysis is the first phase of a compiler

It Reads one character at a time from the source program
from left to right and generate lexemes

A lexeme is the process of forming the words based on
pattern rules and convert them into tokens

These tokens are divided into keywords, identifiers,
operators, delimiters and punctuation symbols

each token is represented with pair of values <identifier,

number>

It Recognize the various Tokens with the help of regular

expressions and pattern rules. and It classifies the various

Tokens

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Representation of Lexical Analysis

KEY:1f
LPAREN

:
if (x1 *x2 < 1.0) ID:x1

{ Lexical OP.*
— > BN

y =Xx1; Analyzer ID: %2

j RELOP:

<

NUM:1.0

RPAREN
)

RBRAC |(|DELIMI | |1D: ASSIGN ||ID: ||LBRACE
%1}/2020 TER : ; X1Pr0f.C.I\a aRaju YSREC of YU y : {

0949218570

//Consider the program
int main() {
// 2 variables
int a, b;
a=10;
return O;

}

Iintl Imainl I(I I)l I{I Iintl lal I’l lbl l;l Ial I=I l10l l;l lreturnl IOI l;l I}l
* |t Remove comments and white spaces

* It Interacts with the symbol table

e sends lexical errors to error handling table

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Pattern :A pattern is a description form of the lexemes
identifier L(L|d)* (I|) (L] _|d)*

Lexeme :A lexeme is the process of forming the words using
patterns

example: a,b,c,sum ,< ,<=,>>=,==,1=, &8&,|| !, 20,45 ,if,for,break etc.

Token : similar lexemes are grouped into single logical units called as
Token.

For example relop is token for all relational operators

examples:
1) a,b,c,sum are represent with common name identifier token
2) <,<=,>,>=,==,!=are represent with common name relop token
3) 20,30 are const token
4) If, for, break are keyword tokens

Prof.C.NagaRaju YSREC of YVU
6/14/2020 9949218570

Tokens are recognized by regular grammar and Tokens are
implemented by finite automata

Recognition of tokens
In any programming language reorganization of tokens is

the first and most important step:

Ex:

stmt -> if expr then stmt
| if expr then stmt else stmt
| €

expr -> term relop term
| term

term -> id
| number

Overall

Regular Token Attribute-Value
Expression

WS - -

if If -

then then -

else else -

id id pointer to table entry
num num pointer to table entry
< relop LT

<= relop LE

= relop EQ

<> relop NE

> relop GT

>= relop GE

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Lexical Errors

« Some errors are out of power of lexical
analyzer to recognize:

—fi (a == {(x)) ...

 However it may be able to recognize errors
like:
—d =2r

 Such errors are recognized when no pattern
for tokens matches a character sequence

Error Recovery

6/14/2020

Panic mode: successive characters are
ignored until we reach to a well formed
token

Delete one character from the remaining
input

Insert a missing character into the
remaining input

Replace a character by another character
Transpose two adjacent characters

Prof.C.NagaRaju YSREC of YVU
9949218570

Specification Of Tokens

 In compiler design regular expressions are
used to formalize the specification of tokens

 Regular expressions are used for specifying
regular languages

+ Example:
* (Letter |_)(letter|_ | digit)*

 Each regular expression is a pattern specifying
the form of strings

* One or more instances: (r)+
e Zero or more instances: r*
 Character classes: [abc]

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

 Components for Construction of the patterns
digit -> [0-9]
Capital letter -> [A-Z]
Small letters| a-z_|
Key words patterns
 whitespaces: ws -> (blank | tab | newline)+
 These patterns may be represented with
1)transistion diagrams

2) Regular expressions

Prof.C.NagaRaju YSREC of YVU
9949218570

6/14/2020

O letter

Transition Diagram *@4’. =

Pictorial representation of labeled directed graph called a

Transition Diagram

Circles represent states. They represent how much of

the input string we have processed.

Arrows represent transitions from one state to the next

state when the character labeling the arrow is matched.
State 1 is the starting state.

Final or Accepting states are represented by double

circles.

