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Objectives
• P, NP, NP-Hard and NP-Complete
• Solving 3-CNF Sat problem
• Discussion of Gate Questions
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Types of Problems
• Trackable
• Intrackable
• Decision
• Optimization
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Trackable : Problems that can be solvable 
in a reasonable(polynomial) time.
Intrackable : Some problems are 
intractable, as they grow large, we are 
unable to solve them in reasonable time.



Tractability
• What constitutes reasonable time? 

– Standard working definition: polynomial time
– On an input of size n the worst-case running 

time is O(nk) for some constant k
– O(n2), O(n3), O(1), O(n lg n), O(2n), O(nn), O(n!)
– Polynomial time: O(n2), O(n3), O(1), O(n lg n) 
– Not in polynomial time: O(2n), O(nn), O(n!)

• Are all problems solvable in polynomial 
time?
– No: Turing’s “Halting Problem” is not solvable 

by any computer, no matter how much time is 
given.
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Optimization/Decision Problems

• Optimization Problems
– An optimization problem is one which asks, 

“What is the optimal solution to problem X?”
– Examples:

• 0-1 Knapsack
• Fractional Knapsack
• Minimum Spanning Tree

• Decision Problems
– An decision problem is one with yes/no answer
– Examples:

• Does a graph G have a MST of weight  W?
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Optimization/Decision Problems

• An optimization problem tries to find an optimal solution
• A decision problem tries to answer a yes/no question
• Many problems will have decision and optimization versions

– Eg: Traveling salesman problem
• optimization: find hamiltonian cycle of minimum 

weight
• decision: is there a hamiltonian cycle of weight  k
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P, NP, NP-Hard, NP-Complete
-Definitions
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The Class P

P: the class of problems that have polynomial-time 
deterministic algorithms.  
– That is, they are solvable in O(p(n)), where p(n) is a 

polynomial on n
– A deterministic algorithm is (essentially) one that always 

computes the correct answer
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Sample Problems in P
• Fractional Knapsack
• MST 
• Sorting
• Others?
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The class NP

NP: the class of decision problems that are solvable in 
polynomial time on a nondeterministic machine (or with 
a nondeterministic algorithm)
– (A determinstic computer is what we know)
– A nondeterministic computer is one that can “guess” the right 

answer or solution  
• Think of a nondeterministic computer as a parallel 

machine that can freely spawn an infinite number of 
processes

• Thus NP can also be thought of as the class of 
problems  “whose solutions can be verified in polynomial time” 

• Note that NP stands for “Nondeterministic 
Polynomial-time”
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Sample Problems in NP
• Fractional Knapsack
• MST 
• Others?

– Traveling Salesman
– Graph Coloring
– Satisfiability (SAT)

• the problem of deciding whether a given 
Boolean formula is satisfiable
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P And NP Summary

• P = set of problems that can be solved in 
polynomial time
– Examples: Fractional Knapsack, …

• NP = set of problems for which a solution can be 
verified in polynomial time
– Examples: Fractional Knapsack,…, TSP, CNF 

SAT, 3-CNF SAT
• Clearly P  NP
• Open question: Does P = NP?

– P ≠ NP



NP-hard
• What does NP-hard mean?

– A lot of times you can solve a problem by reducing it to 
a different problem. I can reduce Problem B to 
Problem A if, given a solution to Problem A, I can easily 
construct a solution to Problem B. (In this case, 
"easily" means "in polynomial time.“).

• A problem is NP-hard if all problems in NP 
are polynomial time reducible to it, ...

•
Every problem in NP is reducible to HC in 
polynomial time. Ex:- TSP is reducible to 
HC.  

13Example: lcm(m, n) = m * n / gcd(m, n), 
B A

Ex:- Hamiltonian Cycle



NP-complete problems
• A problem is NP-complete if the problem is 

both
– NP-hard, and
– NP.



Reduction

• A problem R can be reduced to another 
problem Q if any instance of R can be 
rephrased to an instance of Q, the 
solution to which provides a solution to the 
instance of R
– This rephrasing is called a transformation

• Intuitively: If R reduces in polynomial time 
to Q, R is “no harder to solve” than Q

• Example: lcm(m, n) = m * n / gcd(m, n), 
lcm(m,n) problem is reduced to gcd(m, n) 

problem



NP-Hard and NP-Complete

• If R is polynomial-time reducible to Q, 
we denote this R p Q

• Definition of NP-Hard and NP-
Complete: 
– If all problems R  NP are polynomial-time

reducible to Q, then Q is NP-Hard
– We say Q is NP-Complete if Q is NP-Hard 

and Q  NP
• If R p Q and R is NP-Hard, Q is also 

NP-Hard 
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Summary
• P is set of problems that can be solved by a 

deterministic Turing machine in Polynomial 
time.

• NP is set of problems that can be solved by 
a Non-deterministic Turing Machine in 
Polynomial time. P is subset of NP (any 
problem that can be solved by 
deterministic machine in polynomial time 
can also be solved by non-deterministic 
machine in polynomial time) but P≠NP.
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• Some problems can be translated into one 
another in such a way that a fast solution to 
one problem would automatically give us a fast 
solution to the other.

