Lexical Analysis

C.Naga Raju
B.Tech(CSE),M.Tech(CSE),PhD(CSE),MIEEE,MCSI,MISTE Professor
Department of CSE
YSR Engineering College of YVU
Proddatur

Contents

- Introduction to lexical Analysis
- Specification of tokens
- Recognition of tokens using transition diagrams
- Regular expressions
- Regular languages
- Examples
- GATE solved problems on lexical analysis

- LEXICAL ANALYSIS OR SCANNER OR LINEAR ANALYSIS

- Lexical analysis is the first phase of a compiler
- It Reads one character at a time from the source program from left to right and generate lexemes
- A lexeme is the process of forming the words based on pattern rules and convert them into tokens
- These tokens are divided into keywords, identifiers, operators, delimiters and punctuation symbols
- each token is represented with pair of values <identifier, number>
- It Recognize the various Tokens with the help of regular expressions and pattern rules. and It classifies the various Tokens

Representation of Lexical Analysis


```
RPAREN
:)
```

RBRAC $\mathrm{E}_{\mathrm{c}_{1}}{ }_{1}$	$\begin{aligned} & \text { DELIMI } \\ & \text { TER : ; } \end{aligned}$	$\begin{aligned} & \text { ID : } \\ & \mathbf{x 1} 1^{\text {Prof. } C} \end{aligned}$	ASSIGN	$\begin{aligned} & \text { ID : } \\ & \mathrm{y} \end{aligned}$	LBRACE : \{

//Consider the program int main() \{

// 2 variables
int a, b;
$\mathrm{a}=10$;
return 0 ;

\}

'int' 'main' '(' ')' '\{' 'int' 'a' ',' 'b' ';' 'a' '=' '10' ';' 'return' '0' ';' '\}'

- It Remove comments and white spaces
- It Interacts with the symbol table
- sends lexical errors to error handling table

Pattern :A pattern is a description form of the lexemes
identifier L(L|d)* (I|_) (L|_|d)*
Lexeme :A lexeme is the process of forming the words using patterns
example: a, b, c, sum $,<,<=,>,>=,==,!=, \& \&,| |!, 20,45$,if,for,break etc.
Token : similar lexemes are grouped into single logical units called as Token.

For example relop is token for all relational operators examples:

1) a, b, c, sum are represent with common name identifier token
2) $<,<=,>,>=,==$,! $=$ are represent with common name relop token
3) 20,30 are const token
4) If , for, break are keyword tokens

- Tokens are recognized by regular grammar and Tokens are implemented by finite automata
- Recognition of tokens
- In any programming language reorganization of tokens is the first and most important step:
- Ex:

```
stmt -> if expr then stmt
    | if expr then stmt else stmt
    | &
    expr -> term relop term
    | term
    term -> id
    | number
```


Overall

Regular Expression	Token	Attribute-Value
ws	-	-
if	if	-
then	then	-
else	else	-
id	id	pointer to table entry
num	num	pointer to table entry
$<$	relop	LT
$<=$	relop	LE
$=$	relop	EQ
$<>$	relop	NE
$>$	relop	GT
$=$	relop	GE

Lexical Errors

- Some errors are out of power of lexical analyzer to recognize:
- fi (a == f(x)) ...
- However it may be able to recognize errors like:
$-\mathrm{d}=2 \mathrm{r}$
- Such errors are recognized when no pattern for tokens matches a character sequence

Error Recovery

- Panic mode: successive characters are ignored until we reach to a well formed token
- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character
- Transpose two adjacent characters

Specification Of Tokens

- In compiler design regular expressions are used to formalize the specification of tokens
- Regular expressions are used for specifying regular languages
- Example:
- (Letter $\left.\left.\right|_{-}\right)\left(\right.$letter $\left.\right|_{-} \mid$digit)*
- Each regular expression is a pattern specifying the form of strings
- One or more instances: (r)+
- Zero or more instances: r^{*}
- Character classes: [abc]
- Components for Construction of the patterns
digit -> [0-9]
Capital letter -> [A-Z]
Small letters[a-z_]
Key words patterns
- whitespaces: ws -> (blank | tab | newline)+
- These patterns may be represented with
1)transistion diagrams

2) Regular expressions

- Transition Diagram

\checkmark Pictorial representation of labeled directed graph called a Transition Diagram
\checkmark Circles represent states. They represent how much of the input string we have processed.
\checkmark Arrows represent transitions from one state to the next state when the character labeling the arrow is matched.
\checkmark State 1 is the starting state.
\checkmark Final or Accepting states are represented by double circles.

