Prof. GVSR Deekshitulu

Multiple

Double integrals

Double integrals in polar form

Change the order o integration

Change of variable from cartesian to polar form

Triple integra

Cartesian
coordinates to
cylindrical
coordinates:

Cartesian coordinates to Spherical

Multi variable Calculus

Dr. G.V.S.R. Deekshitulu
Professor and Head,
Department of the Mathematics,
UCEK, JNTUK Kakinada

Prof. GVSR Deekshitulu

Multiple integrals

Double integra

polar form
Change the order

integration

Change of variables from cartesian to

Triple integrals Cartesian

coordinates to cylindrical coordinates:

coordinates to Spherical

Multiple integrals

Double integrals

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals Double integrals Double integrals Double integrals in polar form Change the order of integration Change of variables from cartesian to polar form Triple integrals Cartesian coordinates to cylindrical coordinates:

Consider a function f(x, y) of two independent variables x and y, defined at each point in the finite region R of the xy plane.

The double integral of function f(x, y) over a region R is defined as $\iint_R f(x, y) dx dy$.

Domains

For single variable function y = f(x), the domain is one dimensional.

For two variable function, u = f(x, y), the natural domain is two dimensional region in a plane (xy-plane).

For three variable function, u = f(x, y, z), the natural domain is three dimensional. i.e., in xyz-plane.

Different types of double integrals

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

integrals

Double integrals

Double integrals in polar form

Change the order of integration Change of variable

Change of variable from cartesian to polar form

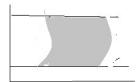
Triple integr

coordinates to cylindrical coordinates: Cartesian

coordinate Spherical coordinate 1. Let f(x, y) be a continuous function in R where $R = \{(x, y)/a \le x \le b; c \le y \le d\}$, then $\int \int_R f(x, y) dx dy = \int_{x=a}^b \left[\int_{y=c}^d f(x, y) dy \right] dx = \int_{y=c}^d \left[\int_{x=a}^b f(x, y) dx \right] dy$.

Cartesian coordinates Spherical 2. If f(x, y) be a continuous function defined over the region R, where $R = \{(x, y)/a \le x \le b; y_1 \le y \le y_2\}$, then [here y_1 and y_2 are function of x and a, b are constants]

$$\int \int_{R} f(x,y) dx dy = \int_{x=a}^{b} \left[\int_{y=y_{1}}^{y_{2}} f(x,y) dy \right] dx.$$

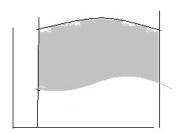


polar form

Cartesian coordinates to cylindrical coordinates:

Cartesian coordinates to Spherical 3. If f(x, y) be a continuous function defined over the region R, where $R = \{(x, y)/x_1 \le x \le x_2; c \le y \le d\}$, then [here x_1 and x_2 are function of y and c, d are constants.]

$$\int\int\limits_{R} f(x,y)dxdy = \int_{y=c}^{d} \left[\int_{x=x_{1}}^{x_{2}} f(x,y)dx \right] dy.$$



Multiple Integrals

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple
integrals
Double integrals
Double integrals in
polar form
Change the order of
integration
Change of variables
from cartesian to
polar form
Triple integrals
Cartesian
coordinates to
coordinates:
Cartesian

Note:1

If limits, for one variable is function of other and for other variable is constant, then first we have to integrate the variable with respect to variable for which limits are functions of the other, then the variable with constant limits.

That means limits of x are given as functions of y, then integrate w.r.t x first, then w.r.t y. Similarly limits of y are given as functions of x, then integrate w.r.t y first, then w.r.t x.

2

 $\iint_{R} dA$ or $\iint_{R} dxdy$ represents area of the region R.

Properties of double integrals:

MULTI-VARIABLE **CALCULUS**

Double integrals

i.
$$\iint_{R} af(x,y)dxdy = a \iint_{R} f(x,y)dxdy$$

ii.
$$\int \int_{R} [f(x,y)_{-}^{+}g(x,y)]dxdy =$$
$$\int \int_{R} f(x,y)dxdy_{-}^{+} \int \int_{R} g(x,y)dxdy$$

iii.
$$\iint_R f(x,y) dxdy = \iint_{R_1} f(x,y) dxdy + \iint_{R_2} f(x,y) dxdy$$
 where R is the union of R_1 and R_2 .

Prof. GVSR Deekshitulu

integrals

Double integrals

Double integrals in polar form

Change the order of integration

Change of variable from cartesian to

Triple integra

Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical

Example 1.1

Evaluate $\int_0^1 \int_0^y e^{x/y} dx dy$.

Sol.

$$\int_{0}^{1} \int_{0}^{y} e^{x/y} dx dy = \int_{0}^{1} \left[\int_{0}^{y} e^{x/y} dx \right] dy$$

$$= \int_{0}^{1} [y e^{x/y}]_{x=0}^{y} dy$$

$$= \int_{0}^{1} [y e - y] dy$$

$$= (e - 1) \left[\frac{y^{2}}{2} \right]_{0}^{1}$$

$$= \frac{1}{2} (e - 1)$$

Prof. GVSR Deekshitulu

Multiple integrals Double integrals Double integrals in polar form Change the order or integration Change the order or integration Change of variables from cartesian to polar form Triple integrals Cartesian coordinates to cylindrical coordinates: Cartesian carectigates to

Example 1.2

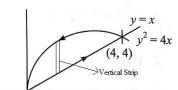
Evaluate $\int \int xy dx dy$ where R is the region bounded by $y = x, y^2 = 4x$.

Sol. The region R is bounded by the line y = x and parabola $y^2 = 4x$.

The points of intersection of the line and parabola are given by $x^2 = 4x \Rightarrow x = 0.4$.

If x = 0, y = 0 and if x = 4, y = 4.

(0,0) and (4,4) are points of intersection with the line y=x and the parabola $y^2=4x$.



Prof. GVSF Deekshitult

Multiple

Integrais

Double integrals

Double integrals i

polar form

Change of variable

from cartesian to polar form

Triple integral

coordinates to cylindrical coordinates:

coordinates to Spherical

$$\therefore \int \int xy dx dy = \int_0^4 \left[\int_x^{2\sqrt{x}} xy dy \right] dx$$

$$= \int_0^4 \frac{x}{2} [y^2]_x^{2\sqrt{x}}$$

$$= \frac{1}{2} \int_0^4 x [4x - x^2] dx$$

$$= \frac{1}{2} \int_0^4 \left[\frac{4}{3} x^3 - \frac{x^4}{4} \right]_0^4$$

$$= \frac{32}{3}.$$

Double integrals

$$\int_{x=0}^{1} \left[\int_{y=x}^{\sqrt{x}} (x^2 + y^2) \, dy \right] dx = \int_{x=0}^{1} \left[x^2 y + \frac{y^3}{3} \right]_{y=x}^{\sqrt{x}} dx$$

$$= \int_{x=0}^{1} \left[\left(x^2 \sqrt{x} + \frac{(\sqrt{x})^3}{3} \right) - \left(x^2 \cdot x + \frac{x^3}{3} \right) \right] dx$$

$$= \int_{x=0}^{1} \left[x^{5/2} + \frac{x^{3/2}}{3} - \frac{4x^3}{3} \right] dx$$

$$= \left[\frac{x^{7/2}}{7/2} + \frac{x^{5/2}}{3.5/2} - \frac{4x^4}{4.3} \right]_{0}^{1}$$

$$= \frac{2}{7} + \frac{2}{15} - \frac{1}{3} = \frac{30 + 14 - 35}{105} = \frac{9}{105} = \frac{3}{35}$$

Prof. GVSF Deekshitulu

Multiple

integrals Double integrals

Double integrals in

polar form Change the order of

Change of variable from cartesian to

Triple integr

Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical Example : Evaluate (i) $\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$

(ii)
$$\int_{0}^{4} \int_{y^{2}/4}^{y} \frac{y}{x^{2} + y^{2}} dx dy$$

Solution: (i)
$$\int_{0}^{3} \int_{0}^{3} x(x^{2} + y^{2}) dx dy = \int_{x=0}^{3} \left[\int_{y=0}^{x^{2}} (x^{3} + xy^{2}) dy \right] dx$$

$$= \int_{0}^{5} \left(x^{3} y + \frac{xy^{3}}{3} \right)_{0}^{x^{2}} dx$$

$$= \int_{0}^{5} \left(x^{5} + \frac{x^{7}}{3} \right) dx = \left(\frac{x^{6}}{6} + \frac{x^{8}}{24} \right)_{0}^{5}$$

$$= \frac{5^6}{6} + \frac{5^8}{24} = 5^6 \left(\frac{1}{6} + \frac{25}{24} \right) = \frac{29(5^6)}{24}$$

