
1

C.Naga Raju
B.Tech(CSE),M.Tech(CSE),PhD(CSE),MIEEE,MCSI,MISTE

Professor

Department of CSE

YSR Engineering College of YVU

Proddatur

LR(0) and SLR(1) Parsers

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Contents
• Introduction to bottom up parsers

• LR(0) Parser

• Example problem

• Gate Questions and solutions

• SLR(1) Parser

• Example problem

• Gate Questions and solutions

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Bottom up Parser

• Construction of parse tree for any given input string

beginning at the bottom and working towards the root is

called bottom up parser

For example the given input string : id*id

E -> E + T | T
T -> T * F | F
F -> (E) | id

id

F * idid*id T * id

id

F

T * F

id

F id T * F

id

F id

T

T * F

id

F id

T

E

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Shift-Reduce Parsing

• The general idea is to shift some symbols of input to the

stack until a reduction can be applied

• At each reduction step, if a specific substring is matched

then the body of a production is replaced by the Non

Terminal at the head of the production A—>ac/b

• The key decisions during bottom-up parsing are about when

to reduce and what production should apply

• A reduction is a reverse of a step in a derivation

• The goal of a bottom-up parser is to construct a derivation in

reverse:

– E=>T=>T*F=>T*id=>F*id=>id*id

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

5

LR k

Left-to-Right

scan
Rightmost Derivation In

Reverse

Number Of Input

Symbols Of Look

Ahead

LR(k)

LR Parsers

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

6

❖ Types of LR Parsers

1.LR(0) Parser

2.Simple LR-Parser (SLR)

3.Canonical LR Parser (CLR)

4.LALR Parser.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

7

LR(0)SLRLALRLR(1) LL(0)

LL(1)

Comparison of LL & LR Methods

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

8

▪ Advantages of LR Parsers

▪ LR parsers are constructed to recognize all

Programming Languages

▪ The LR-parsing is Non-Backtracking Shift-

Reduce Parser

▪ An LR parser can detect a syntactic errors

▪ It scans input string from left-to-right and use

left most derivation in reverse

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

9

•The LR Parsing Algorithm

LR Parsing Engine

a1 a2 … ai … an $

Input

Scanner

sm

Xm

sm-1

Xm-1

…

s0

Stack

Parser

Generator
Action Goto Grammar

Compiler Construction

LR Parsing Tables

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

10

❖ The LR parser consists of 1) Input 2)Output

3)Stack 4) Driver Program 5) Parsing Table

❖ The Driver Program is same for all LR Parsers.

❖ Only the Parsing Table changes from one parser

to the other.

❖ In CLR method the stack holds the states from the

LR(0)automation and canonical LR and LALR

methods are same

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

11

❖ The Driver Program uses the Stack to store a

string

s0X1s1X2…Xmsm

✓ Where sm is the Top of the Stack.

✓ The Sk‘s are State Symbols

✓ The Xi‘s are Grammar Symbols.

✓ Together State and Grammar Symbols

determine a Shift-reduce Parsing Decision.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

12

❖ The Parsing Program reads characters from an

Input Buffer one at a time

❖ The Current Input Symbols are used to index the

parsing table and determine the shift-reduce

parsing decision

❖ In an implementation, the grammar symbols need

not appear on the stack

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

13

Parse Table

❖ The LR Shift-Reduce Parsers can be efficiently

implemented by computing a table to guide the

processing

❖ The Parsing Table consists of two parts:

1. A Parsing Action Function and

2. A GOTO function.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

14

❖ The Action Table

❖ The Action Table specifies the actions of the parser

(e.g., shift or reduce), for the given parse state and

the next token

✓ Rows are State Names;

✓ Columns are Terminals

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

15

LR Driver Program

❖ The LR driver Program determines Sm, the state on

top of the stack and ai, the Current Input symbol.

❖ It then consults Action[Sm, ai] which can take one

of four values:

✓ Shift

✓ Reduce

✓ Accept

✓ Error

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

16

❖ If Action[Sm, ai] = Shift S

✓ Where S is a State, then the Parser pushes

ai and S on to the Stack.