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Transition Diagram : Identifier & Identifier with erroneous

e
=X

/

* It shows that the string of charactg{(sm"tmpg' form a
)1

letter

digit

legal identifier

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Transition Diagram : C Comments

\/

s+ C comments are of the

form

[* ... (no */s) ... */

all chars

N / EMPtQ (/ // “\

>~ —

all chars
except *,/

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

% Transition diagram for Natural Numbers

U - 9
9_
g digit

Prof.C.NagaRaju YSREC of YVU
9949218570

6/14/2020

% Transition diagram for Signed Natural Numbers

Prof.C.NagaRaju YSREC of YVU
9949218570

6/14/2020

» Transition diagram for Signed Real Numbers

_=a5 W iigh dgi

;
NN \/*‘“1/ AT " \\ LN @
—-P\OMU \“ﬂ _"' 4j

Prof.C.NagaRaju YSREC of YVU
9949218570

6/14/2020

% Transition diagram for signed Floating Point

numbers

digit dlgth
/’\/—tx/ﬁ = fQ e

BaU U VARV)
© digit
\ ! H U H

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Transition Diagram : Unsigned floating number

dig
i
t

dlg. others

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Transition Diagram : White Spaces

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Transition Diagram : RELOP

=o token is relop, lexeme is >=

k
=o token is relop, lexeme is

othe >
1. \ S——
* "‘
. =. =o token is relop, lexeme is
< othe <
)
=o token is relop, lexeme is rd >
> <>
— =o token is relop, lexeme is
— <=
=o token is relop, lexeme is
> — =o token is relop, lexeme is >=
>
othe Q token is relop, lexeme is
1 Prof. gaRaju YSREC of YV,

6/14/2020

9949218570

* Regular Expressions

Regular Expressions are used to denote regular languages.

An expression is regular if it satisfies the following conditions

Let X be a Non-empty Alphabet.

1. € is aregular expression

2. @ is aregular expression.

3. Foreacha € X, ais aregular expression.

4. If R1 and R2 are regular expressions, then R1 U R2 is a
regular expression.

5. If R1 and R2 are regular expressions, then R1 N R2 is a
regular expression.

6. IfRis a regular expression, then R* is a regular expression.

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

 Rules for construction of Regular expressions

 where R is regular expression @ is empty set
and € is null set

1)@+R=R+ @P=R

2) .R=R .¢= @

3) @*=€

4) e.R=R. =R

5) €*= €

6) E+R.R*=R*.R+ €=R*

7)(a+b) *=(a*+b¥) *

8)(a*.b*)=(a*b*) *

9)(a+b*)*=a*(ba)*=b*(ab*)*

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

¢ Regular languages
» A Languages defined by Regular Expressions are called
Regular Languages.
“ A Language is regular if and only if some regular
expressions describes it ex: finite automata.
 Let X be a Non-empty Alphabet.
1. The Regular Expression € describes the language
{€}.
2. The Regular Expression @ describes the language 0.
3. For each a € X, the Regular Expression a describes
the language {a}.

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Closure Properties of Regular Languages

Union : If L1 and L2 are two regular languages, their union L1 U L2 will
also be regular.

For example, L1 = {a" | n =2 0} and L2 = {b" | n = 0}
13=L1UL2={a"Ub" | n>0}is also regular.

Intersection : If L1 and L2 are two regular languages, their intersection
L1 n L2 will also be regular.

For example,L1={a™ b" | n>0and m >0} and L2={b" a™ | n > 0 and m>0}
13=L1nL2={@aMb" | n>0and m >0}is also regular.

Concatenation : If L1 and L2 are two regular languages, their
concatenation L1.L2 will also be regular.

For example, L1 = {a" | n = 0} and L2 = {b" | n > 0}
3= L1.L2 = {am™ . b {"yl2 0 and n > 0} is also regular.

49218570

Kleene Closure : If L1 is a regular language then its Kleene
closure L1* will also be regular.

For example,

L1=(aUb)

L1* =(a U b)*

Complement : If L(G) is regular language, then its complement
'(G) will also be regular language.

Complement of a language can be found by subtracting strings
which are in L(G) from all possible strings.

