1. Award of B.Tech. Degree
A student will be declared eligible for the award of the B.Tech. Degree if he fulfils the following academic regulations:

i. Pursue a course of study for not less than four academic years and in not more than eight academic years.

ii. Register for 220 credits and secure all 220 credits

2. Students, who fail to fulfil all the academic requirements for the award of the degree within eight academic years from the year of their admission, shall forfeit their seat in B.Tech course and their admission is cancelled.

3. Courses of study
The courses of study are offered at present for specialization for the B. Tech. Course:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aeronautical Engineering.</td>
</tr>
<tr>
<td>2.</td>
<td>Biotechnology.</td>
</tr>
<tr>
<td>3.</td>
<td>Civil Engineering.</td>
</tr>
<tr>
<td>5.</td>
<td>Computer Science and System Engineering.</td>
</tr>
<tr>
<td>6.</td>
<td>Electrical and Electronics Engineering.</td>
</tr>
<tr>
<td>11.</td>
<td>Information Technology.</td>
</tr>
<tr>
<td>12.</td>
<td>Mechanical Engineering.</td>
</tr>
</tbody>
</table>

and any other course as approved by the authorities of the University from time to time.
4. Credits

<table>
<thead>
<tr>
<th></th>
<th>I Year</th>
<th></th>
<th>Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Periods / Week</td>
<td>Credits</td>
<td>Periods / Week</td>
<td>Credits</td>
</tr>
<tr>
<td>Theory</td>
<td>03</td>
<td>06</td>
<td>03</td>
<td>04</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>04</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Practical</td>
<td>03</td>
<td>04</td>
<td>03</td>
<td>02</td>
</tr>
<tr>
<td>Drawing</td>
<td>06</td>
<td>06</td>
<td>03</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06</td>
<td>04</td>
</tr>
<tr>
<td>Seminar</td>
<td>--</td>
<td>--</td>
<td>6</td>
<td>02</td>
</tr>
<tr>
<td>Project</td>
<td>--</td>
<td>--</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

5. Distribution and Weightage of Marks

i. The performance of a student in each semester / I year shall be evaluated subject-wise with a maximum of 100 marks for theory and 75 marks for practical subject. In addition seminar and project work shall be evaluated for 50 and 200 marks respectively.

ii. For theory subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End-Examination.

iii. For theory subjects, during the semester there shall be Two midterm examinations. Each mid term examination consists of objective paper for 10 marks and subjective paper for 20 marks with duration of 1 hour 50 minutes (20 minutes for objective and 90 minutes for subjective paper).

Objective paper is set for 20 bits for 10 marks. Subjective paper shall contain 5 questions of which student has to answer 3 questions evaluated* for 20 marks. First mid term examination shall be conducted for I-IV units of syllabus and second mid term examination shall be conducted for V-VIII units. The total marks secured by the student in each mid term examination for 30 marks is considered and the better of the two mid term examinations shall be taken as the final sessional marks secured by each candidate in the subject.

However for first year, there shall be Three midterm examinations as in the above pattern and the average marks of the best two midterm examinations secured in each subject shall be considered as final marks for sessionals.
*Note 1: The subjective paper shall contain 5 questions of equal weightage of 10 marks and the marks obtained for 3 questions shall be condensed to 20 marks, any fraction rounded off to the next higher mark

*Note 2: The mid term examination shall be conducted first by distribution of the Objective paper simultaneously marking the attendance, after 20 minutes the answered objective paper is collected back. The student is not allowed to leave the examination hall. Then the descriptive question paper and the answer booklet are distributed. After 90 minutes the answered booklets are collected back.

iv. For practical subjects there shall be a continuous evaluation during the semester for 25 sessional marks and 50 end examination marks. Day-to-day work in the laboratory shall be evaluated for 25 marks by the concerned laboratory teacher based on the report of experiments/jobs. The end examination shall be conducted by the laboratory teacher and another examiner.

v. For the subject having design and/or drawing, such as Engineering Drawing, Machine Drawing and estimation, the distribution shall be 30 marks for internal evaluation and 70 marks for end examination. The Internal evaluation for sessionals will be 15 marks for day-to-day work in the class that shall be evaluated by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm exams in a Semester for a duration of 2hrs each, evenly distributed over the syllabi for 15 marks and the better of the two shall be considered as internal test marks. The sum of day to day evaluation and the internal test marks will be the final sessionals for the subject. However in the I year class, there shall be three midterm exams and the average of best two will be taken into consideration.

vi. There shall be a seminar presentation in IV year II Semester. For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding over the topic, and submit to the department before presentation. The report and the presentation shall be evaluated by the Departmental committee consisting of Head of the department, seminar supervisor and a senior faculty member. The
seminar shall be evaluated for 50 marks and marks shall be submitted to the University along with internal marks. There shall be no external examination for seminar.

vii. Out of a total of 200 marks for the project work, 60 marks shall be for Internal Evaluation and 140 marks for the End Semester Examination (Viva-voce). The viva-voce shall be conducted by a committee consisting of HOD, Project Supervisor and an External Examiner nominated by the University. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be made by the departmental committee, on the basis of two seminars given by each student on the topic of his project.

viii. Out of a total of 200 marks for the project work, 60 marks shall be for Internal Evaluation and 140 marks for the End Semester Examination (Viva-voce). The viva-voce shall be conducted by a committee consisting of HOD, Project Supervisor and an External Examiner nominated by the University. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be made by the departmental committee, on the basis of two seminars given by each student on the topic of his project.

viii. Laboratory marks and the sessional marks awarded by the College are not final. They are subject to scrutiny and scaling by the University wherever necessary. In such cases, the sessional and laboratory marks awarded by the College will be referred to a Committee. The Committee will arrive at a scaling factor and the marks will be scaled as per the scaling factor. The recommendations of the Committee are final and binding.

ix. The laboratory records and internal test papers shall be preserved in the respective institutions as per the University norms and shall be produced to the Committees of the University as and when the same are asked for.