• There are some problems that every single 
problem in NP can be translated into, and a fast 
solution to such a problem would automatically 
give us a fast solution to every problem in NP. 
This group of problems are known as NP-
Complete. Ex:- Clique

• A problem is NP-hard if an algorithm for solving 
it can be translated into one for solving any NP-
problem (nondeterministic polynomial time) 
problem. NP-hard therefore means "at least as 
hard as any NP-problem," although it might, in 
fact, be harder.
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First NP-complete problem—
Circuit Satisfiability (problem 

definition)
• Boolean combinational circuit

– Boolean combinational elements, wired 
together

– Each element, inputs and outputs (binary)
– Limit the number of outputs to 1.
– Called logic gates: NOT gate, AND gate, OR 

gate.
– true table: giving the outputs for each 

setting of inputs
– true assignment: a set of boolean inputs.
– satisfying assignment: a true assignment 

causing the output to be 1.
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Circuit Satisfiability 
Problem: definition

• Circuit satisfying problem: given a boolean
combinational circuit composed of AND, 
OR, and NOT, is it stisfiable?

• CIRCUIT-SAT={<C>: C is a satisfiable
boolean circuit}

• Implication: in the area of computer-aided 
hardware optimization, if a subcircuit
always produces 0, then the subcircuit can 
be replaced by a simpler subcircuit that 
omits all gates and just output a 0.
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Two instances of circuit satisfiability problems



Solving circuit-satisfiability
problem

• Intuitive solution: 
– for each possible assignment, check 

whether it generates 1.
– suppose the number of inputs is k, then 

the total possible assignments are 2k.  
So the running time is (2k). When the 
size of the problem is (k), then the 
running time is not polynomial.
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Example of reduction of CIRCUIT-SAT to SAT
= x10(x10(x7 x8 x9))

(x9(x6  x7))
(x8(x5  x6))
(x7(x1 x2 x4))
(x6x4))
(x5(x1  x2))
(x4x3)

REDUCTION: = x10= x7 x8 x9=(x1 x2 x4)  (x5  x6) (x6  x7)
=(x1 x2 x4)  ((x1  x2) x4) (x4  (x1 x2 x4))=….



Conversion to 3 CNF
• The result is that in ', each clause has at most 

three literals.
• Change each clause into conjunctive normal form as 

follows:
– Construct a true table, (small, at most 8 by 4)
– Write the disjunctive normal form for all true-table items 

evaluating to 0
– Using DeMorgan law to change to CNF.

• The resulting '' is in CNF but each clause has 3 or 
less literals.

• Change 1 or 2-literal clause into 3-literal clause as 
follows:

– If a clause has one literal l, change it to (lpq)(lpq)
(lpq) (lpq).

– If a clause has two literals (l1 l2), change it to (l1 l2 p) 
(l1 l2 p).
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Example of a polynomial-time reduction:

We will reduce the 

3CNF-satisfiability problem

to the

CLIQUE problem
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3CNF formula:

)()()()( 654463653321 xxxxxxxxxxxx 

Each clause has three literals

3CNF-SAT ={       :       is a satisfiable 
3CNF formula}

w w
Language:

literal

clause
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A 5-clique in graph

CLIQUE = {            :  graph       
contains a    -clique}

 kG, G
k

G

Language:
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)()()()( 432321421421 xxxxxxxxxxxx 

Clause 2

Clause 1

Clause 3

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

Transform formula to graph. 
Example:

Clause 4

Create Nodes:
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)()()()( 432321421421 xxxxxxxxxxxx 

1x

2x

1x 2x 4x

1x

2x

2x
4x

4x

3x

3x

Add link from a literal     to a literal in every
other clause, except the complement
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)()()()( 432321421421 xxxxxxxxxxxx 
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3x

Resulting Graph
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1)()()()( 432321421421  xxxxxxxxxxxx

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

The formula is satisfied if and only if
the Graph has a 4-clique
The objective is to find a clique of size 4, 
where 4 is the number of clauses. 

End of Proof
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Theorem:
If: a. Language       is NP-complete

b. Language       is in NP
c. is polynomial time reducible to

A

A B
B

Then: is NP-completeB
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Corollary: CLIQUE is NP-complete

Proof:

b. CLIQUE is in NP
c. 3CNF-SAT is polynomial reducible to CLIQUE

a. 3CNF-SAT is NP-complete

Apply previous theorem with
A=3CNF-SAT and       B=CLIQUE

(shown earlier)



Previous Gate Questions
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Q. No. 1
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Q. No. 2
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Q. No. 3
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Q. No. 4
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Q. No. 5
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Q. No. 6
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Q. No. 7
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Q. No. 8
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Explanation: The problem of finding 
whether there exist a Hamiltonian 
Cycle or not is NP Hard and NP 
Complete Both.
Finding a Hamiltonian cycle in a 
graph G = (V,E) with V divisible by 3 
is also NP Hard.

Q. No. 10

There exist: search problem
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Q. No. 11



Thank You

46


