P, $\mathcal{N}(P, \mathcal{N}(P$ - $\operatorname{Hard} \mathcal{G} \mathcal{N} P$ - complete problems

Prof. Shaik Naseera
Department of CSE g $\mathfrak{N T U A C E X}$ KaliKiri

Objectives

- P, $\mathcal{N} P, \mathcal{N}(P-\mathcal{H a r d}$ and $\mathfrak{N}(P-C o m p l e t e$
- Solving 3-CNF S at problem
- Discussion of Gate Questions

Types of Problems

- Trackable
- Intrackable
- Decision
- Optimization

Trackable : Problems that can be solvable in a reasonable (polynomial) time.
Intrackable: Some problems are intractable, as they growlarge, we are unable to solve them in reasonable time.

Tractability

- What constitutes reasonable time?
-S tand ard working definition: polynomial time
- On an input of size ntfe worst-case running time is $O\left(n^{\kappa}\right)$ for some constant K
$-O\left(n^{2}\right), O\left(n^{3}\right), O(1), O(n \lg n), O\left(2^{n}\right), O\left(n^{n}\right), O(n!)$
- Polynomial time: $O\left(n^{2}\right), O\left(n^{3}\right), O(1), O(n \lg n)$
- $\mathfrak{N o t}$ in polynomial time: $O\left(2^{n}\right), O\left(n^{n}\right), O(n!)$
- Are all problems solvable in polynomial time?
- $\mathfrak{N o}$: Turing's "Halting Problem" is not solvable by any computer, no matter fowmucf time is given.

Optimization/Decision Problems

- Optimization Problems
- An optimization problem is one which asks, "What is the optimal solution to problem X?"
- Examples:
- 0-1 Knapsack
- Fractional KinapsacK
- Minimum Spanning Tree
- Decision Problems
- Andecision problem is one with yes/no answer
- Examples:
- Does a grapf G frave a MS T of weigft $\leq \mathcal{W}$?

Optimization/Decision Problems

- An optimization problem tries to find an optimal solution
- Adecision problem tries to answer ayes/no question
- Many problems will have decision and optimization versions
- Eg: Traveling salesman problem
- optimization: find familtonian cycle of minimum weight
- decision: is there a framiltonian cycle of weight $\leq K$

$\mathcal{P}, \mathcal{N}(P, \mathcal{N}(P-\mathcal{H a r d}, \mathcal{N}(P-C o m p l e t e$
 - Definitions

The Class P

P: the class of problems that have polynomial-time deterministic algoritfins.

- That is, they are solvable in $O(p(n)$), where $p(n)$ is a polynomial onn
- Adeterministic algoritfm is (essentially) one that always computes the correct answer

Sample Problems in \mathcal{P}

- Fractional Knapsack
- MS T
- Sorting
- Others?

The class $\mathcal{N}(P$

NP: the class of decision problems that are solvable in polynomial time on a nondeterministic machine (or with a nondeterministic a(goritfm)

- (Adeterminstic computer is what we know)
- Anondeterministic computer is one that can "guess" the right answer or solution
- Tfink of a nondeterministic computer as a parallel mackine that can freely spawn an infinite number of processes
- Thus \mathfrak{N} P can also be trought of as the class of problems "whose solutions can be verified in polynomial time"
- Note triat $\mathfrak{N}(P$ stands for "Nondeterminis tic Polynomial-time"

Sample Problems in $\mathcal{N}(P$

- Fractional Knapsack
- MS T
- Others?
- Traveling Sale sman
- Grapf Coloring
- Satisfiability (S $\mathcal{A} \mathcal{T})$
- the problem of deciding whether a given Boole an formula is satisfiable

P And $\mathfrak{N}(P$ Summary

- $P=$ set of problems that can be solved in polynomial time
- Examples: Fractional Kinapsack....
- $\mathcal{N} P=$ set of problems for wrich a solution can be verified in polynomial time
- Examples: Fractional Kinapsack..., TS P, CNVF $S \mathcal{A T}, 3-\mathcal{C N} \mathcal{S A T}$
- Clearly $\mathcal{P} \subseteq \mathcal{N}(P$
- Openquestion: Does $\mathcal{P}=\mathfrak{N} \mathbb{P}$?
$-P \neq N P$

\mathcal{N} P- fard

- What does $\mathcal{N P}$-fard mean?
- Alow of times you can solve a problem by reducing it to a different problem. I can reduce Problem \mathcal{B} to
$\operatorname{Problem} \mathcal{A}$ if, given a solution to Problem \mathcal{A}, I can easily construct a solution to Problem \mathcal{B}. (In this case, "easily" means "in polynomial time.").
- A problem is \mathcal{N} P-fiard if all problems in $\mathcal{N} P$ are polynomial time reducible to it, ...
- Ex:- Hamiltonian Cycle

Every problem in \mathcal{N} P is reducible to $\mathcal{H C}$ in polynomial time. Ex:- $\mathcal{T S} \mathbb{P}$ is reducible to $\mathcal{H C}$.
\mathcal{B}
\mathcal{A}
Example: $\operatorname{lc} m(m, n)=m^{*} n / \operatorname{gcd}(m, n)$,

\mathcal{N} P-comple te problems

- A problem is \mathfrak{N} P- complete if the problem is bot f
- N(P-rard, and
$-\mathcal{N}$ P.