❖ If Action[Sm, ai] = Reduce A → β,

✓ Then ai and Sm are replaced by A

✓ if S was the state appearing below ai in the

Stack, then GOTO[S, A] is consulted and the

state pushed onto the stack.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

17

❖ If Action[Sm, ai] = Accept,

✓ Parsing is completed

❖ If Action[Sm, ai] = Error,

✓ The Parser discovered an Error.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

18

❖ GOTO Table

❖ The GOTO table specifies which state to put on

top of the stack after a reduce

✓Rows are State Names;

✓Columns are Non-Terminals

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

19

❖ The GOTO Table is important to find out the next

state after every reduction.

❖ The GOTO Table is indexed by a state of the

parser and a Non Terminal (Grammar Symbol)

ex : GOTO[S, A]

❖ The GOTO Table simply indicates what the next

state of the parser if it has recognized a certain

Non Terminal. Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

20

❖ Right Sentential Form is a Sentential Form in a

Rightmost Derivation

Example: (S)S , ((S)S)

❖ Viable Prefix is a sequence of symbols on the

parsing stack

Example:

✓ (S)S, (S), (S, (,

✓ ((S)S, ((S), ((S , ((, (

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

21

LR(0) Parser

❖ The LR Parser is a Shift-reduce Parser that makes

use of a Deterministic Finite Automata, recognizing

the Set Of All Viable Prefixes by reading the stack

from Bottom To Top.

❖ if a Finite-State Machine that recognizes viable

prefixes of the right sentential forms is constructed,

it can be used to guide the handle selection in the

Shift-reduce Parser.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

22

❖ Handle: Handle is a substring that matches the

body of a production

❖ Handle is a Right Sentential Form + position

where reduction can be performed + production

used for reduction

Example

(S) S. With S → Є

(S) .S With S → S

((S) S .) With S → (S) S

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

• Handle pruning : Handle pruning specifies that the reduction

represents one step along the reverse of a rightmost

derivation

Right sentential form Handle Reducing production

id*id id F->id

F*id F

id

T->F

T*id F->id

T*F T*F E->T*F

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

24

.

Augmented Grammar

❖ If G is a Grammar with Start Symbol S, the

Augmented Grammar G’ is G with a New Start

Symbol S`, and New Production S` →S$.

❖ The Purpose of the Augmented Grammar is to

indicate to the parser when it should stop parsing

and announce acceptance of the input

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

25

LR(0) Items

An LR(0) Item of a Grammar G is a Production of G

with a Dot () at some position of the right side.

.Production A → XYZ yields the Four items:

1. A→•XYZ We hope to see a string derivable

from XYZ next on the input.

2. A→X•YZ We have just seen on the input a

string derivable from X and that we hope next

to see a string derivable from YZ next on the

input. Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

26

3. A→XY•Z

4. A→XYZ•

❖ The production A→ generates only one item,

A→•.

❖ Each of this item is a Viable prefixes

❖ Closure Item : An Item created by the closure

operation on a state.

❖ Complete Item : An Item where the Item Dot is

at the end of the RHS.

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

27

S → E rule1: (S→S’)

E → T

E → E + T

T → i

T → (E)

Context Free Grammar:

LR(0) Example

Augumented Grammar

S → •E

E → •T

E → •E+T

T → •i

T → •(E)

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

28

E → T•

T → (•E)

E → •T

E → •E+T

T → •i

T → •(E)

T → i•

S → E•$

E → E•+T

T → (E•)

E → E•+T

E → E+•T

T → •i

T → •(E)

S → E$• T → (E)•

E → E+T•

S6

S7

S5

S1

S2

S4

S3
S9

S8

T T

(

i
i

i

T

+
)

(

EE

$

+

(

S → •E$

E → •T

E → •E+T

T → •i

T → •(E)

S0

Construction of LR(0) Closure Items

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

29

I0:
S → •E$

E → • T

E → • E + T

T → • i

T → • (E)

I1:Goto(I0,E)

