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Objectives

• Activity selection problem
• Minimum Cost Spanning Tree
• Previous Gate Questions
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Q. No. 4

Answer : None of the above
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Greedy Method (Recap)

• Greedy method suggests that one can devise an 
algorithm that works in stages, considering one input 
at a time.

• At each stage, a decision is made regarding whether a 
particular input is in an optimal solution.

• If the inclusion of the next input into the partially 
constructed optimal solution will result in an infeasible 
solution, then this input is not added otherwise it is 
added. 

• The selection procedure is based on some optimization 
measure (objective function)
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Activity Selection Problem
• You are given n activities with their start and finish times. 

Select the maximum number of activities that can be 
performed by a single person, assuming that a person can 
only work on a single activity at a time.

• Example
Consider the following 6 activities. 
start[] = {1, 3, 0, 5, 8, 5}; 
finish[] = {2, 4, 6, 7, 9, 9}; 

Solution:
The maximum set of activities that can be executed by a single 

person is {0, 1, 3, 4}
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Activity-Selection Problem
For a set of proposed activities that wish to 
use a lecture hall, select a maximum-size 
subset of “compatible activities”.

Set of activities: S={a1,a2,…an}

Duration of activity ai: [start_timei, finish_timei)

Activities sorted in increasing order of finish time:
i 1 2 3 4 5 6 7 8 9 10 11
start_timei 1 3 0 5 3 5 6 8 8 2 12
finish_timei 4 5 6 7 8 9 10 11 12 13 14

The solution is x1,x4,x8,x11
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• The greedy choice is to always pick the next 
activity whose finish time is least among the 
remaining activities and the start time is more 
than the finish time of previously selected 
activity.

• We can sort the activities according to their 
finishing time so that we always consider the 
next activity as minimum finishing time 
activity. 
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procedure

1. Sort the activities according to their finishing 
time

2. Select the first activity from the sorted array 
and print it.

3. Do the following for remaining activities in 
the sorted array.
a) If the start time of this activity is greater 
than the finish time of previously selected 
activity then select this activity and print it.
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Implementation

• activity selection problem.docx
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Minimum Cost Spanning Tree

10



Tree
A tree is a graph with the following properties:

• The graph is connected ( Each vertex is reachable)

• There are no cycles(acyclic)

Graphs that are not treesTree
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Minimum Spanning Tree (MST)

3

• Let G=(V,E) be an undirected connected graph.

• A sub graph T=(V, E) of G is a spanning tree of G if
• T is a tree (i.e., it is acyclic)

• T covers all the vertices V

• contains |V| - 1 edges

• T has minimum total weight

• A single graph can have many different spanning trees.
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Connected undirected graph Spanning Tree

A Graph with different Spanning Trees
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Complete Graph
Total number of Spanning Trees in a Graph. If a graph is a complete graph with n vertices, 
then total number of spanning trees is n(n-2) where n is the number of nodes in the graph.
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Weighted Graph graph G

1

Spanning Tree from Graph G
2 2

3

1

4 4 5

1
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Minimum Cost Spanning Tree

1. Kruskal’s Algorithm
2. Prim’s Algorithm
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Kruskal’s Algorithm

• kruskals algorithm.pptx
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Prim’s Algorithm
• The algorithm was discovered in 1930 by mathematician
Vojtech Jarnik and later independently by computer scientist
Robert C. Prim in 1957.
• The algorithm continuously increases the size of a tree
starting with a single vertex until it spans all the vertices.
• Prim's algorithm is faster on dense graphs.
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Introduction

• Prim's algorithm for finding a minimal  spanning 
tree parallels closely the depth- and breadth-first 
traversal algorithms. 

• Just  as these algorithms maintained a closed  list
of nodes and the paths leading to  them, Prim's 
algorithm maintains a closed  list of nodes and the 
edges that link them  into the minimal spanning
tree.

• Whereas the depth-first algorithm used a  stack 
as its data structure to maintain the  list of open 
nodes and the breadth-first  traversal used a 
queue, Prim's uses a priority queue.
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Procedure: Prim’s Algorithm

1. Randomly choose any vertex. The vertex connecting to the 
edge having least weight is usually selected and is added to 
the partially constructed spanning tree.

2. Find all the edges that connect the tree to new vertices.
3. Find the least weight edge among those edges and include 

it in to the added to the partially constructed spanning tree.
4. If including that edge creates a cycle, then reject that edge 

and look for the next least cost edge.
5. Keep repeating step-02 until all the vertices are included 

and Minimum Spanning Tree (MST) is obtained.
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• At first we declare an array named: closed list.
• And consider the open list as a priority queue  

with min-heap.
• Adding a node and its edge to the closed list

(partially constructed spanning list) indicates 
that we have found an edge that links  the 
node into the minimal spanning tree. 