Given integral = $\int_{0}^{4} \left[y \int_{x=y^{2}/4}^{y} \frac{1}{x^{2} + y^{2}} dx \right] dy$ [Here y is constant]

$$= \int_{0}^{4} y \left\{ \frac{1}{y} \tan^{-1} \left(\frac{x}{y} \right) \right\}_{2/4}^{y} dy \quad \left[\because \int \frac{dx}{x^{2} + x^{2}} = \frac{1}{a} \tan^{-1} \frac{x}{a} \right]$$

$$= \int_{0}^{4} \left[\tan^{-1}(1) - \tan^{-1}\left(\frac{y}{4}\right) \right] dy = \int_{0}^{4} \left[\frac{\pi}{4} - \tan^{-1}\left(\frac{y}{4}\right) \right] dy$$

$$= \frac{\pi}{4} (y)_{0}^{4} - \int_{0}^{4} \tan^{-1}\frac{y}{4} dy \quad \text{[Integration by parts]}$$

$$= \pi - \left[\left\{ \tan^{-1}\left(\frac{y}{4}\right) \cdot y \right\}_{0}^{4} - \int_{0}^{4} y \cdot \frac{1}{1 + \frac{y^{2}}{16}} \cdot \frac{1}{4} dy \right]$$

$$= \pi - \left[4 \tan^{-1}(1) - 4 \int_{0}^{4} \frac{y}{y^{2} + 16} dy \right]$$

$$= \pi - \left[4 \left(\frac{\pi}{4}\right) - 2 \left\{ \log\left(y^{2} + 16\right) \right\}_{0}^{4} \right] \quad \left[\because \int \frac{f'(x)}{f(x)} dx = \log f(x) \right]$$

$$= 2 \left[\log(32) - \log 16 \right] = 2 \log(32/16) = 2 \log 2$$

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals in polar form

integration
Change of variable

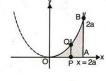
from cartesian to polar form

Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical coordinates: Example: Evaluate $\iint_R xy \, dx \, dy$ where R is the region bounded by x-axis, ordinate x = 2a and the curve $x^2 = 4ay$.

Solution: Let us draw the parabola $x^2 = 4ay$, the line x = 2a and identify the region R of integration. It is as in figure. The integral $\iint_{\mathbb{R}} xydx\,dy$ is same as $\iint_{\mathbb{R}} xy\,dy\,dx$.

Let us consider a fixed x (Draw a line x = k in the region). Now for this fixed x, y varies from 0 to $x^2/4a$. To be in the region, we have to vary x from 0 to 2a.



Hence the given integral
$$= \int_{x=0}^{2a} \int_{y=0}^{x^2/4a} xy \, dy \, dx$$

$$= \int_{x=0}^{2a} \left[\int_{y=0}^{x^2/4a} y \, dy \right] x \, dx = \int_{x=0}^{2a} \left[\frac{y^2}{2} \right]_{y=0}^{x^2/4a} x \, dx$$

$$= \int_{x=0}^{2a} \frac{x^4}{32a^2} x \, dx = \frac{1}{32a^2} \int_{x=0}^{2a} x^5 dx$$

$$= \frac{1}{32a^2} \left(\frac{x^6}{6}\right)_{x=0}^{2a} = \frac{64 \, a^6}{32. \, a^2.6} = \frac{a^4}{3}$$

Double integrals in polar form

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals in polar form

Change the order integration

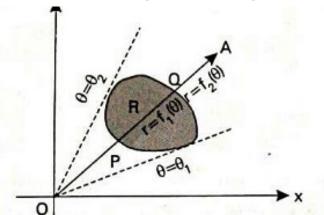
from cartesian to polar form

Triple integrals
Cartesian
coordinates to

coordinates:
Cartesian
coordinates to
Spherical

Let the double integral is of the form $\int_{\alpha}^{\beta} \int_{r_1}^{r_2} f(r,\theta) dr d\theta$. Here $r_1 = f(\theta_1)$ and $r_2 = f(\theta_2), \theta = \alpha$ and $\theta = \beta[\alpha, \beta]$ are constants]

then
$$\int_{\alpha}^{\beta} \int_{r_1}^{r_2} f(r,\theta) dr d\theta = \int_{\alpha}^{\beta} \left[\int_{r=f(\theta_1)}^{r=f(\theta_2)} f(r,\theta) dr \right] d\theta$$
.



Procedure:

MULTI-VARIABLE **CALCULUS**

- Double integrals in
- Sketch the region given by identifying the curves
- 2. Imagine the radius vector OA in the region and mark the limits of r as functions of θ say $r = f_1(\theta)$ to $f_2(\theta)$.
- 3. Find the smallest and largest values of θ between which the complete region lies.
- 4. Then the integral is evaluated as $\int_{\theta_*}^{\theta_2} \int_{f_*(\theta)}^{f_2(\theta)} f(r,\theta) dr d(\theta)$.

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals

Double integrals in

Double integrals in polar form

integration
Change of variables from cartesian to

from cartesian to polar form

Triple integrals

Cartesian coordinates to cylindrical coordinates:

Cartesian coordinates to Spherical

Ex.Evaluate $\int_0^{\pi/2} \int_0^{\infty} \frac{r dr d\theta}{(r^2 + a^2)^2}$.

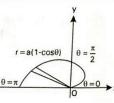
Sol.
$$\int_0^{\pi/2} \int_0^{\infty} \frac{r dr d\theta}{(r^2 + a^2)^2} = \int_0^{\pi/2} \left[\int_0^{\infty} \frac{r}{(r^2 + a^2)^2} dr \right] d\theta$$

Put $r^2 + a^2 = 6$
 $2r dr = dt \rightarrow r dr = \frac{dt}{2}$. So

$$\begin{split} \int_0^{\pi/2} \int_0^\infty \frac{r dr d\theta}{(r^2 + a^2)^2} &= \int_0^{\pi/2} \left[\int_{a^2}^\infty \frac{dt}{2t^2} \right] d\theta = \int_0^{\pi/2} \left[\frac{-1}{2t} \right]_{a^2}^\infty \\ &= \int_0^{\pi/2} \left[\frac{-1}{2a^2} \right] d\theta = \frac{-1}{2a^2} [\theta]_0^{\pi/2} = \frac{\pi}{4a^2}. \end{split}$$

coordinates to Spherical coordinates: Example: Evaluate $\iint r \sin \theta dr \ d\theta$ over the cardioid $r = a(1 - \cos \theta)$ above the initial line.

Solution: The cardioid $r = a(1-\cos\theta)$ is symmetrical about the initial line and it passes through the pole O when $\theta = 0$. The region of integration R above the initial line is covered by radial strips whose ends are r = 0 and $r = a(1-\cos\theta)$, the strips starting from $\theta = 0$ and ending at $\theta = \pi$.



$$\int_{R} r \sin \theta \, dr \, d\theta = \int_{0}^{\pi} \int_{r=0}^{a(1-\cos \theta)} r \sin \theta \, dr \, d\theta$$

$$= \int_{0}^{\pi} \sin \theta \left\{ \int_{0}^{a(1-\cos \theta)} r \, dr \right\} d\theta = \int_{0}^{\pi} \sin \theta \left\{ \left(\frac{r^{2}}{2} \right)_{0}^{a(1-\cos \theta)} \right\} d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi} \sin \theta \, a^{2} (1-\cos \theta)^{2} \, d\theta$$

$$= \frac{a^{2}}{2} \left[\frac{(1-\cos \theta)^{3}}{3} \right]_{0}^{\pi} = \frac{a^{2}}{6} \left[(1-\cos \pi)^{3} - (1-\cos \theta) \right]$$

$$= \frac{a^{2}}{2} [8-0] = \frac{4a^{2}}{3}.$$

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals in polar form

integration
Change of variables
from cartesian to

polar form

Cartesian coordinates to cylindrical coordinates:

coordinates to Spherical coordinates: Example: Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$.