For example,

L(G) ={a" | n> 3}

U{G)={a" | n <=3}

Question 1

Construct the regular expression over on alphabet S
= {a, b} here language has exactly string length of “2”

Answer:-

L,={aa,ab,ba,bb} \/
=aa+tab+ba+bb
=a(a+tb)+b(a+tb)
=(a+b)(a+b)

Question 2

Construct the regular expression over on alphabet S =
{a, b} where string length is at least “2”

Answer:-
L,={aa,ab,ba,bb,aaa------- }
Example:- 2,3,4,5,6 ----——-—---- infinity lengths
(at+b)(a+b)(a+b)*

Question 3

Construct the regular expression over on alphabet
S ={a, b} where string length is at most “2”

Answers:-

At most 2 means O, 1, 2
{€,a,b,aa,ab,ba,bb}
(a+b+ €)(a+b+ €)

Question 4

Construct the regular expression over on alphabet S
= {a, b} {find even length strings

Answer:-
L={€,aa,ab,ba,bb,aaaa,-------- }
((a+b)(atb))*=((atb)?)*=(at+b)?*=(atb)?? ,where n>=0

Question 5

Construct the regular expression over on alphabet S =
{a, b} where string length is odd

Answer:- (a+b)?"*1 | nO
=(a+b)?(atb)
(at+b)?)*(a+b)

((a+b)(a+b))*(a+b)

Question 6

Construct the regular expression over on alphabet S
= {a, b} where string length which is divisible by’3’
Answer:-

L={O)33639312 ““““ }

((a+b)(a+b)(a+b))*

Question 7

Construct the regular expression over on
where the string starts

alphabet £ = {a, b}
with ‘a’.

Answer:- a(a+b)*
L={a,aa,ab,aab,aabb

Question 8

Construct the regular expression over on
alphabet S = {a, b} where string contains
exactly 2 a’s

Answers:-
b*ab*ab*

* Question 9

 Construct the regular expression over on
alphabet S = {a, b} where the string
starting and ending with different symbols

 Answers:-a(a+b)*b + b(a+b)*a

* Question 10

 Construct the regular expression over on
alphabet S = {a, b} where string contains at
most 2 a’s

 Answers:- b*(€ +a)b*(€ +a)b*

Question 11

Construct the regular expression over on
alphabet S = {a, b} where the string contains
even a’s

Answers:- (b*ab*ab*)*+b*(b*ab*a)*b*
Where,
b*={b,bb,bbb------- }

Question 12

Construct the regular expression over on alphabet S
= {a, b} such that no 2a’s and 2b’s should not come
together

Answer:-

L={€,b,bbb,a,ab,aba,abab,ababab---------
ba,bab,baba,babab----------- !

(b+ab)* + (b+ab)*
(€,b,bb,bbb---------- ab,abab)
(b+ab)*(€ +a)

Question 13

Construct the regular expression over on alphabet X = {a, b} such that no 2a’s and

2b’s should not come together

L={E,a,b,ab,ba,aba,bab------- }

Start with
{a,aba,ababa---------- } a
{ab,abab,ababab-----} a
{ba,baba---------------- } b

{babab,bababab------ } b

=(ab)*a+(ab)*+b(ab)*a+b(ab)*
=(ab)*(a+ €) + b(ab)*(a+ €)
=(€ +b)(ab)*(€ +a)

=(€ +a)(ba)*(€ +b)

ends with
a— (ab)*a (or) a(ba)*
b—(ab)* (or) a(ba)*b
a— (ba)* (or) b(ab)*a
b —(ba)*b (or) b(ab)*

» On binary regular expressions
» 0 is a regular expression.
» 1 is a regular expression.

» If O and 1 are regular expressions then OUl is a

regular expression.

» 1f OUl is a regular expression, (OU1)* is a regular

expression.

» If 1 and O are regular expressions, 10 is a regular

expression.

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

\/

 If 10 and 1 are regular expressions, 101 is a regular

expression.

A/

o If (Oul)* and 101 are regular expressions,

(OU1)*101 is a regular expression.