Reduction

- A problem Rcanbe reduced to another problem Q if any instance of R can be repfrased to an instance of Q, the solution to which provides a solution to the instance of R
- This reptrasing is called a transformation
- Intuitively: If Rreduces in polynomial time to Q, \mathcal{R} is "no farder to solve"than Q
- Example: Lcm $(m, n)=m{ }^{*} n / \operatorname{gcd}(m, n)$,
lcm (m, n) problem is reduced to $\operatorname{gcd}(m, n)$ problem

\mathcal{N} P- Hard and $\mathfrak{N}(P-C o m p l e t e$

- If R is polynomial-time reducible to Q, we denote this $R \leq_{p} Q$
- Definition of $\mathcal{N} P$ - $\mathcal{H a r d}$ and $\mathcal{N} P$. Complete:
- If all problems $\mathbb{R} \in \mathcal{X}(P$ are polynomial-time reducible to Q, then Q is \mathcal{N} P-Hard
- We say Q is $\mathcal{N}(P$-Complete if Q is $\mathcal{N}(P$ - $\mathcal{H a r d}$ and $Q \in \mathcal{N}(P$
- If $\mathcal{R} \leq_{p} Q$ and \mathcal{R} is $\mathcal{N}(P-\mathcal{H a r d}, Q$ is also $\mathcal{N} \cdot \operatorname{P}-\mathcal{H a r d}$

Summary

- P is set of problems that can be solved by a deterministic \mathcal{T} uring mackine in Polynomial time.
- NP is set of problems that can be solved by
 Polynomial time. P is subset of $\mathfrak{N} P$ (any problem that can be solved by deterministic macfine in polynomial time can also be solved by non-deterministic mackine in polynomial time) 6ut $P \neq \mathrm{NP}$.
- Some problems canbe translated into one another in such a way that a fast solution to one problem would automatically give us a fast solution to the otfer.
- There are some problems that every single problem in $\mathfrak{N} \mathbb{P}$ can be translated into, and a fast solution to sucfi a problem would automatically give us a fast solution to every problem in $\mathcal{N}(P$. This group of problems are known as \mathcal{N} P. Complete. Ex:- Clique
- A problem is $\mathfrak{N c p - f a r d}$ if an algorittim for solving it can be translated into one for solving any \mathcal{N} P. problem (nondeterministic polynomial time) problem. \mathcal{N} P-fard therefore means"at least as hard as any N(P-problem," although it might, in fact, be fiarder.

First \mathfrak{N} (f-comple te problem—

 Circuit Satisfiability (problem
definition)

- Boole an combinational circuit
- Boole an combinational elements, wired together
- Eacfi element, inputs and outputs (binary)
- Limit the number of outputs to 1.
- Called logic gates: $\mathcal{N O T}$ gate, $\mathcal{A N D}$ gate, OR gate.
- true table: giving the outputs for each setting of inputs
- true assignment: a set of boole an inputs.
- satisfying assignment: a true assignment cansinathe outnut to ho 1

Circuit Satisfiability Problem: definition

- Circuit satisfying problem: given a boole an combinational circuit composed of $\mathfrak{A N} \mathcal{D}$, $O \mathcal{R}$ and $\mathcal{N} O \mathcal{T}$, is it stisfiable?
- CIRCUIIT-S $\mathfrak{A T}=\{<\mathcal{C} \geqslant \mathcal{C}$ is a satisfiable boolean circuit\}
- Implication: in the area of computer-aided fardware optimization, if a subcircuit always produces 0 , then the subcircuit can be replaced by a simpler subcircuit that omits allgates and just output a 0 .

Two instances of circuit satisfiability problems

(a)

(b)

Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment $\left\langle x_{1}=1\right.$, $x_{2}=1, x_{3}=0$) to the inputs of this circuit causes the output of the circuit to be 1 . The circuit is therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the circuit to be 1 . The circuit is therefore unsatisfiable.

Solving circuit-satisfiability problem

- Intuitive solution:
- for each possible assignment, check whether it generates 1.
- suppose the number of inputs is K, then the total possible assignments are 2^{k}. So the running time is $\Omega\left(2^{k}\right)$. When the size of the problem is $\Theta(\kappa)$, then the running time is not polynomial.