Solution: The region of integration R is shown shaded. Here r varies from $P(r = 2 \sin \theta)$ to $Q(r = 4 \sin \theta)$ and to cover the whole region θ varies from θ to θ .

$$\therefore \iint r^{3} dr d\theta = \int_{\theta=0}^{\pi} \int_{r=2\sin\theta}^{4\sin\theta} r^{3} dr d\theta
= \int_{0}^{\pi} \left\{ \int_{r=2\sin\theta}^{4\sin\theta} r^{3} dr \right\} d\theta
= \int_{0}^{\pi} \left(\frac{r^{4}}{4} \right)_{2\sin\theta}^{4\sin\theta} d\theta
= \frac{1}{4} \int_{0}^{\pi} (256\sin^{4}\theta - 16\sin^{4}\theta) d\theta
= 60 \int_{0}^{\pi} \sin^{4}\theta d\theta \left[\because \int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \text{if } f(2a-x) = f(x) \right]$$

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals in polar form

Change the order of

integration Change of variables from cartesian to polar form

Triple integrals

cylindrical coordinates: Cartesian coordinates to Spherical Example : Evaluate $\iint \frac{r dr d\theta}{\sqrt{a^2 + r^2}}$ over one loop of the lemniscate $r^2 = a^2 \cos 2\theta$.

Solution:

The curve $r^2 = a^2 \cos 2\theta$ is symmetrical about

the initial line (i.e. x - axis) and about the line $\theta = \frac{\pi}{2}$ (i.e. y-axis). The curve intersects the x-axis at the points A(a, 0) and A'(-a, 0). Due to symmetry one loop is formed between the points O and A and the other between O and A'.

Imagine a radius vector from the pole O(r = 0) through the region R, which emerges at P where $r = a\sqrt{\cos 2\theta}$. Such radii can be drawn in between the

lines
$$\theta = -\frac{\pi}{4}$$
 to $\theta = \frac{\pi}{4}$.

Hence
$$\iint \frac{r \, dr \, d\theta}{\sqrt{a^2 + r^2}} = \int_{\theta = -\pi/4}^{\pi/4} \int_{r=0}^{a\sqrt{\cos 2\theta}} \frac{r \, dr \, d\theta}{\sqrt{a^2 + r^2}} = \int_{\theta = -\pi/4}^{\pi/4} d\theta \cdot \frac{1}{2} \int_{r=0}^{a\sqrt{\cos 2\theta}} \frac{2r}{\sqrt{a^2 + r^2}} \, dr$$
$$= \frac{1}{2} \int_{\theta = -\pi/4}^{\pi/4} \left[\frac{\sqrt{a^2 + r^2}}{1/2} \right]_0^{a\sqrt{\cos 2\theta}} d\theta = \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{a^2 + a^2 \cos 2\theta} - \sqrt{a^2} \right] d\theta$$
$$= a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{1 + \cos 2\theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}^{\pi/4} \left[\sqrt{2 \cos \theta} - 1 \right] d\theta = a \int_{\theta = -\pi/4}$$

(-a, 0)

Exercise:

MULTI-VARIABLE CALCULUS

Prof. GVSF Deekshitulu

Multiple

Double integrals

Double integrals in polar form

integration
Change of variables from cartesian to

from cartesian to polar form Triple integrals Cartesian

coordinates to cylindrical coordinates:
Cartesian coordinates to Spherical

1. Evaluate $\int_0^2 \int_0^{x^2} e^{y/x} dy dx$.

- 2. Evaluate $\iint_R y dx dy$ where R is bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 3. Evaluate $\int_a^{\pi/2} \int_{a(1+\cos\theta)}^a r dr d\theta$.

Prof. GVSR Deekshitulu

Multiple integrals Double integrals Double integrals in polar form Change the order of integration Change of variables from cartesian to polar form Triple integrals Cartesian

Change the order of integration:

If, in the given double integral the integration is w.r.t. x and then w.r.t y, the process of converting the order of integration is called change of order of integration. Change of order of integration changes the limits of integration.

Consider a double integral $\int \int_R f(x, y) dx dy$ where R is region.

Assume that R lies between the lines $x = x_0, x = x_1$ and curves $y = f_1(x)$ and $y = f_2(x)$. For points of R, x lies in the interval $[x_0, x_1]$, y varies between $f_1(x)$ and $f_2(x)$, where $f_1(x)$ and $f_2(x)$ are the ordinates of the points at which the boundary of R is intersected by line through (x, y) and parallel to y-axis.

$$\int \int_{R} f(x,y) dx dy = \int_{x=x_0}^{x_1} \left[\int_{y=f_1(x)}^{f_2(x)} f(x,y) dy \right] dx$$

By change of order of integration, limits of y will be constants y_0 , y_1 and x varies between $g_1(y)$ and $g_2(y)$ which the boundary is intersected by the line through (x, y) and parallel to x-axis.

$$\int\int\limits_{B} f(x,y) dx dy = \int_{y=y_0}^{y_1} \left[\int_{x=g_1(y)}^{g_2(y)} f(x,y) dx \right] dy.$$

Change of order of integration:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals Double integrals Double integrals in polar form Change the order of integration Change of variables from cartesian to polar form Triple integrals

Procedure to change the order of integration:

- 1. Identify the variables for the limits.
- 2. Trace the curve.
- If we are evaluating with respect to y first, then take strip parallel to y-axis.
 If the evaluation is with respect to x first, then take strip parallel to x-axis.
- 4. Rotate the strip to 90⁰ in anti clock wise direction and identify the starting and ending points of the strip, which will be below and upper units of that variable.
- 5. Identify the limits for other variables for the region of consideration.
- Evaluate the double integral with new order of integration.

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals

Double integrals in
polar form

Change the order of

integration Change of variable

from cartesian to polar form

Cartesian coordinates to cylindrical coordinates:

Spherical coordinates

Example 1.3

Evaluate $\int_0^a \int_{x/a}^{\sqrt{x/a}} (x^2 + y^2) dy dx$ by change of order of integration.

Sol. Before change of order in integration: x : 0 to $a, y : \frac{x}{a}$ to

$$\sqrt{\hat{a}}$$
.
i.e., $x = 0, x = a$ and $x = ay, x = ay^2$.

$$y = x/a$$

$$(a, 1)$$

$$y^2 = x/a$$

$$(0, 0)$$

Prof. GVSR

Multip

ntegrals

Double integrals

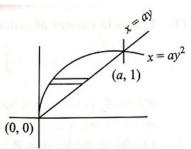
Double integrals in

Change the order of integration

Change of variables from cartesian to

polar form Triple integral

Cartesian coordinates to cylindrical coordinates: Cartesian After change of order of integration: $x : ay^2$ to ay, y : 0 to 1.



$$\therefore \int_{0}^{a} \int_{x/a}^{\sqrt{x/a}} (x^{2} + y^{2}) dy dx = \int_{0}^{1} \left[\int_{ay^{2}}^{ay} (x^{2} + y^{2}) dx \right] dy$$

$$= \int_{0}^{1} \left[\frac{x^{3}}{3} + xy^{2} \right]_{ay^{2}}^{ay} dy$$

$$= \int_{0}^{1} \left[\frac{a^{3}}{3} y^{3} + ay^{3} - a^{3} 3y^{6} - ay^{4} \right]$$

Prof. GVSR Deekshitulu

Multiple

integrals

Double integrals

Double integrals

polar form

Change the order of integration

Change of variables from cartesian to

Triple integra

coordinates to cylindrical coordinates:

Cartesian

coordinates to Spherical coordinates:

$$= \left[\frac{a^3}{3}\frac{y^4}{4} + \frac{a}{4}y^4 - \frac{a^3}{3}\frac{y^7}{7} - \frac{a}{5}y^5\right]_0^1$$

$$= \frac{a^3}{12} + \frac{a}{4} - \frac{a^3}{21} - \frac{a}{5}$$

$$= \frac{a^3}{28} + \frac{a}{20}.$$

Prof. GVSF Deekshitul

Multiple integrals

Double integrals polar form

Change the order of integration

integration

from cartesian to

Triple integral

coordinates to cylindrical

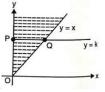
Cartesian coordinates to Spherical Example: Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{e^{-y}} \frac{e^{-y}}{y} dy dx$

Solution: The given integral is
$$\int_{x=0}^{\infty} \left[\int_{y=x}^{\infty} \frac{e^{-y}}{y} dy \right] dx$$

Note that we cannot evaluate the integral within the square brackets. Let us change the order of integration and see what happens.