/

o If (OUl)*101 and (OUl)* are regular expressions,

(OU1)*101(0U1)* is a regular expression.

% Observe that this language is also described by
the regular expression O1* U 1*

% The regular expression 1*@ describes the
language 0.

** The regular expression @* describes the language

&5

Operations On Languages

* The Concatenation of languages L, and

L, 1s
LI,={stseltel,}

e The N-th Power of L" is

n — .
L7 = {8515908,0 8 55y ey 5, € L}

* The Union of L, and L, is
Lul,={sselorsel,}

Prof.C.NagaRaju YSREC of YVU
9949218570

6/14/2020

Example

String Concatenation

s =011 t=101 st =011101
ts =101011
ss =011011

sst = 011011101

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Example
L,={e1,11,111, ...}
any number of 1s

L.I, =1{0,01,011,0111,...} U {01,011,0111, ...}
= {0, 01,011, 0111, ...}
0 followed by any number of 1s

L2 = {00,001, 010,0101} L2 =1,
Ly =L, (#>1)

L,ul,={0,01,¢1,11,111,..}

Prof.C.NagaRaju YSREC of YVU
6/14/2020 9949218570

Operations on Languages

« The star of L are all strings made up of zero or more
chunks from L:

v' This is always infinite, and always contains e

« Example: L., = {01, 0}, L, = {g, 1, 11, 111, ...}.
What is ;" and [.,"?

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Example

L, = {0,01} L,={e 1,11, 111, ...}

any number of 1s

1.2 = {00,001, 010, 0101} L2 =1,

L 00100001 is in ;" L =L, #=1)
00110001 is notin I~ L, =LYUL'UL2U ...
10010001 is not in L.,* = (e ULIUL2U ...

L.," are all strings that start

with O and do not contain
consecutive 1s

Prof.C.NagaRaju YSREC of YVU
6/14/2020 9949218570

Constructing Languages With Operations

» Let’'ssay X = {0, 1}

 We can construct languages by starting
with simple ones, like {0}, {1} and
combining them

{0}({0}U{1})*) 00+1)*

all strings that start with O

({0} {1}9U({1} {0} EEEP 01++10%
0 followed by any number of 1s, or
1 followed by any number of Os

Prof.C.NagaRaju YSREC of YVU
6/14/2020 9949218570

Examples

01* = 0(1%) = {0,01,011, 0111, ...}

,Ts

0 followed by any number of 1s

l
(01%)(01) = {001, 0101, 01101, 011101, ...}

0 followed by any number of 1s and then 01

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

0+1 =1{0,1} strings of length 1
O+D)* = {g,0,1,00,01, 10,11, ...} any string
(0+1)*010 any string that ends in 010
(0+1)*01(0+1)* any string that contatins the pattern 01

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

(O+1D)(O+1)*+((0+1)(0+1)(0+1))*

all strings whose length is even or a mutliple of 3
= strings of length O, 3, 6,9, 12, ...

((O+1)(O+1)* strings of even length
(0+1)(0+1) strings of length 2
((0O+1)(0+1)(0+1))* strings of length a multiple of 3
(0+1)(0+1)(0+1) strings of length 3

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

(0+1)(0+1) strings of length 2
(0+1)(0+1)(0+1) strings of length 3
(0+1)(0+1)+(0+1)(0+1)(0+1) strings of length 2 or 3

((0+1)(0+1)+(0+1)(0+1)(0+1))*

strings that can be broken in blocks,
where each block has length 2 or 3

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

((0+1)(0+1)+(0+1)(0+1)(0+1))*

strings that can be broken in blocks,
where each block has length 2 or 3

ev 1 X 10V 011V 00110V 011010110V
N

N

this includes all strings except those of length 1

((0+1)(0+1)+(0+1)(0+1)(0+1))* = all strings except 0 and 1

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

(1+01+001)*(e+0-+00)
{ ends 1n at most two 0s
. there can be at most two 0s between

consecutive 1s

there are never three consecutive 0s

£ 00 0110010110 0010010

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

« Write a regular expression for
all strings with two consecutive Os.