6. Attendance Requirements:

i. A student shall be eligible to appear for University examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects in a semester/ I year.

ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.

iii. Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or I year may be granted by the College Academic Committee.

iv. Students whose shortage of attendance is not condoned in any semester / I year are not eligible to take their end examination of that class and their registration shall stand cancelled.

v. A student will not be promoted to the next semester unless he satisfies the attendance requirements of the present semester / I
year, as applicable. They may seek readmission for that semester / I year when offered next.

vi. A stipulated fee shall be payable towards condonation of shortage of attendance to the University.

7. **Minimum Academic Requirements:**
   The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6

   i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together. In the Seminar he should secure 40%.

   ii. A student shall be promoted from II to III year only if he fulfils the academic requirement of securing 40 credits from

   a. One regular and one supplementary examinations of I year.
   b. One regular examination of II year I semester irrespective of whether the candidate takes the end examination or not as per the normal course of study.

   iii. A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of securing 68 credits from the following examinations,

   a. Two regular and two supplementary examinations of I year.
   b. Two regular and one supplementary examinations of II year I semester.
   c. One regular and one supplementary examinations of II year II semester.
   d. One regular examination of III year I semester.

   irrespective of whether the candidate takes the end examination or not as per the normal course of study.

And in case of getting detained for want of credits by sections ii and iii above, the student may make up the credits through supplementary exams of the above exams before the date of class work commencement of Third or Fourth year I semester respectively.
iv. A student shall register and put up minimum attendance in all 220 credits and earn all the 220 credits. Marks obtained in all 220 credits shall be considered for the calculation of percentage of marks obtained.

v. Students who fail to earn 220 credits as indicated in the course structure within eight academic years from the year of their admission shall forfeit their seat in B.Tech course and their admission shall stand cancelled.

8. Course pattern:
   i. The entire course of study is of four academic years. The first year shall be on yearly pattern and the second, third and fourth years on semester pattern.
   ii. A student eligible to appear for the end examination in a subject, but absent at it or has failed in the end examination may appear for that subject at the next supplementary examination offered.
   iii. When a student is detained due to lack of credits / shortage of attendance he may be re-admitted when the semester is offered after fulfilment of academic regulations, whereas he continues to be in the academic regulations he was first admitted.

9. Transitory Regulations:
   Candidates who have been detained for want of attendance or not fulfilled academic requirements or who have failed after having undergone the course in earlier regulations or have discontinued and wish to continue the course are eligible for admission into the unfinished semester from the date of commencement of class work with the same or equivalent subjects as and when subjects are offered, subject to Section 2. and they continues to be in the academic regulations they were first admitted.

10. With–holding of results:
    If the candidate has any dues not paid to the university or if any case of indiscipline or malpractice is pending against him, the result of the candidate shall be withheld and he will not be allowed / promoted into the next higher semester. The issue of degree is liable to be withheld in such cases.
11. **Award of Class:**

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
<th>From the aggregate marks secured for the best 220 Credits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

12. **Minimum Instruction Days:**

The minimum instruction days including exams for each semester / I year shall be 90/180 days respectively.

13. There shall be no branch transfers after the completion of admission process.

14. There shall be no place transfer within the Constituent Colleges.

15. **General:**

   i. The academic regulations should be read as a whole for purpose of any interpretation.

   ii. Malpractices rules- nature and punishments is appended

   iii. Where the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.

   iv. In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

   v. The University may change or amend the academic regulations or syllabi at any time and the changes or amendments shall be made applicable to all the students on roles with effect from the dates notified by the University.

---

*_*-*_*
ACADEMIC REGULATIONS FOR B. TECH.
(LATERAL ENTRY SCHEME)
(Effective for the students getting admitted into II year through Lateral Entry Scheme from the Academic Year 2010-2011 and onwards)

1. **Award of B.Tech. Degree**
   A student admitted in LES will be declared eligible for the award of the B. Tech Degree if he fulfils the following academic regulations:
   
   i. Pursue a course of study for not less than three academic years and in not more than six academic years.
   
   ii. Register for 168 credits and secure all 168 credits from II to IV year of Regular B.Tech. program

2. Students, who fail to fulfil the requirement for the award of the degree in six consecutive academic years from the year of admission, shall forfeit their seat.