Transition Diagram : Identifier \& Identifier with erroneous

It shows that the string of characters "tmp8" form a legal identifier

$$
\rightarrow 1 \stackrel{t}{\rightarrow} 2 \stackrel{m}{\rightarrow} 2 \stackrel{P}{\rightarrow} 2 \stackrel{8}{\rightarrow} 2
$$

Transition Diagram : C Comments

C comments are of the
form
/* ... (no */s) ... */

* Transition diagram for Natural Numbers

* Transition diagram for Signed Natural Numbers

$$
(+1-1)(d)^{*}
$$

* Transition diagram for Signed Real Numbers

16

$$
23 \frac{4}{4} .67
$$

* Transition diagram for signed Floating Point numbers

Transition Diagram : Unsigned floating number

Transition Diagram : White Spaces

Transition Diagram : RELOP

 token is relop, lexeme is token is relop, lexeme is token is relop, lexeme is token is relop, lexeme is

Regular Expressions

Regular Expressions are used to denote regular languages.
An expression is regular if it satisfies the following conditions
Let Σ be a Non-empty Alphabet.

1. \in is a regular expression
2. \varnothing is a regular expression.
3. For each $\mathbf{a} \in \boldsymbol{\Sigma}, \mathbf{a}$ is a regular expression.
4. If $\mathbf{R 1}$ and $\mathbf{R 2}$ are regular expressions, then $\mathbf{R} \mathbf{1} \cup \mathbf{R} \mathbf{2}$ is a regular expression.
5. If $\mathbf{R 1}$ and $\mathbf{R 2}$ are regular expressions, then $\mathbf{R} \mathbf{1} \cap \mathbf{R} \mathbf{2}$ is a regular expression.
6. If R is a regular expression, then \mathbf{R}^{*} is a regular expression.

- Rules for construction of Regular expressions
- where R is regular expression \emptyset is empty set and \in is null set

1) $\varnothing+R=R+\emptyset=R$
2) $\emptyset \cdot R=R . \emptyset=\emptyset$
3) $\emptyset^{*}=\epsilon$
4) $\in . R=R . \in=R$
5) $\epsilon^{*}=\epsilon$
6) $\epsilon+R \cdot R^{*}=R^{*} \cdot R+\epsilon=R^{*}$
7) $(\mathbf{a}+\mathrm{b})$ * $=\left(\mathbf{a}^{*}+\mathrm{b}^{*}\right)$ *
8) $\left(a^{*} . b^{*}\right)=\left(a^{*} b^{*}\right)^{*}$
9) $\left(\mathbf{a}^{+} \mathbf{b}^{*}\right)^{*}=\mathbf{a}^{*}(\mathrm{ba})^{*}=\mathbf{b}^{*}\left(\mathrm{ab}^{*}\right)^{*}$

Regular languages

A Languages defined by Regular Expressions are called Regular Languages.
A Language is regular if and only if some regular expressions describes it ex: finite automata.

Let Σ be a Non-empty Alphabet.

1. The Regular Expression \in describes the language $\{\in\}$.
2. The Regular Expression \varnothing describes the language \emptyset.
3. For each a $\in \Sigma$, the Regular Expression a describes the language $\{\mathrm{a}\}$.

- Closure Properties of Regular Languages

Union : If L1 and L2 are two regular languages, their union L1 U L2 will also be regular.

- For example, $L 1=\left\{a^{n} \mid n \geq 0\right\}$ and $L 2=\left\{b^{n} \mid n \geq 0\right\}$ $L 3=L 1 \cup L 2=\left\{a^{n} \cup b^{n} \mid n \geq 0\right\}$ is also regular.
- Intersection : If L1 and L2 are two regular languages, their intersection $\mathrm{L} 1 \cap \mathrm{~L} 2$ will also be regular.
- For example, $\mathrm{L} 1=\left\{a^{m} b^{n} \mid n \geq 0\right.$ and $\left.m \geq 0\right\}$ and $L 2=\left\{b^{n} a^{m} \mid n \geq 0\right.$ and $\left.m \geq 0\right\}$ $\mathrm{L} 3=\mathrm{L} 1 \cap \mathrm{~L} 2=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 0\right.$ and $\left.\mathrm{m} \geq 0\right\}$ is also regular.
- Concatenation : If L1 and L2 are two regular languages, their concatenation L1.L2 will also be regular.
- For example, $L 1=\left\{a^{n} \mid n \geq 0\right\}$ and $L 2=\left\{b^{n} \mid n \geq 0\right\}$