As is given, the region is described by fixing x first, finding the limits of y and then changing x.

For a fixed x, y is changing from x to ∞ .



Draw the line y = x. Then x varies from $0 \text{ to } \infty$.

The region of integration is shaded in the figure.

Now let us change the order of integration. Suppose we fix y first. This, we shall do, by drawing line y=k.

Now x varies from 0 to y. To cover the region, then y has to vary from 0 to ∞ . The integral now

can be written as
$$\int_{y=0}^{\infty} \int_{x=0}^{y} \frac{e^{-y}}{y} dx. dy$$

This is equal to

$$\int_{y=0}^{\infty} \left[\int_{x=0}^{y} \frac{e^{-y}}{y} dx \right] dy = \int_{y=0}^{\infty} \left[\frac{e^{-y}}{y} . x \right]_{x=0}^{y} dy = \int_{y=0}^{\infty} \frac{e^{-y}}{y} . y . dy$$
$$= \int_{y=0}^{\infty} e^{-y} dy = \left[\frac{e^{-y}}{-1} \right]_{y=0}^{\infty} = 0 - (-1) = 1$$

(Notice that while we were unable to evaluate the double integral as was given, we could evaluate it, easily, by changing the order of integration).

Cartesian coordinates to

Cartesian coordinates to Spherical Example: By Changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{(4-y)}} (x+y) dx dy$

Solution: The given integral is
$$\int_{y=0}^{3} \int_{x=1}^{\sqrt{(4-y)}} (x+y) dx dy$$

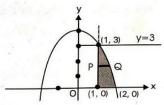
For a fixed y, x varies from 1 to $\sqrt{4-y}$ and then y varies from 0 to 3. Let us draw the curves x=1 and $x=\sqrt{(4-y)}$ (i.e.) x=1 and $x^2=4-y$. x=1 is a line parallel to y axis. $x^2=4-y$ is a curve symmetric about y-axis and (0,4) is a point on it. It meets x axis at $(\pm 2,0)$. For y>4 there are no points on the curve. x=1 and $x^2=4-y$ intersect at (1,3). In view of the above description, we identify that the region of integration is the shaded region.

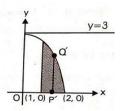
Let us fix x. For a fixed x, y varies from 0 to $4-x^2$. Then x varies from 1 to 2 to get the region of integration. The integral is $\int_{0}^{2} \int_{0}^{4-x^2} (x+y) \, dy \, dx$

Triple integra

Cartesian coordinates to cylindrical coordinates:

Cartesian coordinates





This is equal to

$$\int_{x=1}^{2} \left[xy + \frac{y^2}{2} \right]_{y=0}^{4-x^2} dx = \int_{x=1}^{2} \left[x(4-x^2) + \frac{(4-x^2)^2}{2} \right] dx$$

$$= \left[4\frac{x^2}{2} - \frac{x^4}{4} + \frac{1}{2} \left(16x + \frac{x^5}{5} - \frac{8x^3}{3} \right) \right]_{1}^{2}$$

$$= \left[8 - 4 + \frac{1}{2} (32 + \frac{32}{5} - \frac{64}{3}) \right] - \left[2 - \frac{1}{4} + \frac{1}{2} (16 + \frac{1}{5} - \frac{8}{3}) \right]$$

$$= \frac{241}{62}.$$

Prof. GVSF Deekshituli

Multiple integrals

polar form

Change the order of

Change the order integration

Change of variable from cartesian to

Triple integrals Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical Example : Evaluate by changing the order of integration $\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^2 dy dx}{\sqrt{y^4 - a^2 x^2}}$

Solution: Here y varies from \sqrt{ax} to a and x varies from 0 to a.

i.e., Limits are
$$y = \sqrt{ax}$$
 or $y^2 = ax$, $y = a$ and $x = 0$, $x = a$.

Hence it is clear that the integration is performed first w.r.t. 'y' and then w.r.t. 'x'.

Thus problem is first performed along the vertical strip PQ which starts from $y^2 = a^2$ to y = a.

Hence the region of integration is the dotted portion OABO.

Prof. GVSR Deekshitulu

Multiple integrals

Double integra

Change the order of integration

Change of variable from cartesian to

Triple integra

coordinates to cylindrical coordinates:

Cartesian coordinates to Spherical On changing the order of integration, we first integrate w.r.t. 'x' along a horizontal strip RS which extends from x = 0 to $x = y^2 / a$.

To cover the region, we then integrate w.r.t. 'y' from y = 0 to y = a.

Exercise:

- 1. By change of order of integration, evaluate $\int_0^a \int_x^a (x^2 + y^2) dy dx$.
- 2. By change of order of integration, evaluate $\int_0^a \int_{x^2/a}^{2a-x} xy^2 dy dx.$

Change of variables in double integrals:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals
Double integrals in
polar form
Change the order of
integration

Change of variables from cartesian to polar form

Triple integra

coordinates to cylindrical coordinates: Cartesian coordinates to Spherical Change of variables from cartesian (x, y) to polar form (r, θ) :

Consider the double integral in the region R, $\int \int_R f(x,y) dx dy$ in the xy plane.

Put
$$x = r \cos \theta$$
 and $y = r \sin \theta$, then
$$\int \int_{R} f(x, y) dx dy = \int \int_{R^*} f(r \cos \theta, r \sin \theta) |J| dr d\theta$$

$$= \int \int_{R^*} f(r \cos \theta, r \sin \theta) r dr d\theta,$$

where J is the Jacobian and

$$J = \frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r.$$

Prof. GVSR Deekshitulu

Multipl integra

Double integrals in polar form

Change the order of integration

Change of variables from cartesian to

polar form

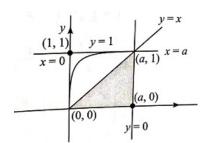
Cartesian coordinates to cylindrical coordinates:

coordinates

Example 1.4

Evaluate $\int_0^1 \int_y^a \frac{x}{x^2+y^2} dxdy$ by changing into polar coordinates.

Sol.



The region of integration bounded by y = 0 to y = 1 and x = y to x = a.

From the figure, it is located in first quadrant only.

coordinates Spherical coordinates: Changing into polar coordinates by putting $x = r \cos \theta$, $y = r \sin \theta$ and $dxdy = rdrd\theta$.

The limits for r and θ are obtained by

$$x = y \Rightarrow r \cos \theta = r \sin \theta \Rightarrow \tan \theta = 1 \text{ or } \theta = \frac{\pi}{4}.$$

$$X = a \Rightarrow r \cos \theta = a \Rightarrow r = \frac{a}{\cos \theta}.$$

 \therefore r varies from 0 to $\frac{a}{\cos \theta}$, θ varies from 0 to $\frac{\pi}{4}$

$$\therefore \int_0^1 \int_y^a \frac{x}{x^2 + y^2} dx dy = \int_0^{\pi/4} \int_0^{a/\cos\theta} \frac{r \cos\theta}{r^2} r dr d\theta$$

$$= \int_0^{\pi/4} \int_0^{a/\cos\theta} \cos\theta dr d\theta$$

$$= \int_0^{\pi/4} [r]_0^{a/\cos\theta} \cos\theta d\theta$$

$$= \int_0^{\pi/4} a d\theta = \frac{a\pi}{4}$$

Prof. GVSF Deekshitul

Multiple integrals

Double integrals in polar form

Change the order of

Change of variables from cartesian to

polar form Triple integrals

Cartesian coordinates to cylindrical coordinates:

coordinates to Spherical coordinates: Example: Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x \, dy \, dx}{\sqrt{x^2+y^2}}$ by changing into polar coordinates.

Solution: The region of integration is y = 0, $y = \sqrt{2x - x^2}$, x = 0, x = 2

i.e.,
$$y = 0, x^2 + y^2 = 2x, x = 0, x = 2$$
 ... (1)

We know that $x^2 + y^2 = 2x$ represents the circle with centre (1,0) and radius 1.