3. The regulations 3 to 6 are to be adopted as that of B. Tech. (Regular).

7. **Minimum Academic Requirements :**
   The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no.6
   
   i. A student shall be deemed to have satisfied the minimum academic requirements and earned the credits allotted to each theory, practical, design, drawing subject or project if he secures not less than 35% of marks in the end examination and a minimum of 40% of marks in the sum total of the internal evaluation and end examination taken together. For the Seminar he should secure 40% in the internal evaluation.
   
   ii. A student shall be promoted from third year to fourth year only if he fulfils the academic requirements of 42 credits from the following examinations.
   
   a. Two regular and one supplementary examinations of II year I semester.
   
   b. One regular and one supplementary examinations of II year II semester.
   
   c. One regular examination of III year I semester.
      
      irrespective of whether the candidate takes the end examination or not as per the normal course of study.
      
      and in case of getting detained for want of credits the student may make up the credits through supplementary exams of the above
exams before the date of class work commencement of Fourth year I semester.

8. Course Pattern
i. The entire course of study is three academic years on semester pattern.
ii. A student eligible to appear for the end examination in a subject, but absent at it or has failed in the end examination may appear for that subject at the next supplementary examination offered.
iii. When a student is detained due to lack of credits / shortage of attendance he may be re-admitted when the semester is offered after fulfilment of academic regulations, whereas he continues to be in the academic regulations he was first admitted.

9. The regulations 9 to 10 are to be adopted as that of B. Tech. (Regular).

11. Award of Class:
After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class</th>
<th>Percentage Range</th>
<th>From the aggregate marks secured for 168 Credits. (i.e. II year to IV year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

(The marks in internal evaluation and end examination shall be shown separately in the marks memorandum)

12. The regulations 12 to 15 are to be adopted as that of B. Tech. (Regular). All other regulations as applicable for B. Tech. Four-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme)
# RULES FOR DISCIPLINARY ACTION FOR MALPRACTICES / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>If the candidate:</strong></td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including...</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>practical) in which the candidate is appearing.</td>
<td>practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</td>
</tr>
<tr>
<td>3.</td>
<td>Impersonates any other candidate in connection with the examination.</td>
</tr>
<tr>
<td>4.</td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>paper during the examination or answer book or additional sheet, during or after the examination.</td>
<td>that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>5. Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
<td>Cancellation of the performance in that subject.</td>
</tr>
<tr>
<td>6. Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation,</td>
<td>In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police</td>
</tr>
</tbody>
</table>

28
assaults the officer-in-charge, or any person on duty in or outside
the examination hall or any of his
relations, or indulges in any other
act of misconduct or mischief which result in damage to or
destruction of property in the
examination hall or any part of
the College campus or engages in
any other act which in the
opinion of the officer on duty
amounts to use of unfair means
or misconduct or has the
tendency to disrupt the orderly
conduct of the examination.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>8.</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of the</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
</tbody>
</table>
project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.

<table>
<thead>
<tr>
<th>11.</th>
<th>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.</td>
</tr>
</tbody>
</table>

| 12. | If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment. |

Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.
2. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)
   (i) A show cause notice shall be issued to the college.
   (ii) Impose a suitable fine on the college.
Shifting the examination centre from the college to another college for a specific period of not less than one year.

****
Course structure for B.Tech. (Regular) I year (2009-10) for affiliated Engineering Colleges.

**COMPUTER SCIENCE AND ENGINEERING (C.S.E.)**

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Course code</th>
<th>Subject</th>
<th>Th</th>
<th>Tu/Drg/Lab</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9ABS101</td>
<td>English</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>9ABS102</td>
<td>Engineering Physics</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>9ABS103</td>
<td>Engineering Chemistry</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>9ABS104</td>
<td>Mathematics – I</td>
<td>3</td>
<td>1 - -</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>9A05101</td>
<td>Programming in C and Data Structures</td>
<td>3</td>
<td>1 - -</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>9A03101</td>
<td>Engineering Drawing *</td>
<td>-</td>
<td>6 -</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>9ABS105</td>
<td>Mathematical Methods</td>
<td>3</td>
<td>1 - -</td>
<td>6</td>
</tr>
<tr>
<td>8.</td>
<td>9A05102</td>
<td>C Programming &amp; Data Structures Lab</td>
<td>- -</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>9A03102</td>
<td>Engineering &amp; I.T. Workshop #</td>
<td>- -</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>9ABS106</td>
<td>Engineering Physics and Engineering Chemistry Lab **</td>
<td>- -</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>9ABS107</td>
<td>English Language &amp; Communication Skills Lab</td>
<td>- -</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>contact periods/week</th>
<th>15</th>
<th>3</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total/week</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits (7 Theory + 4 Labs) 52

Th = Theory; Tu = Tutorial; Drg = Drawing & Lab = Laboratory:

32
* Engineering Drawing will have University External Exam.
** The Students attend the Physics lab and Chemistry lab in alternate weeks. The end exam shall be conducted separately and average of the two exams will be recorded by the University exam section.
# Students attend Engineering and IT work shop as a single lab every week and the end exam is conducted as a single lab. Sharing the Maximum marks and time for one task each from Engineering workshop and IT workshop. The sum of the marks awarded will be recorded.

JAWAHRLAL NEHRU TECHNOLOGICAL UNIVERSITY
ANANTAPUR

COMPUTER SCIENCE AND ENGINEERING (C.S.E.)

