
Greedy method

By
Prof. Shaik Naseera
Department of CSE

JNTUA College of Engg., Kalikiri

1

Objectives

• Activity selection problem
• Minimum Cost Spanning Tree
• Previous Gate Questions

2

Q. No. 4

Answer : None of the above
3

Greedy Method (Recap)

• Greedy method suggests that one can devise an
algorithm that works in stages, considering one input
at a time.

• At each stage, a decision is made regarding whether a
particular input is in an optimal solution.

• If the inclusion of the next input into the partially
constructed optimal solution will result in an infeasible
solution, then this input is not added otherwise it is
added.

• The selection procedure is based on some optimization
measure (objective function)

4

Activity Selection Problem
• You are given n activities with their start and finish times.

Select the maximum number of activities that can be
performed by a single person, assuming that a person can
only work on a single activity at a time.

• Example
Consider the following 6 activities.
start[] = {1, 3, 0, 5, 8, 5};
finish[] = {2, 4, 6, 7, 9, 9};

Solution:
The maximum set of activities that can be executed by a single

person is {0, 1, 3, 4}

5

Activity-Selection Problem
For a set of proposed activities that wish to
use a lecture hall, select a maximum-size
subset of “compatible activities”.

Set of activities: S={a1,a2,…an}

Duration of activity ai: [start_timei, finish_timei)

Activities sorted in increasing order of finish time:
i 1 2 3 4 5 6 7 8 9 10 11
start_timei 1 3 0 5 3 5 6 8 8 2 12
finish_timei 4 5 6 7 8 9 10 11 12 13 14

The solution is x1,x4,x8,x11
6

• The greedy choice is to always pick the next
activity whose finish time is least among the
remaining activities and the start time is more
than the finish time of previously selected
activity.

• We can sort the activities according to their
finishing time so that we always consider the
next activity as minimum finishing time
activity.

7

procedure

1. Sort the activities according to their finishing
time

2. Select the first activity from the sorted array
and print it.

3. Do the following for remaining activities in
the sorted array.
a) If the start time of this activity is greater
than the finish time of previously selected
activity then select this activity and print it.

8

Implementation

• activity selection problem.docx

9

Minimum Cost Spanning Tree

10

Tree
A tree is a graph with the following properties:

• The graph is connected (Each vertex is reachable)

• There are no cycles(acyclic)

Graphs that are not treesTree

11

Minimum Spanning Tree (MST)

3

• Let G=(V,E) be an undirected connected graph.

• A sub graph T=(V, E) of G is a spanning tree of G if
• T is a tree (i.e., it is acyclic)

• T covers all the vertices V

• contains |V| - 1 edges

• T has minimum total weight

• A single graph can have many different spanning trees.

12

Connected undirected graph Spanning Tree

A Graph with different Spanning Trees

13

Complete Graph
Total number of Spanning Trees in a Graph. If a graph is a complete graph with n vertices,
then total number of spanning trees is n(n-2) where n is the number of nodes in the graph.

14

Weighted Graph graph G

1

Spanning Tree from Graph G
2 2

3

1

4 4 5

1

15

Minimum Cost Spanning Tree

1. Kruskal’s Algorithm
2. Prim’s Algorithm

16

Kruskal’s Algorithm

• kruskals algorithm.pptx

17

Prim’s Algorithm
• The algorithm was discovered in 1930 by mathematician
Vojtech Jarnik and later independently by computer scientist
Robert C. Prim in 1957.
• The algorithm continuously increases the size of a tree
starting with a single vertex until it spans all the vertices.
• Prim's algorithm is faster on dense graphs.

18

Introduction

• Prim's algorithm for finding a minimal spanning
tree parallels closely the depth- and breadth-first
traversal algorithms.

• Just as these algorithms maintained a closed list
of nodes and the paths leading to them, Prim's
algorithm maintains a closed list of nodes and the
edges that link them into the minimal spanning
tree.

• Whereas the depth-first algorithm used a stack
as its data structure to maintain the list of open
nodes and the breadth-first traversal used a
queue, Prim's uses a priority queue.

19

Procedure: Prim’s Algorithm

1. Randomly choose any vertex. The vertex connecting to the
edge having least weight is usually selected and is added to
the partially constructed spanning tree.

2. Find all the edges that connect the tree to new vertices.
3. Find the least weight edge among those edges and include

it in to the added to the partially constructed spanning tree.
4. If including that edge creates a cycle, then reject that edge

and look for the next least cost edge.
5. Keep repeating step-02 until all the vertices are included

and Minimum Spanning Tree (MST) is obtained.

20

• At first we declare an array named: closed list.
• And consider the open list as a priority queue

with min-heap.
• Adding a node and its edge to the closed list

(partially constructed spanning list) indicates
that we have found an edge that links the
node into the minimal spanning tree.