In polar co-ordinates the same region is bounded by

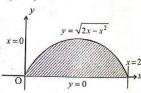
the curves $r = 0, r = 2\cos\theta, \theta = 0$ and $\theta = \pi/2$

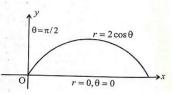
[By putting $x = r\cos\theta$, $y = r\sin\theta$ in (1), we get

$$y = 0 \Rightarrow r \sin \theta = 0 \Rightarrow \theta = 0 \quad (\because r \neq 0)$$

$$x = 0 \Rightarrow r \cos \theta = 0 \Rightarrow \theta = \pi/2 \quad (\because r \neq 0)$$

$$y = \sqrt{2x - x^2} \Rightarrow x^2 + y^2 = 2x \Rightarrow r^2 = 2r\cos\theta$$
$$\Rightarrow r = 2\cos\theta$$





Triple integra

Cartesian coordinates to cylindrical coordinates:

coordinates to Spherical coordinates:

$$\int_{0}^{2\sqrt{2x-x^{2}}} \int_{0}^{x} \frac{x \, dy \, dx}{\sqrt{x^{2}+y^{2}}} = \int_{\theta=0}^{\pi/2} \int_{r=0}^{2\cos\theta} \frac{(r\cos\theta)}{r} \cdot r \, dr \, d\theta \quad [\because dx \, dy = r \, dr \, d\theta]$$

$$= \int_{0}^{\pi/2} \int_{0}^{2\cos\theta} r \cos\theta \, dr \, d\theta = \int_{0}^{\pi/2} \cos\theta \left(\frac{r^{2}}{2}\right)_{0}^{2\cos\theta} \, d\theta$$

$$= 2 \int_{0}^{\pi/2} \cos^{3}\theta \, d\theta = 2 \cdot \frac{2}{3} = \frac{4}{3}$$

Cartesian coordinates Spherical coordinates:

Exercise

- 1. Evaluate $\int_0^2 \int_0^{\sqrt{2x-x^2}} (x^2+y^2) dxdy$ by changing into polar coordinates.
- 2. Evaluate $\int_0^\infty \int_0^\infty \frac{dxdy}{(x^2+y^2+a^2)^2}$ using polar coordinates.

Triple integrals:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multip

integrals

Double integrals

Double integrals in polar form

Change the order of integration

Change of variables from cartesian to polar form

Triple integrals

Cartesian
coordinates to
cylindrical
coordinates:
Cartesian
coordinates to
Spherical

Consider a region v in three dimensional xyz-space. Let f(x, y, z) be a continuous function of three variables over the region v.

1. Let f(x, y, z) be a continuous function over a regular solid v defined by a < x < b, c < y < d, e < z < f. Then

$$\iint\limits_V f(x,y,z) dx dy dz = \int_a^b \int_c^d \int_e^f f(x,y,z) dz dy dx.$$

2. If f(x, y, z) be continuous function defined by $a < x < b, f_1(x) < y < f_2(x), g_1(x, y) < z < g_2(x, y)$ then $\int \int \int f(x, y, z) dx dy dz = \int_a^b \int_{f_1(x)}^{f_2(x)} \int_{g_1(x, y)}^{g_2(x, y)} f(x, y, z) dz dy dx$.

Prof. GVSR Deekshitulu

Multip

Double integrals in polar form
Change the order of integration
Change of variables from cartesian to polar form

Triple integrals

Cartesian
coordinates to
cylindrical
coordinates:
Cartesian
coordinates to
Spherical
coordinates:

Example 1.5

Evaluate
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$$
.

Sol. We have
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}(x/a)$$

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dz}{\sqrt{(\sqrt{1-x^{2}-y^{2}})^{2}-z^{2}}} dydx$$

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sin^{-1} \left[\frac{z}{\sqrt{1-x^{2}-y^{2}}} \right]_{0}^{\sqrt{1-x^{2}-y^{2}}} dydx$$

Triple integrals

$$= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \left[\sin^{-1}(1) - \sin^{-1}(0) \right] dy dx$$

$$= \int_{0}^{1} \frac{\pi}{2} [y]_{0}^{\sqrt{1-x^{2}}} dx$$

$$= \frac{\pi}{2} \int_{0}^{1} \sqrt{1-x^{2}} dx$$

$$= \frac{\pi}{2} \left[\frac{x}{2} \sqrt{1-x^{2}} + \frac{1}{2} \sin^{-1} \frac{x}{1} \right]_{0}^{1}$$

$$= \frac{\pi}{2} \left[\frac{1}{2} \cdot \frac{\pi}{2} \right]$$

$$= \frac{\pi^{2}}{1}.$$

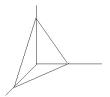
,

Triple integrals

Cartesian
coordinates to
cylindrical
coordinates:
Cartesian
coordinates to
Spherical
coordinates:

Example 1.6

Evaluate $\int\limits_V \int\limits_V xyz dx dy dz$ where v is bounded by the coordinate planes and the plane x+y+z=1.



Sol. The region is bounded by the planes x = 0, y = 0, z = 0 and the plane x + y + z = 1.

Triple integrals

coordinates to cylindrical coordinates:
Cartesian coordinates to Spherical

i.e., z varies from 0 to 1 - x - y y varies from 0 to 1 - x [in xy-plane z = 0 i.e., x + y = 1] x varies from 0 to 1.

$$\int \int \int xyz dx dy dz = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} xyz dz dy dx$$

$$= \int_0^1 \int_0^{1-x} xy \left[\frac{z^2}{2} \right]_0^{1-x-y} dy dx$$

$$= \frac{1}{2} \int_0^1 \int_0^{1-x} xy(1-x-y)^2 dy dx$$

$$= \frac{1}{2} \int_0^1 \int_0^{1-x} x[y(1-x)^2 + y^3 - 2y^2(1-x)^2] dy dx$$

Change the order of integration

Change of variable

polar form

Triple integrals

iripie integrali

coordinates t cylindrical coordinates: Cartesian

Cartesian coordinates to Spherical coordinates:

$$= \frac{1}{2} \int_0^1 x \left[(1-x)^2 \frac{y^2}{2} + \frac{y^4}{4} - \frac{2y^3}{3} (1-x) \right]_0^{1-x} dx$$

$$= \frac{1}{2} \int_0^1 x \left[\frac{(1-x)^4}{2} + \frac{(1-x)^4}{4} - \frac{2(1-x)^4}{3} \right] dx$$

$$= \frac{1}{2} \int_0^1 \frac{1}{12} x (1-x)^4 dx = \frac{1}{24} \left[x \frac{(1-x)^5}{5} - (1) \frac{(1-x)^6}{(6)(5)} \right]_0^1$$

$$= \frac{1}{24} \cdot \frac{1}{30} = \frac{1}{720}$$

Triple integrals

Example : Evaluate

Solution: Given integral
$$= \int_{0}^{\pi/2} \int_{0}^{a\sin\theta} r \begin{bmatrix} (a^{2}-r^{2})/2 \\ \int_{0}^{1} dz \end{bmatrix} dr \ d\theta = \int_{0}^{\pi/2} \int_{0}^{a\sin\theta} r \left(\frac{a^{2}-r^{2}}{2} \right) dr \ d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \int_{0}^{a\sin\theta} (a^{2}r - r^{3}) dr \ d\theta = \frac{1}{2} \int_{0}^{\pi/2} \left(\frac{a^{2}r^{2}}{2} - \frac{r^{4}}{4} \right)_{0}^{a\sin\theta} d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \left(\frac{a^{2} \cdot a^{2} \sin^{2}\theta}{2} - \frac{a^{4} \sin^{4}\theta}{4} \right) d\theta$$

$$= \frac{a^{4}}{4} \int_{0}^{\pi/2} \sin^{2}\theta \ d\theta - \frac{a^{4}}{8} \int_{0}^{\pi/2} \sin^{4}\theta \ d\theta$$

$$= \frac{a^{4}}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} - \frac{a^{4}}{8} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$= \frac{\pi a^{4}}{16} - \frac{3\pi a^{4}}{128} = \frac{8\pi a^{4} - 3\pi a^{4}}{128} = \frac{5\pi a^{4}}{128}$$

128

Prof. GVSF Deekshitulu

Multiple

integral

Double integrals in

polar form
Change the order of

Change of variables from cartesian to

Triple integrals

Cartesian coordinates t cylindrical

Cartesian coordinates to Spherical coordinates:

Example: Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x+y+z} \int_{0}^{x+y+z} dz dy dx.$$