B.Tech II - I Semester

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course code</th>
<th>Subject</th>
<th>Theory</th>
<th>Lab</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9ABS304</td>
<td>Probability &amp; Statistics</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>9A02306</td>
<td>Basic Electrical Engineering</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>9A05301</td>
<td>Mathematical Foundations of Computer Science</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>9A05302</td>
<td>Advanced Data Structures</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>9A04306</td>
<td>Digital Logic Design</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>9A04301</td>
<td>Electronic Devices and Circuits</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>9A02307</td>
<td>Electrical and Electronics Lab</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>9A05304</td>
<td>Data Structures Lab</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>contact periods/week</td>
<td>24</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits (6 Theory + 2 Labs) 28

Total/Week 30
B.Tech II - II Semester

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course code</th>
<th>Subject</th>
<th>Theory</th>
<th>Lab.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9ABS303</td>
<td>Environmental Science</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>9A05406</td>
<td>Computer Organization</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>9A05401</td>
<td>Database Management Systems</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>9A05402</td>
<td>Object Oriented Programming</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>9A05407</td>
<td>Formal Languages and Automate Theory</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>9A05403</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>9A05404</td>
<td>Object Oriented Programming Lab</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>9A05405</td>
<td>Database Management Systems Lab</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

| contact periods/week | 24 | 6 |
| Total/Week 30       |    |   |

Total Credits (6 Theory + 2 Labs) 28
## 2009-10

**JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY**  
**ANANTAPUR**

### III Year B.Tech. CSE I Sem

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Course Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9A05501</td>
<td>Principles of Programming Languages</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>9A05502</td>
<td>Software Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>9A05503</td>
<td>Computer Graphics</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>9A05504</td>
<td>Compiler Design</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>9A05505</td>
<td>Operating Systems</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>9A05506</td>
<td>Computer Networks</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>9AHS601</td>
<td>Advanced English Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>9A05507</td>
<td>Computer Networks and Operating Systems Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**Contact periods/week**  
24 00 06  
Total/Week 30  

**Total Credits (6 Theory + 2 Labs)**  
28
### JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY
#### ANANTAPUR

#### III Year  B.Tech. CSE   II Sem

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Course Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9A05601</td>
<td>Object Oriented Analysis and Design</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>9A05602</td>
<td>Unix Internals</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>9A05603</td>
<td>Optimizing Techniques</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>9A04602</td>
<td>Microprocessors and Micro Controllers</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>9A05604</td>
<td>Distributed Systems</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>9A05605</td>
<td>Artificial Intelligence</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>9A19501</td>
<td>Microprocessors and Interfacing Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>9A05606</td>
<td>UNIX Internals Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

**contact periods/week**

<table>
<thead>
<tr>
<th>24</th>
<th>00</th>
<th>06</th>
</tr>
</thead>
</table>

**Total Credits (6 Theory + 2 Labs)** 28
<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Course Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9A05701</td>
<td>Web technologies</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>9A05702</td>
<td>Software testing</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>9AHS401</td>
<td>Managerial Economics and Financial Analysis</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
| 4.    | 9A05703 9A05704 9A05705 | ELECTIVE – I  
1. Grid and cluster computing  
2. Advanced computer architecture  
3. Software architecture | 4 | 0 | 0 | 4       |
| 5.    | 9A05706     | Data warehousing and data mining        | 4 | 0 | 0 | 4       |
| 6.    | 9A05707 9A05708 9A05709 | ELECTIVE – II  
1. Software project management  
2. Network management systems  
3. Information security | 4 | 0 | 0 | 4       |
<p>| 7.    | 9A05710     | Web technologies and data mining lab    | 0 | 0 | 3 | 2       |
| 8.    | 9A05711     | Software testing and CASE tools lab     | 0 | 0 | 3 | 2       |
|       |             | contact periods/week                   | 24 | 00 | 06 |         |
|       |             | Total/Week 30                          |     |     |     |         |
|       |             | Total Credits (6 Theory + 2 Labs)      |     |     |     | 28      |</p>
<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Course Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9AHS701</td>
<td>Management Science</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>9A05801</td>
<td>Design Patterns</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>9A05802</td>
<td>ELECTIVE – III</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9A05803</td>
<td>1. Service Oriented Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9A05804</td>
<td>2. Web Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Semantic Web</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>9A05805</td>
<td>ELECTIVE – IV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9A05806</td>
<td>1. Storage area Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9A05807</td>
<td>2. Internetworking with TCP/IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Wireless Sensor Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>9A05808</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>9A05809</td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>contact periods/week</td>
<td>16</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total/Week 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits (4Theory + Seminar + Project Work)</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detailed Syllabus

B.Tech. I Year (C.S.E.)

(9ABS101) ENGLISH

1. INTRODUCTION:

The sweeping changes in the world have elevated English to the status of a tool of global communication and transformed it into e-English. The syllabus has been drafted to improve the competence of students in communication in general and language skills in particular. The books prescribed serve as students’ handbooks.

The teacher should focus on the skills of reading, writing, listening and speaking while using the prescribed text and exercises. The classes should be interactive. The students should be encouraged to participate in the classroom proceedings and also to write short paragraphs and essays. The main aim is to encourage two way communications in place of the one-sided lecture.