- Kleene Closure : If L1 is a regular language then its Kleene closure L1* will also be regular.
- For example,
$\mathrm{L} 1=(\mathrm{a} \cup \mathrm{b})$
L1* $=(\mathrm{a} \cup \mathrm{b})^{*}$
- Complement : If $\mathrm{L}(\mathrm{G})$ is regular language, then its complement $\mathrm{L}^{\prime}(\mathrm{G})$ will also be regular language.
- Complement of a language can be found by subtracting strings which are in $L(G)$ from all possible strings.
- For example,

$$
\begin{aligned}
\mathrm{L}(\mathrm{G}) & =\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}>3\right\} \\
\mathrm{L}^{\prime}(\mathrm{G}) & =\left\{\mathrm{a}^{\mathrm{n}} \mid \mathrm{n}<=3\right\}
\end{aligned}
$$

- Question 1
- Construct the regular expression over on alphabet S $=\{a, b\}$ here language has exactly string length of " 2 "
- Answer:-

$$
\begin{aligned}
\mathrm{L}_{1} & =\{a \mathrm{a}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\} \\
& =a \mathrm{a}+\mathrm{ab}+\mathrm{ba+bb} \\
& =a(a+b)+b(a+b) \\
& =(a+b)(a+b)
\end{aligned}
$$

- Question 2
- Construct the regular expression over on alphabet $\mathrm{S}=$ $\{a, b\}$ where string length is at least " 2 "
- Answer:-

$$
\begin{aligned}
& \mathrm{L}_{1}=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}-------\} \\
& \text { Example:- } 2,3,4,5,6 \text {------------infinity lengths } \\
& (\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b})(\mathrm{a}+\mathrm{b})^{*}
\end{aligned}
$$

- Question 3
- Construct the regular expression over on alphabet $\mathrm{S}=\{\mathrm{a}, \mathrm{b}\} \quad$ where string length is at most " 2 "
- Answers:-
- At most 2 means 0, 1, 2
- $\{€, a, b, a a, a b, b a, b b\}$
- $(a+b+\epsilon)(a+b+\epsilon)$
- Question 4
- Construct the regular expression over on alphabet S $=\{a, b\}$ find even length strings
- Answer:-
- $\mathrm{L}=\{€, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaaa},--------\}$
- $((a+b)(a+b))^{*}=\left((a+b)^{2}\right)^{*}=(a+b)^{2 x}=(a+b)^{2 n}$, where $n>=0$
- Question 5
- Construct the regular expression over on alphabet $\mathrm{S}=$ $\{a, b\} \quad$ where string length is odd
- Answer:- $(a+b)^{2 n+1} \mid n 0$

$$
\begin{aligned}
& =(a+b)^{2 n}(a+b) \\
& \left((a+b)^{2}\right)^{*}(a+b) \\
& ((a+b)(a+b))^{*}(a+b)
\end{aligned}
$$

- Question 6
- Construct the regular expression over on alphabet S $=\{a, b\} \quad$ where string length which is divisible by'3'
- Answer:-
- $\mathrm{L}=\{0,3,6,9,12------\}$
- $((a+b)(a+b)(a+b))^{*}$
- Question 7
- Construct the regular expression over on alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ where the string starts with 'a'.
- Answer:- $a(a+b)^{*}$
- $L=\{a, a a, a b, a a b, a a b b------\}$
- Question 8
- Construct the regular expression over on alphabet $S=\{a, b\} \quad$ where string contains exactly 2 a's
- Answers:-

b*ab*ab*

- Question 9

- Construct the regular expression over on alphabet $S=\{a, b\} \quad$ where the string starting and ending with different symbols
- Answers:-a(a+b)*b + b(a+b)*a
- Question 10
- Construct the regular expression over on alphabet $S=\{a, b\} \quad$ where string contains at most 2 a's
- Answers:- b* $(€+a) b^{*}(€+a) b^{*}$
- Question 11
- Construct the regular expression over on alphabet $S=\{a, b\}$ where the string contains even a's
- Answers:- (b*ab*ab*)*+b*(b*ab*a)*b*
- Where,
- b*=\{b,bb,bbb-------\}
- Question 12
- Construct the regular expression over on alphabet S $=\{a, b\}$ such that no $2 a$'s and 2 b 's should not come together
- Answer:-
- L=\{Є,b,bbb,a,ab,aba,abab,ababab---------
ba,bab,baba,babab-----------\}
- (b+ab)* + (b+ab)*
- (€,b,bb,bbb----------ab,abab)
- $(b+a b)^{*}(€+a)$