Prof. GVSF Deekshitulu

Multiple

integrals

Double integrals in

polar form Change the order

Change of variable from cartesian to

Triple integrals

coordinates cylindrical coordinates Cartesian coordinates Spherical

$$= \int_{0}^{\log 2} e^{x} \left[xe^{2x} - e^{x} - e^{2x} + 1 + e^{x} \right] dx$$

$$= \int_{0}^{\log 2} e^{x} (xe^{2x} - e^{2x} + 1) dx = \int_{0}^{\log 2} (xe^{3x} - e^{3x} + e^{x}) dx$$

$$= \left[x \cdot \frac{e^{3x}}{3} - \int 1 \cdot \frac{e^{3x}}{3} dx - \frac{e^{3x}}{3} + e^{x} \right]_{0}^{\log 2}$$

$$= \left[\frac{x}{3} e^{3x} - \frac{e^{3x}}{9} - \frac{e^{3x}}{3} + e^{x} \right]_{0}^{\log 2}$$

$$= \frac{\log 2}{3} e^{3\log 2} - \frac{e^{3\log 2}}{9} - \frac{e^{3\log 2}}{3} + e^{\log 2} + \frac{1}{9} + \frac{1}{3} - 1$$

$$= \frac{8}{3} \log 2 - \frac{8}{9} - \frac{8}{3} + 2 + \frac{1}{9} + \frac{1}{3} - 1 = \frac{8}{3} \log 2 - \frac{19}{9}$$

Triple integrals

: Evaluate the triple integral $\iiint xy^2z \,dx \,dy \,dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. Solution: Equation of sphere is $x^2 + y^2 + z^2 = a^2$ The limits of integration are :

$$z = 0$$
 to $\sqrt{a^2 - x^2 - y^2}$, $y = 0$ to $\sqrt{a^2 - x^2}$ and $x = 0$ to a .

$$\iiint xy^2 z dx dy dz = \int_0^a \int_0^{\sqrt{a^2 - x^2}} \int_0^{\sqrt{a^2 - x^2 - y^2}} xy^2 z dz dy dx$$

$$= \int_0^a \int_0^{\sqrt{a^2 - x^2}} xy^2 \left(\frac{z^2}{2}\right)_0^{\sqrt{a^2 - x^2 - y^2}} dx dy$$

$$= \frac{1}{2} \int_0^a \int_0^{\sqrt{a^2 - x^2}} xy^2 (a^2 - x^2 - y^2) dy dx$$

$$= \frac{1}{2} \int_0^a x \int_0^{\sqrt{a^2 - x^2}} \left\{ (a^2 - x^2)y^2 - y^4 \right\} dy dx$$

MULTI-VARIABI F **CALCULUS**

Triple integrals

$$= \frac{1}{2} \int_{0}^{a} x \left[\left(\frac{a^{2} - x^{2}}{3} \right) y^{3} - \frac{y^{5}}{5} \right]_{0}^{\sqrt{a^{2} - x^{2}}} dx$$

$$= \frac{1}{2} \int_{0}^{a} x \left[\left(\frac{a^{2} - x^{2}}{3} \right) (a^{2} - x^{2})^{3/2} - \frac{(a^{2} - x^{2})^{5/2}}{5} \right] dx$$

$$= \frac{1}{2} \int_{0}^{a} x (a^{2} - x^{2})^{5/2} \left(\frac{1}{3} - \frac{1}{5} \right) dx$$

$$\frac{1}{2} \int_{0}^{a} x(a^{2} - x^{2})^{3/2} \left(\frac{1}{3} - \frac{1}{5} \right)^{ax}$$

$$= \frac{1}{15} \int_{0}^{a} x(a^{2} - x^{2})^{5/2} dx \quad [Put \ a^{2} - x^{2} = t \Rightarrow -2xdx = dt]$$

$$=\frac{1}{100}\int_{0}^{10}\left(-\frac{1}{2}\right)t^{5/2}dt=-\frac{1}{30}\left(\frac{t^{7/2}}{7/2}\right)^{0}_{2}=-\frac{1}{30}\left(\frac{2}{7}\right)(-a^{7})=\frac{a'}{105}.$$

Triple integrals

Cartesian coordinates to cylindrical

Cartesian coordinates Spherical

Exercise:

- 1. Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} \frac{dzdydx}{(1+x+y+z)^3}$.
- 2. Evaluate $\int_{V} \int_{V} (2x + y) dx dy dz$ where v is the closed region bounded by the cylinder $z = 4 x^2$ and the planes x = 0, x = 2, y = 0, y = 2 and z = 0.

Cylindrical coordinates system

MULTI-VARIABLE CALCULUS

Prof. GVSF Deekshitulu

Multiple

ntegral

Double integrals i

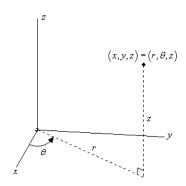
polar form
Change the order

Change of variable from cartesian to

from cartesian to polar form
Triple integrals

Cartesian coordinates to cylindrical coordinates:

Cartesian coordinates to Spherical



The general limits of r, θ and z are $r \ge 0$, $\theta \in [0, 2\pi]$ and z = z.

Cartesian coordinates to cylindrical coordinates:

MULTI-VARIABLE **CALCULUS**

coordinates to cylindrical coordinates:

The change of cartesian coordinates (x, y, z) to cylindrical coordinates (r, θ, z) by the transformation

$$x = r \cos \theta, y = r \sin \theta \text{ and } z = z,$$

then $\int \int \int \int f(x, y, z) dx dy dz = \int \int \int \int F(r, \theta, z) |J| dr d\theta dz$
where

$$J = \frac{\partial(x, y, z)}{\partial(r, \theta, z)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix}$$
$$= \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

$$\therefore \int \int_{V} \int f(x,y,z) dx dy dz = \int \int_{V} \int F(r,\theta,z) r dr d\theta dz$$

Spherical coordinates system

MULTI-VARIABLE CALCULUS

Prof. GVSF Deekshitult

Multiple

ntegra

Double integrals i

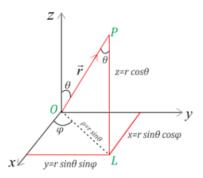
polar form Change the order

Change of variable

Triple integrals

Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical coordinates:



The general limits of r, θ and ϕ are $r \ge 0, 0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.

Spherical coordinates system

MULTI-VARIABLE CALCULUS

Prof. GVSF Deekshitult

Multiple

integral

Double integrals

Double integrals

polar form
Change the order

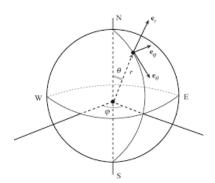
integration Change of variable

from cartesian to polar form

Triple Integr

coordinates to cylindrical

Cartesian coordinates to Spherical coordinates:



Change of variables from cartesian coordinates to spherical coordinates:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals Double integrals in polar form Change the order of integration Change of variables from cartesian to polar form

Triple integrals Cartesian coordinates to cylindrical coordinates:

Cartesian coordinates to Spherical coordinates: Let (x, y, z) denotes cartesian and (r, θ, π) denoted spherical coordinates by the trains formation.

$$x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta,$$

then $\int \int \int f(x, y, z) dxdydz = \int \int \int F(r, \theta, \phi) |J| drd\theta d\phi$
where

$$J = \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{vmatrix}$$
$$= \begin{vmatrix} \sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\ \sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \phi \\ \cos \theta & -r \sin \theta & 0 \end{vmatrix}$$
$$= r^2 \sin \theta$$

$$\therefore \int \int \int \int f(x,y,z) dx dy dz = \int \int \int \int F(r,\theta,\phi) r^2 \sin \theta dr d\theta d\phi.$$

Example 1.7

Evaluate $\int \int \int \frac{dxdydz}{x^2+y^2+z^2}$, taken over the volume bounded by the sphere $x^2+y^2+z^2=a^2$.

Sol. Changing into spherical polar coordinates by putting $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ and $dxdydz = drd\theta d\phi$.

In integrand $x^2 + y^2 + z^2 = r^2$.

Limits: r varies from 0 to a, θ varies from 0 to π , ϕ varies from 0 to 2π .

$$\int \int \int \frac{dxdydz}{x^2 + y^2 + z^2} = \int_0^{2\pi} \int_0^{\pi} \int_0^a \frac{r^2 \sin \theta dr d\theta d\phi}{r^2}$$
$$= \int_0^{2\pi} \int_0^{\pi} \int_0^a \sin \theta dr d\theta d\phi$$
$$= \int_0^{2\pi} \int_0^{\pi} \int_0^a \sin \theta dr d\theta d\phi$$

Example 1.8

Using cylindrical coordinators, evaluate $\int \int\limits_V \int\limits_V (x^2+y^2+z^2) dx dy dz \text{ taken over the region} \\ 0 < z < x^2+y^2 < 1.$

Sol. The region is given by z varies from 0 to 1 and $x^2 + y^2 = 1$.

