
P, NP, NP-Hard & NP-complete
problems

Prof. Shaik Naseera
Department of CSE
JNTUACEK, Kalikiri

1

Objectives
• P, NP, NP-Hard and NP-Complete
• Solving 3-CNF Sat problem
• Discussion of Gate Questions

2

Types of Problems
• Trackable
• Intrackable
• Decision
• Optimization

3

Trackable : Problems that can be solvable
in a reasonable(polynomial) time.
Intrackable : Some problems are
intractable, as they grow large, we are
unable to solve them in reasonable time.

Tractability
• What constitutes reasonable time?

– Standard working definition: polynomial time
– On an input of size n the worst-case running

time is O(nk) for some constant k
– O(n2), O(n3), O(1), O(n lg n), O(2n), O(nn), O(n!)
– Polynomial time: O(n2), O(n3), O(1), O(n lg n)
– Not in polynomial time: O(2n), O(nn), O(n!)

• Are all problems solvable in polynomial
time?
– No: Turing’s “Halting Problem” is not solvable

by any computer, no matter how much time is
given.

4

Optimization/Decision Problems

• Optimization Problems
– An optimization problem is one which asks,

“What is the optimal solution to problem X?”
– Examples:

• 0-1 Knapsack
• Fractional Knapsack
• Minimum Spanning Tree

• Decision Problems
– An decision problem is one with yes/no answer
– Examples:

• Does a graph G have a MST of weight W?

5

Optimization/Decision Problems

• An optimization problem tries to find an optimal solution
• A decision problem tries to answer a yes/no question
• Many problems will have decision and optimization versions

– Eg: Traveling salesman problem
• optimization: find hamiltonian cycle of minimum

weight
• decision: is there a hamiltonian cycle of weight k

6

P, NP, NP-Hard, NP-Complete
-Definitions

7

The Class P

P: the class of problems that have polynomial-time
deterministic algorithms.
– That is, they are solvable in O(p(n)), where p(n) is a

polynomial on n
– A deterministic algorithm is (essentially) one that always

computes the correct answer

8

Sample Problems in P
• Fractional Knapsack
• MST
• Sorting
• Others?

9

The class NP

NP: the class of decision problems that are solvable in
polynomial time on a nondeterministic machine (or with
a nondeterministic algorithm)
– (A determinstic computer is what we know)
– A nondeterministic computer is one that can “guess” the right

answer or solution
• Think of a nondeterministic computer as a parallel

machine that can freely spawn an infinite number of
processes

• Thus NP can also be thought of as the class of
problems “whose solutions can be verified in polynomial time”

• Note that NP stands for “Nondeterministic
Polynomial-time”

10

Sample Problems in NP
• Fractional Knapsack
• MST
• Others?

– Traveling Salesman
– Graph Coloring
– Satisfiability (SAT)

• the problem of deciding whether a given
Boolean formula is satisfiable

11

P And NP Summary

• P = set of problems that can be solved in
polynomial time
– Examples: Fractional Knapsack, …

• NP = set of problems for which a solution can be
verified in polynomial time
– Examples: Fractional Knapsack,…, TSP, CNF

SAT, 3-CNF SAT
• Clearly P NP
• Open question: Does P = NP?

– P ≠ NP

NP-hard
• What does NP-hard mean?

– A lot of times you can solve a problem by reducing it to
a different problem. I can reduce Problem B to
Problem A if, given a solution to Problem A, I can easily
construct a solution to Problem B. (In this case,
"easily" means "in polynomial time.“).

• A problem is NP-hard if all problems in NP
are polynomial time reducible to it, ...

•
Every problem in NP is reducible to HC in
polynomial time. Ex:- TSP is reducible to
HC.

13Example: lcm(m, n) = m * n / gcd(m, n),
B A

Ex:- Hamiltonian Cycle

NP-complete problems
• A problem is NP-complete if the problem is

both
– NP-hard, and
– NP.

Reduction

• A problem R can be reduced to another
problem Q if any instance of R can be
rephrased to an instance of Q, the
solution to which provides a solution to the
instance of R
– This rephrasing is called a transformation

• Intuitively: If R reduces in polynomial time
to Q, R is “no harder to solve” than Q

• Example: lcm(m, n) = m * n / gcd(m, n),
lcm(m,n) problem is reduced to gcd(m, n)

problem

NP-Hard and NP-Complete

• If R is polynomial-time reducible to Q,
we denote this R p Q

• Definition of NP-Hard and NP-
Complete:
– If all problems R NP are polynomial-time

reducible to Q, then Q is NP-Hard
– We say Q is NP-Complete if Q is NP-Hard

and Q NP
• If R p Q and R is NP-Hard, Q is also

NP-Hard

17

Summary
• P is set of problems that can be solved by a

deterministic Turing machine in Polynomial
time.

• NP is set of problems that can be solved by
a Non-deterministic Turing Machine in
Polynomial time. P is subset of NP (any
problem that can be solved by
deterministic machine in polynomial time
can also be solved by non-deterministic
machine in polynomial time) but P≠NP.