Question 13

Construct the regular expression over on alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ such that no 2 a 's and 2 b 's should not come together
L=\{E,a,b,ab,ba,aba,bab-------\}

Start with

\{a,aba,ababa---------\} a
\{ab,abab,ababab-----\} a
\{ba,baba---------------\} b
\{babab,bababab------\} b

$$
\begin{aligned}
& =(a b)^{*} a+(a b)^{*}+b(a b)^{*} a+b(a b)^{*} \\
& =(a b)^{*}(a+\epsilon)+b(a b)^{*}(a+\epsilon) \\
& =(€+b)(a b)^{*}(€+a) \\
& =(€+a)(b a)^{*}(€+b)
\end{aligned}
$$

ends with

$$
\begin{aligned}
& a-(a b)^{*} a(o r) a(b a)^{*} \\
& b-(a b)^{*}(o r) \quad a(b a)^{*} b \\
& a-(b a)^{*}(o r) b(a b)^{*} a \\
& b-(b a)^{*} b(o r) b(a b)^{*}
\end{aligned}
$$

On binary regular expressions

0 is a regular expression.
1 is a regular expression.
If 0 and 1 are regular expressions then $0 \cup 1$ is a regular expression.
if $0 \cup 1$ is a regular expression, ($0 \cup 1)^{*}$ is a regular expression.

If 1 and 0 are regular expressions, 10 is a regular expression.

If 10 and 1 are regular expressions, 101 is a regular expression.

* If $(0 \cup 1)^{*}$ and 101 are regular expressions, $(0 \cup 1)^{*} 101$ is a regular expression.
* If $(0 \cup 1)^{*} 101$ and $(0 \cup 1)^{*}$ are regular expressions, $(0 \cup 1)^{*} 101(0 \cup 1)^{*}$ is a regular expression.

Observe that this language is also described by the regular expression $01^{*} \cup 1^{*}$.
The regular expression $1^{*} \emptyset$ describes the language \emptyset.

* The regular expression \emptyset^{*} describes the language $\{\in\}$.

Operations On Languages

- The Concatenation of languages L_{1} and L_{2} is

$$
L_{1} L_{2}=\left\{s t: s \in L_{1}, t \in L_{2}\right\}
$$

- The N-th Power of L^{n} is

$$
L^{n}=\left\{s_{1} s_{2} \ldots s_{n}: s_{1}, s_{2}, \ldots, s_{n} \in L\right\}
$$

- The Union of L_{1} and L_{2} is

$$
L_{1} \cup L_{2}=\left\{s, s \in L_{1} \text { or } s \in L_{2}\right\}
$$

Example

String Concatenation

$\mathrm{s}=011$
$\mathrm{t}=101$
st $=011101$
ts $=101011$
ss $=011011$
sst $=011011101$

$$
s=\mathrm{a}_{1} \ldots \mathrm{a}_{n} \quad t=\mathrm{b}_{1} \ldots \mathrm{~b}_{m} \quad \Longrightarrow \quad s t=\mathrm{a}_{1} \ldots \mathrm{a}_{n} \mathrm{~b}_{1} \ldots \mathrm{~b}_{m}
$$

Example

$$
L_{1}=\{0,01\}
$$

$L_{2}=\{\varepsilon, 1,11,111, \ldots\}$
any number of 1 s

$$
\begin{aligned}
L_{1} L_{2}= & \{0,01,011,0111, \ldots\} \cup\{01,011,0111, \ldots\} \\
= & \{0,01,011,0111, \ldots\} \\
& 0 \text { followed by any number of } 1 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}{ }^{2}=\{00,001,010,0101\} \quad \\
& \\
& \\
& L_{2}^{2}=L_{2} \\
& L_{2}^{n}=L_{2} \quad(n \geq 1) \\
& L_{1} \cup L_{2}=\{0,01, \varepsilon, 1,11,111, \ldots\}
\end{aligned}
$$

Operations on Languages

- The star of L are all strings made up of zero or more chunks from L :

$$
L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots
$$

\checkmark This is always infinite, and always contains e

- Example: $L_{1}=\{01,0\}, L_{2}=\{\varepsilon, 1,11,111, \ldots\}$. What is L_{1}^{*} and L_{2}^{*} ?