Example of reduction of CIRCUIT-SAT to SAT

$$
\phi=x_{10} \wedge\left(x_{10} \leftrightarrow\left(x_{7} \wedge x_{8} \wedge x_{9}\right)\right)
$$

$$
\wedge\left(x_{9} \leftrightarrow\left(x_{6} \vee x_{7}\right)\right)
$$

$$
\wedge\left(x_{8} \leftrightarrow\left(x_{5} \vee x_{6}\right)\right)
$$

$$
\wedge\left(x_{7} \leftrightarrow\left(x_{1} \wedge x_{2} \wedge x_{4}\right)\right)
$$

$$
\left.\wedge\left(x_{6} \leftrightarrow \neg x_{4}\right)\right)
$$

$$
\wedge\left(x_{5} \leftrightarrow\left(x_{1} \vee x_{2}\right)\right)
$$

Figure 34.10 Reducing circuit satisfiability to formula satisfiability. The formula produced by the reduction algorithm has a variable for each wire in the circuit.

REDUCTION: $\phi=x_{10}=x_{7} \wedge x_{8} \wedge x_{9}=\left(x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(x_{5} \vee x_{6}\right) \wedge\left(x_{6} \vee x_{7}\right)$
$=\left(x_{1} \wedge x_{2} \wedge x_{4}\right) \wedge\left(\left(x_{1} \vee x_{2}\right) \vee \neg x_{4}\right) \wedge\left(\neg x_{4} \vee\left(x_{1} \wedge x_{2} \wedge x_{4}\right)\right)=\ldots$

Conversion to $3 \mathcal{C N} \mathcal{F}$

- The result is that in ϕ^{\prime}, eacfrclause fras at most three literals.
- Change eacficlause into conjunctive normal form as follows:
- Construct a true table, (small, at most 8 by 4)
- Write the disjunctive normalform for all true-table items evaluating to 0
- Ulsing De Morgan law to change to CNV.
- The resulting $\phi^{\prime \prime}$ is in $\mathcal{C N} \mathcal{F}$ but each clause fas 3 or Less literals.
- Change 1 or 2-literalclause into 3-literalclause as follows:
- If a clause fias one literall, change it to $(\mathbb{L} p \vee q) \wedge(\mathbb{\wedge} p \vee \neg q) \wedge$ $(\kappa \neg p \vee q) \wedge(\kappa \neg p \vee \neg q)$.
- If a clause fias two literals $\left(\mathcal{l}_{1} \vee \mathcal{l}_{2}\right)$, change it to $\left(\mathcal{l}_{1} \vee \mathcal{l}_{2} \vee p\right) \wedge$ $\left(\mathcal{l}_{1} \vee \mathcal{l}_{2} \vee \neg p\right)$.

Example of a polynomial-time reduction:

We will reduce the

3CNF-satisfiability problem
to the

CLIQUE problem

3CNVF formula:
$\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{5}} \vee x_{6}\right) \wedge\left(x_{3} \vee \overline{x_{6}} \vee x_{4}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right)$
clause
Each clause fins three literals

Language:

$$
\begin{aligned}
3 \subset \mathfrak{N F}-\mathcal{S} \mathcal{A T}=\{w: w & \text { is a satisfiable } \\
& 3 \subset \mathfrak{N} \mathcal{F} \text { formula }\}
\end{aligned}
$$

A 5-clique ingrapr G

Language:

$$
\mathcal{C L I Q U E}=\{<G, k>: \text { grapf } G
$$

contains a k-clique\}

Transform formula to graph.
Example:
$\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$
Clause 2
Create \mathcal{N} odes:
$\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)$

Add link from a literal ξ to a literalinevery other clause, except the complement $\bar{\xi}$

$$
\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

Resulting Grapf
$\left(x_{1} \vee x_{2} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)=1$
$x_{1}=1$
$x_{2}=0$
$x_{3}=0$
$x_{4}=1$

The formula is satisfied if and only if
the Grapt has a 4-clique
The objective is to find a clique of size 4,
where 4 is the number of clauses.