The text for non-detailed study is meant for extensive reading by the students. They may be encouraged to read some select topics on their own, which could lead into a classroom discussion. In addition to the exercises from the texts done in the class, the teacher can bring variety by using authentic materials such as newspaper articles, advertisements etc.

2. OBJECTIVES:

a. To improve the language proficiency of the students in English with an emphasis on LSRW skills.

b. To equip the students to study academic subjects with greater facility through theoretical and practical components of the syllabus.

c. To develop study skills as well as communication skills in formal and informal situations.
3. SYLLABUS:

**Listening Skills:**

Objectives
1. To enable students to develop their listening skills so that they may appreciate its role in the LSRW skills approach to language and improve their pronunciation.
2. To equip students with necessary training in listening so that they can comprehend the speech of people of different backgrounds and dialects.

*Students should be given practice in listening and identifying the sounds of English language and to mark stress, right intonation in connected speech.*

- Listening for general content
- Listening to fill up information
- Intensive listening
- Listening for specific information

**Speaking Skills:**

Objectives
1. To make students aware of the role of ability to speak fluent English and its contribution to their success.
2. To enable students to express themselves fluently and appropriately in social and professional contexts.

- Oral practice
- Describing objects/situations/people
- Role play – Individual/Group activities
- Just A Minute (JAM) Sessions.

(Using exercises from all units of the prescribed text)

**Reading Skills:**

Objectives
1. To develop an awareness in the students about the significance of silent reading and comprehension.
2. To develop the ability to guess the meanings of words from context and grasp the overall message of the text, draw inferences etc.

- Skimming the text
- Understanding the gist of an argument
- Identifying the topic sentence
• Inferring lexical and contextual meaning
• Understanding discourse features
• Recognizing coherence/sequencing of sentences

_The students shall be trained in reading skills using the prescribed text for detailed study. They shall be examined in reading and answering questions using ‘unseen’ passages which may be taken from the non-detailed text or other authentic texts, such as articles from magazines/newspapers_

**Writing Skills:**
Objectives
1. To develop an awareness in the students the skill to write exact and formal writing
2. To equip them with the components of different forms of writing.
   • Writing sentences
   • Use of appropriate vocabulary
   • Paragraph writing
   • Coherence and cohesiveness
   • Narration / description
   • Note Making
   • Formal and informal letter writing
   • Editing a passage

**4. TEXTBOOKS PRESCRIBED:**
In order to improve the proficiency of the student in the acquisition of the four skills mentioned above, the following texts and course content are prescribed and divided into Eight Units:

*For Detailed study:* ENJOYING EVERYDAY ENGLISH, Sangam Books (India) Pvt Ltd, Hyderabad, 2009
*For Non-detailed study:* INSPIRING LIVES, Maruti Publications, Guntur, 2009

**UNIT -I**
   a. Heaven’s Gate from ENJOYING EVERYDAY ENGLISH
   b. Mokshagundam Visvesaraya from INSPIRING LIVES

41
UNIT -II
   a. Sir C.V.Raman from ENJOYING EVERYDAY ENGLISH
   b. Mother Teresa from INSPIRING LIVES

UNIT -III
   a. The Connoisseur from ENJOYING EVERYDAY ENGLISH
   b. Dr. Amartya Kumar Sen from INSPIRING LIVES

UNIT -IV
   a. The Cuddalore Experience from ENJOYING EVERYDAY ENGLISH
   b. Gertrude Elion from INSPIRING LIVES

UNIT -V
   a. Bubbling Well Road from ENJOYING EVERYDAY ENGLISH
   b. Vishwanathan Anand from INSPIRING LIVES

UNIT-VI
   a. Odds Against Us from ENJOYING EVERYDAY ENGLISH
   b. Charlie Chaplin from INSPIRING LIVES

UNIT – VII
   Exercises on
   Reading and Writing Skills
   Reading Comprehension
   Letter writing
   Report writing

UNIT – VIII
   Exercises on
   Remedial Grammar covering Common errors in English, Subject-Verb agreement,
   Use of Articles and Prepositions, Active/Passive Voice, Reported speech, Tenses
   Vocabulary development covering Synonyms & Antonyms, one-word substitutes, prefixes & suffixes, Idioms & phrases, words often confused.

Evaluation: The question paper shall contain two parts, Part A containing questions from Units I- VI and Part B containing questions from units VII & VIII. The student is required to answer five full questions choosing at least one from Part B.
REFERENCES:
1. Technical Communication, Principle and Practice, Meenakshi Raman and Sangita Sharma, OUP, 2009


UNIT III- PRINCIPLES OF QUANTUM MECHANICS & ELECTRON THEORY: Waves and Particles - de- Broglie’s hypothesis – Heisenberg’s uncertainty principle - Schroedinger’s one dimensional wave equation (Time Independent) - Particle in a one dimensional potential box – Energy levels - Fermi-Dirac distribution and effect of Temperature (qualitative treatment only) – Scattering - Source of electrical resistance - Kronig-Penney model (qualitative treatment only) - energy bands – metals, semi conductors & insulators.


DIELECTRIC PROPERTIES: Introduction - Dielectric constant - Electronic, Ionic and Orientation polarizations (qualitative treatment only) - Local field - Clausius-Mossotti equation – Frequency dependence of polarisability (qualitative treatment only) – Ferro electricity- BaTio$_3$.