Example

$$
L_{1}=\{0,01\}
$$

$$
L_{2}=\{\varepsilon, 1,11,111, \ldots\}
$$ any number of 1 s

$L_{1}{ }^{2}=\{00,001,010,0101\}$
$L_{1}{ }^{*}: 001000001$ is in $L_{1}{ }^{*}$
00110001 is not in $L_{1}{ }^{*}$ 10010001 is not in $L_{1}{ }^{*}$

$L_{1}{ }^{*}$ are all strings that start with 0 and do not contain
consecutive 1s

$$
\begin{aligned}
& L_{2}^{2}=L_{2} \\
& L_{2}^{n}=L_{2} \quad(n \geq 1)
\end{aligned}
$$

$$
L_{2}^{*}=L_{2}{ }^{0} \cup L_{2}{ }^{1} \cup L_{2}{ }^{2} \cup \ldots
$$

$$
=\{\varepsilon\} \cup L_{2}{ }^{1} \cup L_{2}{ }^{2} \cup \ldots
$$

$$
=L_{2}
$$

$$
L_{2}{ }^{*}=L_{2}
$$

Constructing Languages With Operations

- Let's say $\Sigma=\{0,1\}$
- We can construct languages by starting with simple ones, like $\{0\}$, $\{1\}$ and combining them

$$
\begin{array}{ll}
\{0\}(\{0\} \cup\{1\})^{*} & \begin{array}{l}
0(0+1)^{*} \\
\text { all strings that start with } 0
\end{array} \\
\left(\{0\}\{1\}^{*}\right) \cup\left(\{1\}\{0\}^{*}\right) \square \square & \begin{array}{l}
01^{*}+10^{*} \\
0 \text { followed by any number of } 1 \mathrm{~s}, \text { or } \\
1 \text { followed by any number of } 0 \mathrm{~s}
\end{array}
\end{array}
$$

Examples

$$
\Sigma=\{0,1\}
$$

$$
01^{*}=0\left(1^{*}\right)=\{0,01,011,0111, \ldots\}
$$

Examples

$$
\begin{aligned}
& 0+1=\{0,1\} \quad \text { strings of length } 1 \\
& (0+1)^{*}=\{\varepsilon, 0,1,00,01,10,11, \ldots\} \quad \text { any string } \\
& (0+1)^{*} 010 \quad \text { any string that ends in } 010 \\
& (0+1)^{*} 01(0+1)^{*} \quad \text { any string that contatins the pattern } 01
\end{aligned}
$$

Examples

$$
((0+1)(0+1))^{*}+((0+1)(0+1)(0+1))^{*}
$$

all strings whose length is even or a mutliple of 3 $=$ strings of length $0,3,6,9,12, \ldots$

$$
\begin{aligned}
& ((0+1)(0+1))^{*} \\
& \quad(0+1)(0+1) \\
& ((0+1)(0+1)(0+1))^{*} \\
& \quad(0+1)(0+1)(0+1)
\end{aligned}
$$

strings of even length strings of length 2
strings of length a multiple of 3
strings of length 3

Examples

$$
(0+1)(0+1)
$$

$$
(0+1)(0+1)(0+1)
$$

$$
(0+1)(0+1)+(0+1)(0+1)(0+1)
$$

$$
((0+1)(0+1)+(0+1)(0+1)(0+1))^{*}
$$

strings that can be broken in blocks, where each block has length 2 or 3

Examples

$$
((0+1)(0+1)+(0+1)(0+1)(0+1))^{*}
$$

strings that can be broken in blocks, where each block has length 2 or 3

$$
\varepsilon \sqrt{ } \sqrt{2} \times 10 \checkmark 1011 \sqrt{ } \underbrace{00110} \sqrt{ } \sqrt{011010110} \sqrt{ }
$$

this includes all strings except those of length 1

$$
((0+1)(0+1)+(0+1)(0+1)(0+1))^{*}=\text { all strings except } 0 \text { and } 1
$$

Examples

there are never three consecutive 0 s
Guess: $(1+01+001)^{*}(\varepsilon+0+00)=\{x: x$ does not contain 000$\}$

$$
\begin{array}{llll}
\varepsilon & 00 & 011100101110 & 0010010
\end{array}
$$

Examples

- Write a regular expression for $\Sigma=\{0,1\}$ all strings with two consecutive 0s.
(anything) 00 (anything else)

$$
(0+1)^{*} 00(0+1)^{*}
$$

Examples

- Write a regular expression for all strings that do not contain two $\Sigma=\{0,1\}$ consecutive 0s.