S → E • $

E → E • + T

I2 :Goto(I1,$)

S → E $ •
I3 :Goto(I1,+)

E → E + • T

T → • i

T → • (E)

I4 :Goto(I3,T)

E →E+T •

I5 :Goto(I0,i)

T → i •

I5 :Goto(I3,i)

T → i •

I7 :Goto(I0,()

T →(•E)

E → • T

E → • E + T

T → • i

T → • (E)

I8 :Goto(I7,E)

T →(E•)

T → E•+ T

I6 :Goto(I0,T)

E → T •

I9 :Goto(I7,))

T →(E)•

Construction of LR(0) Items

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

30

I0

I1

I4I5

I2

I6

I9

I8

E

(

i

T

$

E
S

)

I3

+

T

I7

i

(

T

i

Construction of DFA for LR(0) Items

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

31

States

Input

Action Part (Terminals) Goto Part

(Non-

Terminals)

i + () $ E T

0 5 7 1 6

1 3 2

2 S→E$

3 5 7 4

4 E→E+T

5 T→i

6 E→T

7 5 7 8 6

8 3 9

9 T→(E)

Shift

Shift

Reduce

Shift

Reduce

Reduce

Reduce

Shift

Shift

Reduce

Construction of LR(0) Parsing Table

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

32

S0 i + (i + i) $ Shift

Stack Input Action

S0 i S5 + (i + i) $ Reduce by T→i

S0 T S6 + (i + i) $ Reduce by E→T

S0 E S1 + (i + i) $ Shift

S0 E S1 + S3 (i + i) $ Shift

String Acceptance

States

Input

Action Part (Terminals) Goto Part (Non-

Terminals)

i + () $ E T

0 5 7 1 6

1 3 2

2 S→E$

3 5 7 4

4 E→E+T

5 T→i

6 E→T

7 5 7 8 6

8 3 9

9 T→(E)

Shift

Shift

Reduce

Shift

Reduce

Reduce

Reduce

Shift

Shift

Reduce

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

33

String Acceptance

States

Input

Action Part (Terminals) Goto Part (Non-

Terminals)

i + () $ E T

0 5 7 1 6

1 3 2

2 S→E$

3 5 7 4

4 E→E+T

5 T→i

6 E→T

7 5 7 8 6

8 3 9

9 T→(E)

Shift

Shift

Reduce

Shift

Reduce

Reduce

Reduce

Shift

Shift

Reduce

S0 E S1 + S3 (i + i) $ shift
S0 E S1 + S3 (S7 i + i) $ shift

S0 E S1 + S3 (S7iS5 + i)$ reduce by T→i

S0 E S1 + S3 (S7TS6 + i)$ reduce by E→T

S0 E S1 + S3 (S7ES8 + i)$ shift

Stack Input Action

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

34

S0 E S1 + S3 (S7ES8 + i) $ shift

S0 E S1 + S3 (S7ES8+S3 i) $ shift

S0 E S1 + S3 (S7ES8+S3iS5) $ reduce by T→i

S0 E S1 + S3 (S7ES8+S3TS4) $ reduce by E→E+T

S0 E S1 + S3 (S7ES8) $ shift

Stack Input Action

String Acceptance

States

Input

Action Part (Terminals) Goto Part (Non-

Terminals)

i + () $ E T

0 5 7 1 6

1 3 2

2 S→E$

3 5 7 4

4 E→E+T

5 T→i

6 E→T

7 5 7 8 6

8 3 9

9 T→(E)

Shift

Shift

Reduce

Shift

Reduce

Reduce

Reduce

Shift

Shift

Reduce

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

35

S0 E S1 + S3 (S7ES8)$ shift

S0 E S1 + S3 (S7ES8)S9 $ reduce by T→(E)

S0 E S1 + S3TS4 $ reduce by E→E+T

S0 E S1 $ shift

S0 E S1$S2 reduce by S→E$

S0 S accept

Stack Input Action

String Acceptance

States

Input

Action Part (Terminals) Goto Part (Non-

Terminals)

i + () $ E T

0 5 7 1 6

1 3 2

2 S→E$

3 5 7 4

4 E→E+T

5 T→i

6 E→T

7 5 7 8 6

8 3 9

9 T→(E)

Shift

Shift

Reduce

Shift

Reduce

Reduce

Reduce

Shift

Shift

Reduce

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Draw backs of LR(0) Parser

❖ LR(0) is the Simplest Technique in the LR family.