UNIT VI- SUPERCONDUCTIVITY: General properties - Meissner effect - Penetration depth - Type I and Type II superconductors - Flux quantization – Josephson effects – BCS theory - Applications of superconductors.


TEXT BOOKS:
1. Engineering Physics by P.K.Palanisamy, Scitech Publications
REFERENCES:
1. Physics Volume 2, by Halliday, Resnick and Krane; John Wiley India
2. Solid State Physics by C.Kittel, Wiley India
3. Engineering Physics by Mittal, I.K.International


UNIT IV: Chemistry of nano materials: Nano materials definition, properties and applications; Explosives and Propellants: Explosives, Classification, precautions during storage, blasting fuses, important explosives. Rocket propellants, classification of propellants. Lubricants: Principles and function of lubricants - Classification and properties of lubricants – Viscosity, flash and fire points, cloud and pour points, aniline point, Neutralisation Number and Mechanical Strength.


UNIT VI: Phase rule: Definition, Terms involved in Phase Rule and Phase rule equation. Phase diagrams – one component system (water system), two component system (lead- silver system) Eutectics, heat treatment based on iron-carbon phase diagram, hardening, annealing.


TEXT BOOKS:

1. Engineering Chemistry Prof. K.N.Jayaveera, Dr.G.V.Subba Reddy and Dr.C. Ramachandraiah, McGraw Hill Higher Education Hyd., 2009

REFERENCES:

2. Fuel Cells principles and applications by B.Viswanath, M.Aulice Scibioh-Universities press
UNIT I– Differential equations of first order and first degree – Exact, linear and Bernoulli equations. Applications: to Newton’s law of cooling, law of natural growth and decay, orthogonal trajectories.

UNIT II– Non-homogeneous linear differential equations of second and higher order with constant coefficients with RHS term of the type e^{ax}, Sin ax, cos ax, polynomials in x, e^{ax} V(x), xV(x), method of variation of parameters.

UNIT III– Rolle’s Theorem – Lagrange’s Mean Value Theorem – (excluding proof). Simple examples of Taylor’s and Maclaurin’s Series - Functions of several variables – Jacobian – Maxima and Minima of functions of two variables, Lagrangian method of Multipliers with three variables only.

UNIT – IV
Radius of Curvature – Curve tracing – Cartesian, polar and parametric curves. Applications of integration to lengths, volume and surface area of solids of revolution in Cartesian and polar coordinates.

UNIT V– Multiple integral: – Double and triple integrals – Change of Variables – Change of order of integration.

UNIT VII– Differentiation and integration of Laplace transform – Application of Laplace transforms to ordinary differential equations of first and second order.


TEXT BOOKS:

REFERENCES:

UNIT II- Introduction to C Language - C Language Elements, Variable Declarations and Data Types, Executable Statements, General Form of a C Program, Expressions, Precedence and Associativity, Expression Evaluation, Operators and Expressions, Type Conversions, Decision Statements - If and Switch Statements, Loop Control Statements - while, for, do-while Statements, Nested for Loops, Other Related Statements -break, continue, goto.


UNIT V- Structure and Union – Introduction, Features of Structures, Declaration and Initialization of Structures, Structure within Structure, Array of Structures, Pointer to Structure, Structure and Functions, typedef, Bit Fields, Enumerated Data Type, Union, Union of Structures.

UNIT VI- Files - Introduction, Streams and File Types, Steps for File Operations, File I/O Structures, Read and Write, Other File function, Searching Errors in Reading/Writing of Files, Low Level Disk I/O, Command Line Arguments, Application of Command Line Arguments, File Status functions (error handling).


TEXT BOOKS :
1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education

REFERENCES :
3. C and Data Structures, a snapshot oriented treatise with live engineering examples, Dr. N.B. Venkateswarlu, Dr. E.V. Prasad, S. Chand
UNIT I– INTRODUCTION TO ENGINEERING DRAWING:
Principles of Engineering Graphics and their Significance – Drawing Instruments and their Use – Conventions in Drawing – Lettering – BIS Conventions. Curves used in Engineering Practice:
a) Conic Sections including the Rectangular Hyperbola – General method only.
b) Cycloid, Epicycloids and Hypocycloid
c) Involutes.
d) Helices

UNIT II– PROJECTION OF POINTS AND LINES: Principles of Orthographic Projection – Conventions – First and Third Angle Projections. Projections of Points, Lines inclined to one or both planes, Problems on projections, Finding True lengths & traces only.

UNIT III– PROJECTIONS OF PLANES: Projections of regular Plane surfaces/figures, Projection of lines and planes using auxiliary planes.

UNIT IV– PROJECTIONS OF SOLIDS: Projections of Regular Solids inclined to one or both planes – Auxiliary Views.


Development of Surfaces of Right Regular Solids – Prisms, Cylinder, Pyramid, Cone and their Sectional parts.

UNIT VI– ISOMETRIC AND ORTHOGRAPHIC PROJECTIONS: Principles of Isometric Projection – Isometric Scale – Isometric Views–

Conversion of Isometric projections/views to Orthographic Views – Conventions.