Changing into cylindrical coordinates by putting $x = r \cos \theta$, $y = r \sin \theta$, z = z and $dxdydz = rdrd\theta$. In the integrand, $x^2 + y^2 + z^2 = r^2 + z^2$.

Limits: z varies from 0 to 1 and the cylinder is above xy-plane and its base is circle. So r varies from 0 to 1 and θ varies from 0 to 2π .

integration
Change of variables

from cartesian to polar form

Cartesian

coordinates cylindrical

Cartesian coordinates to Spherical $\therefore \int \int \int (x^2 + y^2 + z^2) dx dy dz$ $=\int_{0}^{2\pi}\int_{0}^{1}\int_{0}^{1}(z^{2}+r^{2})rdzdrd\theta$ $=\int_{0}^{2\pi}\int_{0}^{1}\left[\frac{z^{3}}{3}+r^{2}z\right]_{0}^{1}rdrd\theta$ $= \int_0^{2\pi} \int_0^1 \left[\frac{1}{3} + r^2 \right] r dr d\theta$ $= \int_0^{2\pi} \left[\frac{r^2}{6} + \frac{r^4}{4} \right] d\theta = \frac{5}{12} [\theta]_0^{2\pi} = \frac{5\pi}{6}.$

Prof. GVSR Deekshitulu

Multiple integrals Double integrals in polar form Change the order of integration

Change of variables from cartesian to polar form Triple integrals Cartesian

Cartesian coordinates to Spherical

Exercise:

- 1. Changing into spherical polar coordinates, evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} \int_0^{\sqrt{a^2-x^2-y^2}} dz dy dx.$ Hint: All the given limits in first(or Positive) octant, so
 - $r: 0 \rightarrow a, \theta: 0 \rightarrow \frac{\pi}{2}, \phi: 0 \rightarrow \frac{\pi}{2}.$
- 2. Evaluate $\int \int_V \int \frac{dxdydz}{(x^2+y^2+z^2)^{3/2}}$ where v is the region bounded by between two spheres $x^2+y^2+z^2=a^2$ and $x^2+y^2+z^2=b^2$. [Hint: No restrictions like first quadrants. So $r: a \to b, \theta: 0 \to \pi, \phi: 0 \to 2\pi$].
- 3. Evaluate $\int \int_V \int z(x^2+y^2) dx dy dz$ where v is the volume bounded by the cylinder $x^2+y^2=1$ and the planes z=2 and z=3 by changing it to cylindrical coordinates. [Hint: $z:2\to3$, and its base is circle, so

Area enclosed by a curve:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple
integrals
Double integrals
Double integrals in
polar form
Change the order of
integration
Change of variables
from cartesian to
polar form
Triple integrals
Cartesian
coordinates to
coordinates:
Cartesian
Cartesian

The area of the region bounded by the curves is given by $A = \int \int dx dy$.

Example 1.9

Find the area lying between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

Sol. The intersection points are obtained by substituting $x = \frac{y^2}{4\pi}$ in $x^2 = 4ay$, we get

$$\frac{y^4}{16a^2} = 4ay \Rightarrow y^4 = 64a^3y \Rightarrow y(y^3 - 64a^3) = 0$$

$$\therefore y = 0 \text{ or } y = 4a.$$

If
$$y = 0, x = 0$$
 and if $y = 4a, x = 4a$.

The points of intersection with the curves are (0,0) and (4a,4a).

Taking strip parallel to x-axis(or you can select y-axis also), then (from fig) $x:\frac{y^2}{4a}$ to $\sqrt{4ay}$, y:0 to 4a.

Prof. GVSR Deekshitulu

Multip

integrals

Double integrals

Double integrals in

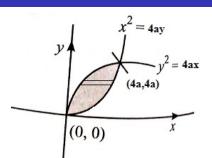
Double integrals in polar form

integration
Change of variables

Change of variables from cartesian to polar form

Cartesian coordinates to

Cartesian coordinates to Spherical coordinates:



Area =
$$\int \int dx dy = \int_0^{4a} \int_{y^2/4a}^{\sqrt{4ay}} dx dy$$

= $\int_0^{4a} [x]_{y^2/4a}^{\sqrt{4ay}} dy = \int_0^{4a} \left[\sqrt{4ay} - \frac{y^2}{4a} \right] dy$
- $\left[\sqrt{4a} \frac{y^{3/2}}{4a} - \frac{y^3}{4a} \right]_0^{4a} - \frac{2\sqrt{4a}}{4a} (4a)^{3/2} - \frac{y^3}{4a}$

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals in polar form

integration

Change of variables

from cartesian to polar form Triple integrals

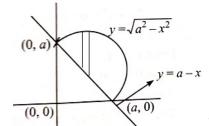
Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical

Example 1.10

Find the area lying between the circle $x^2 + y^2 = a^2$ and the line x + y = a in the first quadrant.

Sol. The intersection points are obtained by substituting y = a - x in $x^2 + y^2 = a^2$, we get $x^2 + (a - x)^2 = a^2 \Rightarrow 2x^2 - 2ax = 0 \Rightarrow x = 0$ or x = a. If x = 0, y = a and if x = a, y = 0. The points of intersection with the curves are (a, 0) and (0, a) which is shown in fig.



Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical Taking strip parallel to y-axis, then y : a - x to $\sqrt{a^2 - x^2}$, x : 0 to a.

Area =
$$\int \int dx dy = \int_0^a \int_{a-x}^{\sqrt{a^2 - x^2}} dy dx$$

= $\int_0^a [y]_{a-x}^{\sqrt{a^2 - x^2}} dx = \int_0^a \left[\sqrt{a^2 - x^2} - (a - x) \right]_{a-x}^a$
= $\left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_0^a$
= $\frac{a^2}{2} \cdot \frac{\pi}{2} - \left(a^2 - \frac{a^2}{2} \right) = \frac{\pi a^2}{4} - \frac{a^2}{2}$
= $\frac{a^2}{4} [\pi - 2]$.

Exercise:

MULTI-VARIABLE CALCULUS

Prof. GVSF Deekshitult

Multip

integrals

Double integrals

Double integrals in polar form

Change the order of integration

Change of variables from cartesian to

Triple integra Cartesian coordinates t cylindrical

Cartesian coordinates to Spherical

- 1. Find the area bounded by the curves $y = x^3$ and y = x.
- 2. Find the area enclosed by the pair of curves y = x and $y = 4x x^2$.
- 3. Find the area of the cardioid $r = a(1 + \cos \theta)$. [Hint: $r : 0 \rightarrow a(1 + \cos \theta)$; $\theta : 0 \rightarrow \pi$. Area= $\int \int dxdy = \int \int rdrd\theta$.

Volume as triple integral:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals Double integrals in polar form Change the order of integralion Change of variables from cartesian to

Triple integrals
Cartesian
coordinates to
cylindrical
coordinates:

Cartesian coordinates to Spherical coordinates: Suppose a solid in three dimension given by planes parallel to the coordinate planes into rectangular parallelepiped *dv* of volume is *dxdydz*.

 \therefore The volume of solid is $\iint_V \int_V dx dy dz$.

Example 1.11

Find the volume under the parabolic $x^2 + y^2 + z = 16$ over the rectangle $x \pm a$, $y \pm b$.

Sol. Limits: z : 0 to $16 - x^2 - y^2$, y : -b to b, x : -a to a.