❖ LR(0) Parsers are too weak to be of practical use

❖ LR(0) accepts only small class of LR(0) grammar

because if conflicts occurs.

❖ The Fundamental Limitation of LR(0) is that no look

ahead tokens are used.

❖ LR(0) Parsing is the weakest and it is not used

much in practice because of its limitations.
36Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

GATE QUESTIONS AND SOLUTIONS

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 1

Consider the grammar

E → E + n | E × n | n

For a sentence n + n × n, the handles in the right-sentential form

of the reductions are ? (GATE 2005)

A. n, E + n and E + n × n

B. n, E + n and E + E × n

C. n, n + n and n + n × n

D. n, E + n and E × n

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• E → E * n {Applying E → E * n }

• E→ E + n * n {Applying E → E + n }

• E→ n + n * n {Applying E → n } Hence, the handles in right

sentential form is n, E + n and E × n.

• Hence Option D is the right choice

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 2

A bottom-up parser generates:

A. Left-most derivation in reverse

B. Right-most derivation in reverse

C. Left-most derivation

D. Right-most derivation

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• A bottom-up parser generates right-most derivation in reverse

• Option (B) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 3

Consider the following statements related to compiler

construction :

I. Lexical Analysis is specified by context-free grammars and

implemented by pushdown automata.

II. Syntax Analysis is specified by regular expressions and

implemented by finite-state machine.

Which of the above statement(s) is/are correct ?

A. Only I

B. Only II

C. Both I and II

D. Neither I nor II

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• Both statements are wrong for detailed information on lexical

analysis and syntax analysis

• option (D) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 4

Which of these is true about LR parsing?

A. Is most general non-backtracking shift-reduce parsing

B. It is still efficient

C. Both a and b

D. None of the mentioned

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• LR parsers are a type of bottom-up parsers that efficiently

handle deterministic context-free languages in guaranteed

linear time.

• option (C) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 5

Which of the following is incorrect for the actions of A LR-Parser

I) shift s

ii) reduce A->ß

iii) Accept

iv) reject?

A. Only I)

B. I) and ii)

C. I), ii) and iii)

D. I), ii) , iii) and iv)

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• Only reject out of the following is a correct LR parser action

• Option C is correct

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 6

If a state does not know whether it will make a shift operation or

reduction for a terminal is called

A. Shift/reduce conflict

B. Reduce /shift conflict

C. Shift conflict

D. Reduce conflict

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• As the name suggests that the conflict is between shift and

reduce hence it is called shift reduce conflict

• Option A is correct

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 7

When there is a reduce/reduce conflict?

A. If a state does not know whether it will make a shift operation

using the production rule i or j for a terminal.

B. If a state does not know whether it will make a shift or

reduction operation using the production rule i or j for a

terminal.

C. If a state does not know whether it will make a reduction

operation using the production rule i or j for a terminal.

D. None of the mentioned

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• It occurs when If a state does not know whether it will make a

reduction operation using the production rule i or j for a

terminal.

• Option C is correct

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

SLR(1) Parser
❖ We will find that it allows for a much larger class of

grammars to be parsed.

❖ SLR(1) Parser is used for accepting the certain

grammar which is not accepted by LR(0) parser

❖ The letters “SLR” stand for “Simple”, “Left” and

“Right”.

✓ “Left” indicates that the input is read from left

to right and

✓ The “Right” indicates that a right-derivation is

built. 52Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

❖ SLR(1) Parser stands for Simple LR(1).

❖ SLR(1) parsers use the same LR(0) Configurating

Sets and have the Same Table Structure and Parser

Operation, So everything you've already learned

about LR(0) applies here.