UNIT VII – INTERPENETRATION OF RIGHT REGULAR SOLIDS: Projections of curves of Intersection of Cylinder Vs Cylinder, Cylinder Vs Prism, Cylinder Vs Cone, Square Prism Vs Square Prism.


TEXT BOOKS:
1. Engineering Drawing, N.D. Bhat, Charotar Publishers
2. Engineering Drawing, Johle, Tata McGraw-Hill
3. Engineering Drawing, Shah and Rana, 2/e, Pearson Education

REFERENCES:
1. Engineering Drawing and Graphics, Venugopal/ New age
2. Engineering Drawing, B.V.R. Guptha, J.K. Publishers
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY
ANANTAPUR

B.Tech. I Year (C.S.E.)

(9ABS105) MATHEMATICAL METHODS
(EEE, ECE, E.Con.E, E.I.E, CSE, IT, CSS, ECM)

UNIT – I


UNIT – II

UNIT – III


UNIT – IV

UNIT – V

UNIT – VI

UNIT – VII
Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Method of separation of variables – Solutions of one dimensional wave equation, heat equation and two-dimensional Laplace’s equation under initial and boundary conditions.

UNIT – VIII

TEXT BOOKS:

REFERENCES:

3. Introduction to Numerical Analysis – S.S. Sastry Ph - I
Objectives:
- To make the student learn a programming language.
- To teach the student to write programs in C to solve the problems.
- To introduce the student to simple linear data structures such as lists, stacks, queues.

Recommended Systems/Software Requirements:
- Intel based desktop PC with ANSI C Compiler and Supporting Editors

Week 1.
a) Write a C program to find the sum of individual digits of a positive integer.
b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Week 2.
a) Write a C program to calculate the following Sum:
   \[ \text{Sum}=1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} \]
b) Write a C program to find the roots of a quadratic equation.

Week 3
a) Write C programs that use both recursive and non-recursive functions
i) To find the factorial of a given integer.
ii) To find the GCD (greatest common divisor) of two given integers.
iii) To solve Towers of Hanoi problem.

Week 4
a) The total distance travelled by vehicle in ‘t’ seconds is given by
distance \( S = ut + \frac{1}{2}at^2 \) where ‘u’ and ‘a’ are the initial velocity (m/sec.)
and acceleration (m/sec\(^2\)) respectively. Write C program to find the
distance travelled at regular intervals of time given the values of ‘u’ and
‘a’. The program should provide the flexibility to the user to select his
own time intervals and repeat the calculations for different values of ‘u’
and ‘a’.
b) Write a C program, which takes two integer operands and one
operator from the user, performs the operation and then prints the result.
(Consider the operators +, -, *, /, % and use Switch Statement)

Week 5
a) Write a C program to find both the largest and smallest number in a
list of integers.
b) Write a C program that uses functions to perform the following:
i) Addition of Two Matrices   ii) Multiplication of Two Matrices

Week 6
a) Write a C program that uses functions to perform the following
operations:
i) To insert a sub-string in to a given main string from a given position.
ii) To delete n Characters from a given position in a given string.
b) Write a C program to determine if the given string is a palindrome or
not

Week 7
a) Write a C program that displays the position or index in the string S
where the string T begins, or – 1 if S doesn’t contain T.
b) Write a C program to count the lines, words and characters in a given
text.
Week 8
a) Write a C program to generate Pascal’s triangle.
b) Write a C program to construct a pyramid of numbers.

Week 9
Write a C program to read in two numbers, x and n, and then compute the sum of the geometric progression:
1\cdot x + x^2 + x^3 + \ldots + x^n
For example: if n is 3 and x is 5, then the program computes 1\cdot 5 + 25 + 125.
Print x, n, the sum
Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers without computing the sum. Find if any values of x are also illegal? If so, test for them too.

Week 10
a) 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.
b) Write a C program to convert a Roman numeral to its decimal equivalent.

Week 11
Write a C program that uses functions to perform the following operations:
   i) Reading a complex number
   ii) Writing a complex number
   iii) Addition of two complex numbers
   iv) Multiplication of two complex numbers
(Note: represent complex number using a structure.)

Week 12
a) Write a C program which copies one file to another.
b) Write a C program to reverse the first n characters in a file.
(Note: The file name and n are specified on the command line.)
Week 13
a) Write a C programme to display the contents of a file.
b) Write a C programme to merge two files into a third file
   (i.e., the contents of the first file followed by those of the second are put
   in the third file)

Week 14
Write a C program that uses functions to perform the following
operations on singly linked list.:
   i) Creation   ii) Insertion   iii) Deletion   iv) Traversal

Week 15
Write C programs that implement stack (its operations) using
   i) Arrays   ii) Pointers

Week 16
Write C programs that implement Queue (its operations) using
   i) Arrays   ii) Pointers

Week 17
Write a C program that uses Stack operations to perform the following:
   i) Converting infix expression into postfix expression
   ii) Evaluating the postfix expression

Week 18
Write a C program that implements the following sorting methods to
sort a given list of integers in ascending order
   i) Bubble sort       ii) Selection sort

Week 19
Write C programs that use both recursive and non recursive functions to
perform the following searching operations for a Key value in a given
list of integers:
   i) Linear search    ii) Binary search

Week 20
Write C program that implements the Quick sort method to sort a given
list of integers in ascending order.
Week 21
Write C program that implement the Merge sort method to sort a given list of integers in ascending order.