End of Proof

Theorem:

$$
\text { If: a. Language } \mathcal{A} \text { is } \mathcal{N P} \text {-comple te }
$$

6 . Language \mathcal{B} is in $\mathcal{N} P$
c. \mathcal{A} is polynomial time reducible to \mathcal{B}

Then: \mathcal{B} is $\mathcal{N P}$-complete

Corollary: $\quad \operatorname{CLIQUE}$ is $\mathcal{N}(P-c o m p l e t e$

Proof:
a. $3 \mathcal{N} \mathcal{N F}-\mathcal{S A T}$ is \mathcal{N} P-complete
6. CLIQUE is in $\mathcal{N} P$
c. $3 \mathcal{C N} \mathcal{F}-\mathcal{S A T}$ is polynomial reducible to CLIQUE (show nearlier)

Apply previous theorem with $\mathcal{A}=3 \mathcal{C N F}-\mathcal{S A T} \quad$ and $\quad \mathcal{B}=\mathcal{C L I Q U E}$

Previous Gate Questions

GATE CSE 2015 Set 2

Consider two decision problems Q_{1}, Q_{2} such that Q_{1} reduces in polynomial time to 3-SAT and 3-SAT reduces in polynomial time to Q_{2}. Then which one of the following is consistent with the above statement?
(A) Q_{1} is $N P, Q_{2}$ is $N P$ hard.

B Q_{2} is $N P, Q_{1}$ is $N P$ hard.
(c) Both Q_{1} and Q_{2} are in $N P$.

D Both Q_{1} and Q_{2} are $N P$ hard.
Q. No. 2

Which of the following statements are TRUE?

1. The problem of determining whether there exists a cycle in an undirected graph is in P.
2. The problem of determining whether there exists a cycle in an undirected graph is in NP.
3. If a problem A is NP-Complete, there exists a non-deterministic polynomial time algorithm to solve A.

A 1,2 and 3

B 1 and 2 only
C) 2 and 3 only

D 1 and 3 only
Q. No. 3

GATE CSE 2009

Let π_{A} be a problem that belongs to the class NP. Then which one of the following is TRUE?

A There is no polynomial time algorithm for π_{A}
B If π_{A} can be solved deterministically in polynomial time, then $P=N P$

C If π_{A} is $N P$-hard, then it is $N P$-complete.
(D) π_{A} may be undecidable.

GATE CSE 2006

Let S be an NP-complete problem and Q and R be two other problems not known to be in NP. Q is polynomial time reducible to S and S is polynomial-time reducible to R. Which one of the following statements is true?
(A) R is NP-complete
(B) R is NP-hard
C) Q is NP-complete
(D) Q is NP-hard
Q. No. 5

GATE CSE 2004

The problems 3-SAT and 2-SAT are
A. both in P

B both NP-complete

C NP-complete and in P respectively

D undecidable and NP-complete respectively
Q. No. 6

GATE CSE 2003

Ram and Shyam have been asked to show that a certain problem Π is NP-complete. Ram shows a polynomial time reduction from the 3-SAT problem to Π, and Shyam shows a polynomial time reduction from Π to 3 -SAT. Which of the following can be inferred from these reductions?

A Π is NP -hard but not NP-complete

B Π is in NP, but is not NP-complete
C) Пis NP-complete
(D) Π is neither NP -hard, nor in NP

GATE CSE 2014 Set 3

Consider the decision problem 2CNFSAT defined as follows:
$\{\Phi \mid \Phi$ is a satisfiable propositional formula in CNF with at most two literal per clause $\}$
For example, $\Phi=\left(x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee x_{4}\right)$ is a Boolean formula and it is in 2CNFSAT.

The decision problem 2CNFSAT is
(A) NP-Complete.

B Solvable in polynomial time by reduction to directed graph reachability.

C Solvable in constant time since any input instance is satisfiable.

D NP-Hard, but not NP-complete.

Suppose a polynomial time algorithm is discovered that correctly computes the largest clique in a given graph. In this scenario, which one of the following represents the correct Venn diagram of the complexity classes P, NP and NP Complete (NPC)?

GATE CSE 2006

Let SHAM_{3} be the problem of finding a Hamiltonian cycle in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with $|\mathrm{V}|$ divisible by 3 and DHAM_{3} be the problem of determining if a Hamiltonian cycle exists in such graphs. Which one of the following is true?

> There exist: search problem
(A) Both DHAM_{3} and SHAM_{3} are NP-hard

B SHAM_{3} is NP -hard, but DHAM_{3} is not

C DHAM_{3} is NP -hard, but SHAM_{3} is not

D Neither DHAM_{3} nor SHAM_{3} is NP-hard
Explanation: The problem of finding whether there exist a Hamiltonian Cycle or not is $\mathcal{N}(P$ Hard and $\mathcal{N}(P$ Complete Both.
Finding a Hamiltonian cycle in a grapt $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ witf \mathcal{V} divisible by 3 is also $\mathcal{N}(P \mathcal{H a r d}$.
$Q \cdot \mathcal{N} o .11$

GATE CSE 1992

Which of the following problems is not NP-hard?

A Hamiltonian circuit problem

B The 0/1 Knapsack problem
(C) Finding bi-connected components of a graph

D The graph coloring problem

Thank You