❖ The difference in SLR(1) Parser with LR(0) Parser

comes in Assigning Table Actions,

53Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

❖ SLR(1) Parsers are going to use one token of

lookahead to eliminate the conflicts.

❖ In LR(0) parsing, Reduce Actions that cause the

problem

❖ The Simple Improvement that SLR(1) makes on the

basic LR(0) parser is to reduce only if the next input

token is a member of the Follow Set of the non-

terminal being reduced.

6/16/2020© Copyright 2007 Stephen M. Watt

54Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

❖ SLR(1) parser will perform a reduce action for

configuration B→a• if the lookahead symbol is in

the set Follow(B)

❖ A Grammar is an SLR(1) grammar if there is no

conflict in the grammar.

❖ Clearly SLR(1) is a proper superset of LR(0)

55

LR(0)SLR(1)

55Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Example: SLR(1) Parser

❖ Construct the SLR(1) Parser for the Following

Grammar

Context Free Grammar:

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

6/16/2020© Copyright 2007 Stephen M. Watt

56Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

.

Augmented Grammar:

E’ → E#

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

Context Free Grammar:

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

Step 1: Define a Augmented Grammar

57Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

.

.

.

E’ → E#

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

E’ → E#

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

.

.

.

.

Step2 : Constructing SLR(1) Automaton

Context Free Grammar: Adding the SLR(1) Item

58Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

E’ →.E#

E →.E+T

E →.T

T →.T*F

T →.F

F →.(E)

F →.id

F → (E).

S11

T → T*F.

S10

E → E + T.

T → T.* F

S9

F → (E.)

E → E.+T
S8

T → T*.F

F →.(E)

F →.id

S7

E → E+.T

T → .T*F

T → .F

F → .(E)

F → .id
S6

F → id.
S5

S0

F →(.E)

E →.E+T

E →.T

T →.T*F

T →.F

F →.(E)

F →.id

S4

E → T.

T→ T. * F

S2

T → F.
S3

E’ → E.#

E → E.+T

S1

E

T

F

id

+

*

T

*(
idS3

F

S5
S4

(

id

S5

(

F

E

)

S6

T

F

(

id

+ 59Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

I0:

E’ →.E#

E →.E + T

E →.T

T →.T * F

T →.F

F →.(E)

F →.id

I4:Goto(I0,()

E→ T.

E→ T.*F

I2:Goto(I0,T)

T→ F.
I3:Goto(I0,F)

I1:Goto(I0,E)

E→ E.#

E→ E.+T

F→(. E)

E→.E+T

E→.T

T→.T * F

T→.F

F→.(E)

F →.id

T→id.
I5:Goto(I0,id)

E →E+.T

T→.T * F

T→.F

F→.(E)

F →.id

I6:Goto(I1,+)

E→ T*.F

F→ .(E)

F→ .id

I7:Goto(I2,*)

E→ (E.)

E →E.+T

I8:Goto(I4,E)

E→ T.
E→ T.*F

I2:Goto(I4,T)

T→ F.

I3:Goto(I4,F)

E →E+T.

T→ T.* F

I9:Goto(I6,T)

T→T * F .

I10:Goto(I7,F)

T→(E).

I11:Goto(I8,))
T→ F.

I3:Goto(I6,F)

I4:Goto(I6,()

T→id.
I5:Goto(I6,id)

I3:Goto(I4,F)I5:Goto(I4,id)

I5:Goto(I7,id)
I4:Goto(I4,()

I7:Goto(I9,*)

I4:Goto(I7,()

I6:Goto(I8,+)

Constructing the SLR(1) Items

60Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

S0

S1

S2

S4

S6

S3

S11

S5

S9

(
id

S3

F

S5

S4

E

T

F

id

(

+ T

S7

S8

S10

S5

S4

(

id

*

F

S3

T

id
F

E

(

S6

)

+

S7

*

Construction of DFA for SLR(1) Items

61Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Construction of Follow Function

E’ →.E#

E →.E + T

E →.T

T →.T * F

T →.F

F →.(E)