18

• Some problems can be translated into one
another in such a way that a fast solution to
one problem would automatically give us a fast
solution to the other.

• There are some problems that every single
problem in NP can be translated into, and a fast
solution to such a problem would automatically
give us a fast solution to every problem in NP.
This group of problems are known as NP-
Complete. Ex:- Clique

• A problem is NP-hard if an algorithm for solving
it can be translated into one for solving any NP-
problem (nondeterministic polynomial time)
problem. NP-hard therefore means "at least as
hard as any NP-problem," although it might, in
fact, be harder.

19

First NP-complete problem—
Circuit Satisfiability (problem

definition)
• Boolean combinational circuit

– Boolean combinational elements, wired
together

– Each element, inputs and outputs (binary)
– Limit the number of outputs to 1.
– Called logic gates: NOT gate, AND gate, OR

gate.
– true table: giving the outputs for each

setting of inputs
– true assignment: a set of boolean inputs.
– satisfying assignment: a true assignment

causing the output to be 1.
20

Circuit Satisfiability
Problem: definition

• Circuit satisfying problem: given a boolean
combinational circuit composed of AND,
OR, and NOT, is it stisfiable?

• CIRCUIT-SAT={<C>: C is a satisfiable
boolean circuit}

• Implication: in the area of computer-aided
hardware optimization, if a subcircuit
always produces 0, then the subcircuit can
be replaced by a simpler subcircuit that
omits all gates and just output a 0.

21

22

Two instances of circuit satisfiability problems

Solving circuit-satisfiability
problem

• Intuitive solution:
– for each possible assignment, check

whether it generates 1.
– suppose the number of inputs is k, then

the total possible assignments are 2k.
So the running time is (2k). When the
size of the problem is (k), then the
running time is not polynomial.

23

24

Example of reduction of CIRCUIT-SAT to SAT
= x10(x10(x7 x8 x9))

(x9(x6 x7))
(x8(x5 x6))
(x7(x1 x2 x4))
(x6x4))
(x5(x1 x2))
(x4x3)

REDUCTION: = x10= x7 x8 x9=(x1 x2 x4) (x5 x6) (x6 x7)
=(x1 x2 x4) ((x1 x2) x4) (x4 (x1 x2 x4))=….

Conversion to 3 CNF
• The result is that in ', each clause has at most

three literals.
• Change each clause into conjunctive normal form as

follows:
– Construct a true table, (small, at most 8 by 4)
– Write the disjunctive normal form for all true-table items

evaluating to 0
– Using DeMorgan law to change to CNF.

• The resulting '' is in CNF but each clause has 3 or
less literals.

• Change 1 or 2-literal clause into 3-literal clause as
follows:

– If a clause has one literal l, change it to (lpq)(lpq)
(lpq) (lpq).

– If a clause has two literals (l1 l2), change it to (l1 l2 p)
(l1 l2 p).

25

26

Example of a polynomial-time reduction:

We will reduce the

3CNF-satisfiability problem

to the

CLIQUE problem

27

3CNF formula:

)()()()(654463653321 xxxxxxxxxxxx

Each clause has three literals

3CNF-SAT ={ : is a satisfiable
3CNF formula}

w w
Language:

literal

clause

28

A 5-clique in graph

CLIQUE = { : graph
contains a -clique}

 kG, G
k

G

Language:

29

)()()()(432321421421 xxxxxxxxxxxx

Clause 2

Clause 1

Clause 3

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

Transform formula to graph.
Example:

Clause 4

Create Nodes:

30

)()()()(432321421421 xxxxxxxxxxxx

1x

2x

1x 2x 4x

1x

2x

2x
4x

4x

3x

3x

Add link from a literal to a literal in every
other clause, except the complement

31

)()()()(432321421421 xxxxxxxxxxxx

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

Resulting Graph

32

1
0
0
1

4

3

2

1

x
x
x
x

1)()()()(432321421421 xxxxxxxxxxxx

1x

2x

1x 2x 4x

1x

2x

3x

2x
4x

4x

3x

The formula is satisfied if and only if
the Graph has a 4-clique
The objective is to find a clique of size 4,
where 4 is the number of clauses.

End of Proof

33

Theorem:
If: a. Language is NP-complete

b. Language is in NP
c. is polynomial time reducible to

A

A B
B

Then: is NP-completeB

34

Corollary: CLIQUE is NP-complete

Proof:

b. CLIQUE is in NP
c. 3CNF-SAT is polynomial reducible to CLIQUE

a. 3CNF-SAT is NP-complete

Apply previous theorem with
A=3CNF-SAT and B=CLIQUE

(shown earlier)

Previous Gate Questions

35

36

Q. No. 1

37

Q. No. 2

38

Q. No. 3

39

Q. No. 4

40

Q. No. 5

41

Q. No. 6

42

Q. No. 7

43

Q. No. 8

44

Explanation: The problem of finding
whether there exist a Hamiltonian
Cycle or not is NP Hard and NP
Complete Both.
Finding a Hamiltonian cycle in a
graph G = (V,E) with V divisible by 3
is also NP Hard.

Q. No. 10

There exist: search problem

45

Q. No. 11

Thank You

46