• As a node is added to the  closed list, its 
successors  (immediately adjacent nodes)  are 
examined and added to a  priority queue of 
open nodes.
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Open List: d
Close List:

Total Cost: 0

Spanning Tree 22



Open List: a, f, e, b
Close List: d

Total 
Cost: 0
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Open List: f, e, b
Close List: d, a

Total 
Cost: 5
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Open List: b, e, g
Close List: d, a, f

Total 
Cost:

11
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Open List: e, g, c
Close List: d, a, f, b

Total 
Cost:

18
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Open List: c, g
Close List: d, a, f, b, e

Total 
Cost:

25
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Open List: g
Close List: d, a, f, b, e, c

Total 
Cost:

30
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Open List:
Close List: d, a, f, b, e, c

Total 
Cost:

39
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• Algorithm for Prim's minimum spanning tree
//Let T be the set of selected edges. initialize T=ᴓ.
//Let TV be the set of vertices already in the tree. set TV={u}.
//Let E be the set of network edges.
while ( (E ≠ ᴓ) and (T ≠ n-1))                                                         // E+V
{

let (u,v) be a least cost edge such that u ϵ TV and v≠TV.           //log V using heap
if( there is no such edge)

break;
E=E-{(u,v)}
add edge (u,v) to T.
add vertex v to TV.

}
if (|T| == n-1)

T is a minimum cost spanning tree.
else

The network is not connected and has no spanning tree. 30



ComplexityAnalysis
Minimum edge weight data Time complexity (total)  

structure

adjacency matrix, searching O(V*V) //to search for a min edge

binary heap and adjacency  
list

O((V + E) log(V)) = O(Elog(V))

Fibonacci heap and  
adjacency list O(E + V log(V))
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//V+E for search for min edge using BFS
// log V to search for vertex in min heap

Since, |E| ≤ |V|2 ⇒log|E|=(log V2) = (2log V)=O(log V).



Application
� One practical application of a MST would be in the design of a  

network. For instance, a group of individuals, who are  
separated by varying distances, wish to be connected together  
in a telephone network. Because the cost between two terminal  
is different, if we want to reduce our expenses, Prim's  
Algorithm is a way to solve it

� Connect all computers in a computer science building using  
least amount of cable.

� A less obvious application is that the minimum spanning tree  
can be used to approximately solve the traveling salesman  
problem. A convenient formal way of defining this problem is  
to find the shortest path that visits each point at least once.

� Another useful application of MST would be finding airline
routes. The vertices of the graph would represent cities, and
the edges would represent routes between the cities.
Obviously, the further one has to travel, the more it will cost,
so MST can be applied to optimize airline routes by finding
the least costly paths with no cycles. 32
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Construct the minimum spanning tree (MST) for the given graph using 
Prim’s Algorithm-

Practice Problems
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The above discussed steps are followed to find the minimum cost 
spanning tree using Prim’s Algorithm-

Step-01:

Step-02:
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Prim’s Algorithm-



6/14/2020 Prim's Algorithm | Prim's Algorithm Example | Problems | Gate Vidyalay

Step-04:

Step-05:

35/
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Step-03:
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Step-06:

Since all the vertices have been included in the MST, so we stop.

36/
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Now, Cost of Minimum Spanning Tree

= Sum of all edge weights
= 10 + 25 + 22 + 12 + 16 + 14

= 99 units



Problem-02:

Using Prim’s Algorithm, find the cost of minimum spanning tree (MST) of the given graph-

Solution-

37/
10

The minimum spanning tree obtained by the application of Prim’s Algorithm on the given graph is as shown below-
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Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 1 + 4 + 2 + 6 + 3 + 10

= 26 units

38/
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Previous Year Gate Questions
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Q. No. 1
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Q. No. 2 



A) 4
B) 5
C) 2
D) 3
Answer is B

Edge weights
1
3
4
4
4
5
1,3,4(1),5,x
1,3,4(1),x,5
1,3,4(2),5,x
1,3,4(2),x,5
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Q. No. 3 
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Q. No. 4 
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Q. No. 5 
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Q. No. 6 



MST cost is 3+4+6=13
Let n=4 in option (B) :16-4+1=13
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Q. No. 7 



47

Q. No. 8 



48



To get the minimum spanning tree with vertex 0 as leaf, first 
remove 0th row and 0th column and then get the minimum 
spanning tree (MST) of the remaining graph. Once we have 
MST of the remaining graph, connect the MST to vertex 0 
with the edge with minimum weight (we have two options 
as there are two 1s in 0th row). 49

Q. No. 9 
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Q. No. 10 
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Q. No. 11 
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Q. No. 12 
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Q. No. 13 
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Q. No. 14 
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Q. No. 15 



Thank You
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