F →.id

Follow (E) = { # , + ,) }

Follow (T) = { * , # , + ,) }

Follow (F) = { * , # , + ,) } (r3)

(r4)

(r2)

(r1)

(r6)

(r5)

62Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Constructing the SLR(1) Parsing Table

States

Input

Action Part Goto Part

0

1

2

3

4

5

6

id + * () $ E T F

7

8

9

10

11

S5 S4 1 2 3

S6 Acc

S7r2 r2 r2

r4 r4 r4 r4

S5 S4 8 2 3

r6 r6 r6 r6

S5 S4 9 3

S5 S4 10

S6 S11

S7r1 r1 r1

r3 r3 r3 r3

r5 r5 r5 r5
63Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Input Acceptance

64Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + id

In S0 with input
symbol id, shift the
symbol onto the stack
and enter state S5

String Acceptance id * id + id$

65Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + id

S5 with input symbol *

Reduce
using grammar
production6

String Acceptance id * id + id$

66Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + id

S5 with input symbol *

Reduce
using grammar
production6

String Acceptance id * id + id$

67Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + id

T 2

Reduction exposes S0

and goto of S0 gives
next state for the
leading non-terminal,
T. The next state is S2

String Acceptance id * id + id$

68Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + idString Acceptance id * id + id$

69Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + idString Acceptance id * id + id$

70Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + idString Acceptance id * id + id$

71Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(7) 0 T 2 * 7

id * id + id

Reduction exposes S7

and goto of S7 gives
next state for the
leading non-terminal,
F. The next state is S10

F 10

String Acceptance id * id + id$

72Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + id

(7) 0 T 2 * 7 F 10 + id $ Reduce T → T*F

(8) 0 T 2 + id $

String Acceptance id * id + id$

73Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(8) 0 T 2 + id $ Reduce E → T

id * id + idString Acceptance id * id + id$

74Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(8) 0 T + id $ Reduce E → T

id * id + id

(9) 0 + id $ E 1

String Acceptance id * id + id$

75Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

id * id + id

(9) 0 E 1 + id $ Shift

(10) 0 E 1 + 6 id $

String Acceptance id * id + id$

76Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(10) 0 E 1 + 6 id $ Shift

id * id + id

(11) 0 E 1 + 6 id 5 $

String Acceptance id * id + id$

77Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(11) 0 E 1 + 6 id 5 $ Reduce F → id

id * id + id

(12) 0 E 1 + 6 $ F

String Acceptance id * id + id$

78Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(12) 0 E 1 + 6 F $

id * id + id

3

(12) 0 E 1 + 6 F 3 $

String Acceptance id * id + id$

79Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(12) 0 E 1 + 6 F 3 $ Reduce T → F

id * id + id

(13) 0 E 1 + 6 $ T

String Acceptance id * id + id$

80Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(13) 0 E 1 + 6 T $

id * id + id

9

String Acceptance id * id + id$

81Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(13) 0 E 1 + 6 T 9 $ Reduce E→E+T

id * id + id

(14) 0 E 1 $

String Acceptance id * id + id$

82Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

(13) 0 E 1 $

id * id + id

Accept

String Acceptance id * id + id$

83Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

String Acceptance id * id + id$

STACK INPUT ACTION

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

0

0 id 5

0 F 5

0 T 2

0 T 2 * 7

0 T 2 * 7 id 5

0 T 2 * 7 F 10

0 T 2

0 E 1

0 E 1 + 6

0 E 1 + 6 id 5

0 E 1 + 6 F 3

0 E 1 + 6 T 9

0 E 1

id * id + id$

* id + id$

* id + id$

* id + id$

id + id$

+ id$

+ id$

+ id$

+ id$

id$

$

$

$

$

shift

reduced by F → id

reduced by T → F

shift

shift

reduced by F → id

reduced by T → T*F

reduced by E → T

shift

shift

reduced by F → id

reduced by T → F

E → E + T

accept 84Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Observation

❖ the Shift/Reduce Conflict arises from the fact that

the SLR parser construction method is not powerful

enough to remember enough left context to decide

what action the parser should take on input = has

seen a string reducible to L.