(anything) 00 (anything else)

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

Write a regular expression @ for
all strings that do not contain two -

consecutive 0Os.

plll(PlCrllpllO][OJ

blocks ending in 1 last block

... at most one 0 in every block ending in 1 (1+01)

... and at most one 0 in the last block (e + 0)

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

Examples

« Write a regular expression for
all strings with an even number of Os.

even number of zeros = (two zeros)*

two zeros = 1*01*01*

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

GATE Questions

*1)The number of tokens in the following C statement is
printf("i = %d, &i = %x", 1, &i); (GATE 2000)

A.3

B.26

C.10
D.21

D)Printf 2) (3)"i = %d, &i = %x“ 4), 5)1 6), 7) &8)19)) 10) :

*2) In a compiler, keywords of a language are
recognized during (2011)

 A.parsing of the program

 B.the code generation

 C.the lexical analysis of the program
 D.dataflow analysis

e Answeris C

GATE CS 2011 Lexical analysis

3) The lexical analysis for a modern computer language such
as Java needs the power of which one of the following
machine models in a necessary and sufficient sense?

A. Finite state automata

B. Deterministic pushdown automata

C. Non-Deterministic pushdown automata

D. Turing Machine

OPTION A

4) Consider the following statements:

(I) The output of a lexical analyzer is groups of characters.
(IT) Total number of tokens in printf("i=%d, &i=%x", 1, &i); are

11.

(III) Symbol table can be implementation by using array and

hash table but not tree.

Which of the following statement(s) is/are correct?

A. Only (I)
B. Only (II) and (III)
C. All (I), (IT), and (III)

D. None of these
OPTION D

Prof.C.NagaRaju YSREC of YVU
6/14/2020 9949218570

S) Which one of the following statements is FALSE?

A. Context-free grammar can be used to specify both
lexical and syntax rules.

&

Type checking is done before parsing.

O

High-level language programs can be translated to
different Intermediate Representations.

D. Arguments to a function can be passed using the
program stack.

Option B

e 7)The output of a lexical analyzer is
A. A parse tree

B. Intermediate code
C. Machine code
D

A stream of tokens

Option D

8) Consider the following statements related to compiler
construction :

|. Lexical Analysis is specified by context-free grammars and
implemented by pushdown automata.

Il. Syntax Analysis is specified by regular expressions and
implemented by finite-state machine.

Which of the above statement(s) is/are correct ?

Only |

Only I

Both I and Il

Neither | nor

Option D

9) Which of the following statement(s) regarding a linker
software is/are true ?

| A function of a linker is to combine several object modules into
a single load module.

Il A function of a linker is to replace absolute references in an
object module by symbolic references to locations in other
modules.

A) Only I B) Only Il C) Both Il and Il

D) Neither | nor Il

Option (A) is correc

6/14/2020 rof.C.NagaRaju YSREC of YVU

9949218570

10) From the given data below
:abbaabbaab which one of the following is not a
word in the dictionary created by LZ-coding (the initial

words are a, b)?

A. ab
B. bb
C. ba
D. baab

B and D are correct.

 11) The number of tokens in the following C statement is

printf("i=%d, &i=%x", i&i);

A. 13
B. 6
C. 10
D. 9

e printf ("i=%d, &i=%x",i &i);
e 1 2 3 456789
* Total nine tokens are present. So, correct option is (D)

A
B.
C
D

12) In compiler optimization, operator strength
reduction uses mathematical identities to replace
slow math operations with faster operations. Which
of the following code replacements is an illustration

of operator strength reduction ?

. Replace P+ P by 2 *PorReplace3+4by?7.

Replace P * 32 by P<<5
Replace P *0 by 0

. Replace (P<<4)-PbyP * 15

option (B) is correct.

e 13) Debugger is a program that

A. allows to examine and modify the contents of
registers

B. does not allow execution of a segment of program

C. allows to set breakpoints, execute a segment of
program and display contents of register

D. All of the above

option (C) is correct.

Thank U

Prof.C.NagaRaju YSREC of YVU

6/14/2020 9949218570