Double integrals

Double integrals in

polar form

integration
Change of variables

from cartesian to polar form

Cartesian

coordinates t cylindrical coordinates:

Cartesian coordinates to Spherical coordinates: Volume = $\iint \int dx dy dz = \int_{a}^{a} \int_{b}^{b} \int_{a}^{16-x^2-y^2} dx dy dz$ $= \int_a^a \int_b^b (16 - x^2 - y^2) dy dx$ $= \int_{-a}^{a} \left[(16 - x^2)y - \frac{y^3}{3} \right]^{b}$ $= \int_{-a}^{a} \left[2b(16 - x^2) - \frac{2b^3}{3} \right] dx$ $= \left[2b\left(16x - \frac{x^3}{3}\right) - \frac{2b^3}{3}x\right]^a$ $=2b\left[32a-\frac{2a^3}{3}\right]-\frac{4}{3}ab^3=\frac{4ab}{3}[48-a^2-b^2].$

Prof. GVSR Deekshitulu

Multiple integrals

Double integrals in polar form

integration
Change of variables from cartesian to polar form

Triple integrals
Cartesian
coordinates to

Cartesian coordinates to Spherical

Example 1.12

Find the volume of the solid cut off from the sphere $x^2 + y^2 + z^2 = a^2$ by the cylinder $x^2 + y^2 = ax$.

Sol. Given region is $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 = ax$.

Changing into cylindrical coordinates by putting

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ and $dxdydz = rdrd\theta$.

$$x^2 + y^2 + z^2 = a^2 \Rightarrow r^2 + z^2 = a^2$$
 and

$$x^2 + y^2 = ax \Rightarrow r^2 = ar\cos\theta \Rightarrow r = a\cos\theta.$$

Limits: we can understand from figure.

$$z:-\sqrt{a^2-r^2}\to\sqrt{a^2-r^2}, r:0\to a\cos\theta, \theta:0\to\pi.$$

Volume
$$= \int \int \int dx dy dz = \int_0^{\pi} \int_0^{a\cos\theta} \int_{-\sqrt{a^2 - r^2}}^{\sqrt{a^2 - r^2}} r dz dr d\theta$$

$$= \int_0^{\pi} \int_0^{a\cos\theta} r[z]_{-\sqrt{a^2 - r^2}}^{\sqrt{a^2 - r^2}} dr d\theta$$

Prof. GVSR Deekshitulu

Multiple

Double integrals in polar form

Change the order of integration

Change of variables from cartesian to polar form

Cartesian coordinates to cylindrical

coordinates to Spherical coordinates:

$$= \int_0^\pi \int_0^{a\cos\theta} 2r \sqrt{a^2 - r^2} dr d\theta \text{ Put } a^2 - r^2 = t^2$$

$$-2r dr = 2t dt. \text{ Limits: } r \to a\cos\theta \Rightarrow t \to a\sin\theta \text{ and } r \to 0 \Rightarrow t \to a$$

$$\therefore \text{ Volume} = -\int_0^\pi \int_a^{a\sin\theta} t(2t)dtd\theta \\
= -\int_0^\pi \left[\frac{2t^3}{3}\right]_a^{a\sin\theta} d\theta \\
= -\int_0^\pi \left[\frac{2a^3}{3}\sin^3\theta - \frac{2a^3}{3}\right] d\theta \\
= -\frac{2a^3}{3}\int_0^\pi \left[\frac{3\sin\theta - \sin 3\theta}{4} - 1\right] d\theta \\
= -\frac{2a^3}{3}\left[\frac{-3}{4}\cos\theta + \frac{1}{12}\cos 3\theta - \theta\right]_0^\pi \\
= -\frac{2a^3}{3}\left[\frac{6}{4} - \frac{2}{12} - \pi\right]$$

Exercise:

MULTI-VARIABLE CALCULUS

Prof. GVSR Deekshitulu

Multiple integrals Double integrals in polar form Change the order of

integration
Change of variables from cartesian to polar form
Triple integrals

Cartesian coordinates to cylindrical coordinates:

Cartesian coordinates to Spherical 1. Find the volume of tetra hedron bounded by the planes x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. Hint: using triple integration.

- 2. Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integration.
 - Hint: Also use spherical polar coordinates.
- 3. Find the volume of the solid enclosed by the surface z = 0; $x^2 + y^2 = cz$ and $x^2 + y^2 = 2ax$.

Hint: Using cylindrical coordinates:

 $z: 0 \to \frac{r^2}{c}, r: 0 \to 2a\cos\theta, \theta: 0 \to \pi$ because entire cylinder exists in right side.

Cartesian coordinates to Spherical coordinates:

Multiple Integrals & applications of integration

1.
$$\iint x^2 y^2 dxdy$$
 over the circle $x^2 + y^2 = 1$ is

- a) Π/2
- b) Π/24

c) II/36

d)None

2.
$$\int_{0}^{1} \int_{0}^{x^2} e^{y/x} dy dx =$$

- a)1
- b)1/2

c)1/4

d)None

$$3. \int_{-1}^{2} \int_{x^2}^{x+2} dy dx =$$

- a)9/2
- b)9/4

c)3/2

d)None

$$4. \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dx dy dz =$$

a) $(e-1)^2$ b) e^{-1}

- c)(e-1)/2
- d)e-1/2
- 5. The limits of integration after the change of order of integration of $\int_{-\infty}^{2x^2} f(x, y) dy dx$
- a)x=3 $y^{1/2}$ to 2,y=0 to 8 b)x= y^3 to 2,y=0 to 2 c)x=0 to y^3 , v=0 to 2 d)None
- 6. $\iint x^2 y^3 dx dy$ over the rectangle 0<=x<=1 and 0<=y<=3 is

c)29/4

- a) 81/4
- b)27/8

d)None

Prof. GVSI Deekshitul

Multiple

integral

Double integrals in polar form

Change the order

Change of variable from cartesian to

polar form

Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical coordinates: 7. $\iiint (z^5 + z) dx dy dz$ over the volume of cube bounded by the planes x=y=z=9 is

a)0 b)4 Π

c)8 П/3

d)None

8. $\iint y dx dy$ over the area bounded by x=0,y=x²,x+y=2 in the first quadrant is

a)8/15 b)16/15 c)4/15

5 d)None

9. The value of the double integral $\int_{0}^{2} \int_{0}^{2} (4 - y^{2}) dy dx$

a)16

b)16/3

c)8/3

d)None

10. $\iint\limits_A dA$, where A is the region in first quadrant bounded by the lines y=x,y=2x,x=1 and

x=2is

a)3

b)3/2

c)3/8 d)None

11. The length of the curve $y=x^{3/2}$ from x=0to x=4/3 is

a)26/27

b)36/27

c)46/27

d)56/27

Cartesian coordinates to Spherical

12. The length of the arc x=t,y=t from t=0 to t=4 is

a)
$$\sqrt{2}$$
 b) $2^{3/2}$ c) $3\sqrt{2}$ d) $4\sqrt{2}$

13. The length of the arc of the curve $x = e^t \sin t$, $y = e^t \cos t$ from t = 0 to $t = \pi/2$

14. The perimeter of the loop of the curve $3av^2 = x(x-a)^2$ is

c)4a/
$$\sqrt{3}$$
 d)2a/ $\sqrt{3}$

15. The perimeter of the curve r=a(sin t+cos t), $0 \le t \le \Pi$ is

b)
$$\sqrt{2}$$
 a Π c)3a Π d) $\sqrt{3}$ a Π

a)
$$4/3 \Pi r^2 h$$

b)
$$2/3 \Pi r^2 h$$

c)
$$1/3 \Pi r^2 h$$

17. The volume of the paraboloid generated by revolving the parabola y2= 4ax about the xaxis from x=0 to x=h

Prof. GVSF Deekshituli

Multiple

Double integrals in

polar form

Change the order of

integration
Change of variables

from cartesian to polar form

Cartesian coordinates to cylindrical

Cartesian coordinates to Spherical coordinates: 18.The volume of the solid formed by revolving the ellipse $x^2/a^2+y^2/b^2=1$ about the major axis is

a)2/3 $\Pi a^2 b$ b)2/3 Πab^2 c)4/3 $\Pi a^2 b$ d)4/3 Πab^2

19.The volume of the solid generated by revolving the cardioid r =a(1+cos t),0<=t<= Π is

a) $\Pi/3a^3$ b) $2\ \Pi/3\ a^3$ c) $4\ \Pi/3\ a^3$ d) $8\ \Pi/3\ a^3$

20. The volume of the solid generated by revolving the area enclosed by y=x,y=0 and x=a about the x-axis is

a) Πa^3 b)2 Πa^3 c)2/3 Πa^3 d) $\Pi/3 a^3$

Key: 1b 2.b 3.a 4. c 5.a 6.d 7.a 8.b 9.d 10.b

11.d 12.d 13.d 14. c 15.b 16.c 17.b 18.c 19.b 20.d