• As a node is added to the closed list, its
successors (immediately adjacent nodes) are
examined and added to a priority queue of
open nodes.

21

Implementation

Open List: d
Close List:

Total Cost: 0

Spanning Tree 22

Open List: a, f, e, b
Close List: d

Total
Cost: 0

23

Open List: f, e, b
Close List: d, a

Total
Cost: 5

24

Open List: b, e, g
Close List: d, a, f

Total
Cost:

11

25

Open List: e, g, c
Close List: d, a, f, b

Total
Cost:

18

26

Open List: c, g
Close List: d, a, f, b, e

Total
Cost:

25

27

Open List: g
Close List: d, a, f, b, e, c

Total
Cost:

30

28

Open List:
Close List: d, a, f, b, e, c

Total
Cost:

39

29

• Algorithm for Prim's minimum spanning tree
//Let T be the set of selected edges. initialize T=ᴓ.
//Let TV be the set of vertices already in the tree. set TV={u}.
//Let E be the set of network edges.
while ((E ≠ ᴓ) and (T ≠ n-1)) // E+V
{

let (u,v) be a least cost edge such that u ϵ TV and v≠TV. //log V using heap
if(there is no such edge)

break;
E=E-{(u,v)}
add edge (u,v) to T.
add vertex v to TV.

}
if (|T| == n-1)

T is a minimum cost spanning tree.
else

The network is not connected and has no spanning tree. 30

ComplexityAnalysis
Minimum edge weight data Time complexity (total)

structure

adjacency matrix, searching O(V*V) //to search for a min edge

binary heap and adjacency
list

O((V + E) log(V)) = O(Elog(V))

Fibonacci heap and
adjacency list O(E + V log(V))

31

//V+E for search for min edge using BFS
// log V to search for vertex in min heap

Since, |E| ≤ |V|2 ⇒log|E|=(log V2) = (2log V)=O(log V).

Application
� One practical application of a MST would be in the design of a

network. For instance, a group of individuals, who are
separated by varying distances, wish to be connected together
in a telephone network. Because the cost between two terminal
is different, if we want to reduce our expenses, Prim's
Algorithm is a way to solve it

� Connect all computers in a computer science building using
least amount of cable.

� A less obvious application is that the minimum spanning tree
can be used to approximately solve the traveling salesman
problem. A convenient formal way of defining this problem is
to find the shortest path that visits each point at least once.

� Another useful application of MST would be finding airline
routes. The vertices of the graph would represent cities, and
the edges would represent routes between the cities.
Obviously, the further one has to travel, the more it will cost,
so MST can be applied to optimize airline routes by finding
the least costly paths with no cycles. 32

6/14/2020

Construct the minimum spanning tree (MST) for the given graph using
Prim’s Algorithm-

Practice Problems

33/10

The above discussed steps are followed to find the minimum cost
spanning tree using Prim’s Algorithm-

Step-01:

Step-02:

3

Prim’s Algorithm-

6/14/2020 Prim's Algorithm | Prim's Algorithm Example | Problems | Gate Vidyalay

Step-04:

Step-05:

35/
10

Step-03:

6/14/2020 Prim's Algorithm | Prim's Algorithm Example | Problems | Gate Vidyalay

Step-06:

Since all the vertices have been included in the MST, so we stop.

36/
10

Now, Cost of Minimum Spanning Tree

= Sum of all edge weights
= 10 + 25 + 22 + 12 + 16 + 14

= 99 units

Problem-02:

Using Prim’s Algorithm, find the cost of minimum spanning tree (MST) of the given graph-

Solution-

37/
10

The minimum spanning tree obtained by the application of Prim’s Algorithm on the given graph is as shown below-

6/14/2020 Prim's Algorithm | Prim's Algorithm Example | Problems | Gate Vidyalay

Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 1 + 4 + 2 + 6 + 3 + 10

= 26 units

38/
10

Previous Year Gate Questions

39

40

Q. No. 1

41

Q. No. 2

A) 4
B) 5
C) 2
D) 3
Answer is B

Edge weights
1
3
4
4
4
5
1,3,4(1),5,x
1,3,4(1),x,5
1,3,4(2),5,x
1,3,4(2),x,5

42

Q. No. 3

43

Q. No. 4

44

Q. No. 5

45

Q. No. 6

MST cost is 3+4+6=13
Let n=4 in option (B) :16-4+1=13

46

Q. No. 7

47

Q. No. 8

48

To get the minimum spanning tree with vertex 0 as leaf, first
remove 0th row and 0th column and then get the minimum
spanning tree (MST) of the remaining graph. Once we have
MST of the remaining graph, connect the MST to vertex 0
with the edge with minimum weight (we have two options
as there are two 1s in 0th row). 49

Q. No. 9

50

Q. No. 10

51

Q. No. 11

52

Q. No. 12

53

Q. No. 13

54

Q. No. 14

55

Q. No. 15

Thank You

56