❖ That is “R=“ cannot be a part of any Right

Sentential Form. So when “L” appears on the top of

stack and “=“ is the current character of the input

buffer , we can not reduce “L” into “R”.

85Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

❖ Every SLR Grammar is Unambiguous, but Every

Unambiguous Grammar is not a SLR grammar.

❖ If the SLR parsing table of a grammar G has a Conflict,

we say that Grammar is not SLR Grammar.

86Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

Drawbacks

❖ SLR(1) parsers cannot parse some LR grammars.

❖ The Main Problem of SLR(1) Parser is that Lookahead

Information is added to LR(0) parser at the end of

construction based on FOLLOW sets

❖ In SLR(1) parsing, we reduce A→α for ANY lookahead a

Є FOLLOW(A), which is too general such that

sometimes a reduction cannot occur for some a Є

FOLLOW(A)

87Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

❖ if the Grammar contains Reduce/Reduce Conflict then,

we say that Grammar is not SLR(1) Grammar.

Drawbacks

88Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

GATE QUESTIONS AND SOLUTIONS

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 1

• Consider the following two statements: P: Every regular

grammar is LL(1) Q: Every regular set has a LR(1) grammar

Which of the following is TRUE? (GATE 2007)

A. Both P and Q are true

B. P is true and Q is false

C. P is false and Q is true

D. Both P and Q are false

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• A regular grammar can also be ambiguous also For example,

consider the following grammar, S → aA/a A → aA/ε In above

grammar, string 'a' has two leftmost derivations.

• (1) S → aA (2) S → a S->a (using A->ε) And LL(1) parses only

unambiguous grammar, so statement P is False.

• Statement Q is true is for every regular set, we can have a

regular grammar which is unambiguous so it can be parse by

LR parser.

• So option C is correct choice

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 2

A canonical set of items is given below

S → L. > R

Q → R.

On input symbol < the set has? (GATE 2014)

A. a shift-reduce conflict and a reduce-reduce conflict.

B. a shift-reduce conflict but not a reduce-reduce conflict.

C. a reduce-reduce conflict but not a shift-reduce conflict.

D. neither a shift-reduce nor a reduce-reduce conflict

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• The question is asked with respect to the symbol ' < ' which is

not present in the given canonical set of items.

• Hence it is neither a shift-reduce conflict nor a reduce-reduce

conflict on symbol '<‘.

• So option D is correct choice

• But if the question would have asked with respect to the

symbol ' > ' then it would have been a shift-reduce conflict.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 3

Which of the following is true?

A. Canonical LR parser is LR (1) parser with single look ahead

terminal

B. All LR(K) parsers with K > 1 can be transformed into LR(1)

parsers.

C. Both (A) and (B)

D. None of the above

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• Canonical LR parser is LR (1) parser with single look ahead

terminal. All LR(K) parsers with K > 1 can be transformed into

LR(1) parsers.

• Option (C) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 4

The construction of the canonical collection of the sets of LR (1)

items are similar to the construction of the canonical collection of

the sets of LR (0) items. Which is an exception?

A. Closure and goto operations work a little bit different

B. Closure and goto operations work similarly

C. Closure and additive operations work a little bit different

D. Closure and associatively operations work a little bit different

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• Closure and goto do work differently in case of LR (0) and LR

(1)

• Option (A) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 5

When ß (in the LR(1) item A -> ß.a,a) is not empty, the look-

head

A. Will be affecting.

B. Does not have any affect.

C. Shift will take place.

D. Reduction will take place.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• There is no terminal before the non terminal beta

• Option (B) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Question 6

When ß is empty (A -> ß.,a), the reduction by A-> a is done

A. If next symbol is a terminal

B. Only If the next input symbol is a

C. Only If the next input symbol is A

D. Only if the next input symbol is a

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

Explanation

• The next token is considered in this case it’s a

• Option (D) is correct.

Prof.C.NagaRaju YSRCE of YVU CSE 9949218570

102

Thank U

Prof.C.NagaRaju YSRCE of YVU

CSE 9949218570