... at most one 0 in every block ending in 1
$(1+01)$
... and at most one 0 in the last block
$(\varepsilon+0)$

$$
(1+01) *(\varepsilon+0)
$$

Examples

- Write a regular expression for $\Sigma=\{0,1\}$ all strings with an even number of 0s.
even number of zeros $=(\text { two zeros })^{*}$
two zeros $=1 * 01 * 01 *$

$$
(1 * 01 * 01 *)^{*}
$$

GATE Questions

-1)The number of tokens in the following C statement is -printf("i = \%d, \&xi = \%x", i, \&xi); (GATE 2000)

- A. 3
- B. 26
- C. 10
- D. 21
-1)Printf 2) (3)" $i=\% d, \& i=\% x " 4), 5) I 6), 7) \& 8)$ I 9)) 10);
-2) In a compiler, keywords of a language are recognized during (2011)
- A.parsing of the program
- B.the code generation
- C.the lexical analysis of the program
- D.dataflow analysis
- Answer is C

GATE CS 2011 Lexical analysis

3) The lexical analysis for a modern computer language such as Java needs the power of which one of the following machine models in a necessary and sufficient sense?
A. Finite state automata
B. Deterministic pushdown automata
C. Non-Deterministic pushdown automata
D. Turing Machine

OPTION A

4) Consider the following statements:

(I) The output of a lexical analyzer is groups of characters.
(II) Total number of tokens in printf("i=\%d, $8 \mathrm{i}=\% \mathrm{x}$ ", $\mathrm{i}, 8 \mathrm{zi})$; are 11.
(III) Symbol table can be implementation by using array and hash table but not tree.

Which of the following statement(s) is/are correct?
A. Only (I)
B. Only (II) and (III)
C. All (I), (II), and (III)
D. None of these OPTION D
5) Which one of the following statements is FALSE?
A. Context-free grammar can be used to specify both lexical and syntax rules.
B. Type checking is done before parsing.
C. High-level language programs can be translated to different Intermediate Representations.
D. Arguments to a function can be passed using the program stack.

Option B

- 7)The output of a lexical analyzer is
A. A parse tree
B. Intermediate code
C. Machine code
D. A stream of tokens

Option D

- 8) Consider the following statements related to compiler construction :
- I. Lexical Analysis is specified by context-free grammars and implemented by pushdown automata.
- II. Syntax Analysis is specified by regular expressions and implemented by finite-state machine.
- Which of the above statement(s) is/are correct ?
- Only I
- Only II
- Both I and II
- Neither I nor II
- Option D
- 9) Which of the following statement(s) regarding a linker software is/are true ?
- I A function of a linker is to combine several object modules into a single load module.
- II A function of a linker is to replace absolute references in an object module by symbolic references to locations in other modules.
- A) Only I B) Only II C) Both I and II
- D) Neither I nor II
- Option (A) is correct.

10) From the given data below
$: \mathrm{a} b \mathrm{~b} a \mathrm{a} b \mathrm{~b} a \mathrm{a} \mathrm{b}$ which one of the following is not a word in the dictionary created by LZ-coding (the initial words are $a, b)$?
A. $a b$
B. $\mathrm{b} b$
C. ba
D. $\mathrm{ba} a \mathrm{~b}$
B and D are correct.

- 11) The number of tokens in the following C statement is printf("i=\%d, \&i=\%x", i\&i);
A. 13
B. 6
C. 10
D. 9
- printf($\mathrm{i}=\% \mathrm{~d}, \& \mathrm{i}=\% \mathrm{x}$ ", $\mathrm{i} \& \mathrm{i})$;
- 1233456789
- Total nine tokens are present. So, correct option is (D)
- 12) In compiler optimization, operator strength reduction uses mathematical identities to replace slow math operations with faster operations. Which of the following code replacements is an illustration of operator strength reduction ?
A. Replace $P+P$ by $2 * P$ or Replace $3+4$ by 7 .
B. Replace $\mathrm{P}^{*} 32$ by $\mathrm{P} \ll 5$
C. Replace $\mathrm{P}^{*} 0$ by 0
D. Replace ($\mathrm{P} \ll 4$) - P by P * 15
option (B) is correct. Prof. . .NagRRaji. YYREC of YVU
- 13) Debugger is a program that
A. allows to examine and modify the contents of registers
B. does not allow execution of a segment of program
C. allows to set breakpoints, execute a segment of program and display contents of register
D. All of the above
option (C) is correct.

Thank U