Week 22
Write C programs to implement the Lagrange interpolation and Newton- Gregory forward interpolation.

Week 23
Write C programs to implement the linear regression and polynomial regression algorithms.

Week 24
Write C programs to implement Trapezoidal and Simpson methods.

REFERENCE BOOKS
1. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A. Ananda Rao, Pearson Education
ENGINEERING WORKSHOP

Objectives: The budding Engineer may turn out to be a technologist, scientist, entrepreneur, practitioner, consultant etc. There is a need to equip the engineer with the knowledge of common and newer engineering materials as well as shop practices to fabricate, manufacture or work with materials. Essentially he should know the labour involved, machinery or equipment necessary, time required to fabricate and also should be able to estimate the cost of the product or job work. Hence engineering work shop practice is included to introduce some common shop practices and on hand experience to appreciate the use of skill, tools, equipment and general practices to all the engineering students.

1. TRADES FOR EXERCISES:
   a. Carpentry shop– Two joints (exercises) involving tenon and mortising, groove and tongue: Making middle lap T joint, cross lap joint, mortise and tenon T joint, Bridle T joint from out of 300 x 40 x 25 mm soft wood stock
   b. Fitting shop– Two joints (exercises) from: square joint, V joint, half round joint or dove tail joint out of 100 x 50 x 5 mm M.S. stock
   c. Sheet metal shop– Two jobs (exercises) from: Tray, cylinder, hopper or funnel from out of 22 or 20 gauge G.I. sheet
   d. House-wiring– Two jobs (exercises) from: wiring for ceiling rose and two lamps (bulbs) with independent switch controls with or without looping, wiring for stair case lamp, wiring for a water pump with single phase starter.
   e. Foundry– Preparation of two moulds (exercises): for a single pattern and a double pattern.
   f. Welding – Preparation of two welds (exercises): single V butt joint, lap joint, double V butt joint or T fillet joint
2. TRADES FOR DEMONSTRATION:
   a. Plumbing
   b. Machine Shop
   c. Metal Cutting

Apart from the above the shop rooms should display charts, layouts, figures, circuits, hand tools, hand machines, models of jobs, materials with names such as different woods, wood faults, Plastics, steels, meters, gauges, equipment, CD or DVD displays, First aid, shop safety etc. (though they may not be used for the exercises but they give valuable information to the student). In the class work or in the examination knowledge of all shop practices may be stressed upon rather than skill acquired in making the job.

REFERENCE BOOKS:

I.T. WORKSHOP

Objectives:
The IT Workshop for engineers is a training lab course. The modules include training on PC Hardware, Internet & World Wide Web and Productivity tools including Word, Excel, Power Point and Publisher. **PC Hardware** introduces the students to a personal computer and its basic peripherals, the process of assembling a personal computer, installation of system software like MS Windows, Linux and the required device drivers. In addition hardware and software level troubleshooting process, tips and tricks would be covered. **The students should work on a working PC (PIV or higher) to disassemble and assemble back to working condition and install**
Windows and Linux on the same PC. Students are suggested to work similar tasks in the Laptop scenario wherever possible. Internet & World Wide Web module introduces the different ways of hooking the PC on to the internet from home and workplace for usage of the internet. Usage of web browsers, email, newsgroups and discussion forums would be covered. In addition, awareness of cyber hygiene, i.e., protecting the personal computer from getting infected with the viruses, worms and other cyber attacks would be introduced.

Productivity tools module would enable the students in crafting professional word documents, excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools and LaTeX. (It is recommended to use Microsoft office 2007 in place of MS Office 2003)

PC Hardware
Week 1 – Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Week 2 – Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video shall be given as part of the course content.

Week 3 – Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Week 4 – Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both windows and Linux. Lab instructors should verify the installation and follow it up with a Viva.

Week 5 – Task 5: Hardware Troubleshooting: Students have to be given a PC which does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the
computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

Week 6 – Task 6: Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition. The work done should be verified by the instructor and followed up with a Viva.

OFFICE TOOLS

LaTeX and Word

Week 7 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office 2007/ equivalent (FOSS) tool word: Importance of LaTeX and MS office 2007/ equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 1: Using LaTeX and Word to create project certificate. Features to be covered:- Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Excel

Week 8 - Excel Orientation: The mentor needs to tell the importance of MS office 2007/ equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text

LaTeX and MS/equivalent (FOSS) tool Power Point
Week 9 - Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this Exercise includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in both LaTeX and Powerpoint. Students will be given model power point presentation which needs to be replicated (exactly how it’s asked).

Week 10 - Task 2 : Second Exercise helps students in making their presentations interactive. Topic covered during this Exercise includes : Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts

Internet & World Wide Web
2 Week

Week 11 - Task 1: Orientation & Connectivity Boot Camp : Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers.

Week 12 - Task 2: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated by the student to the satisfaction of instructors.

Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to first install an anti virus software, configure their personal firewall and windows update on their computer.
REFERENCES:

1. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
2. LaTeX Companion – Leslie Lamport, PHI/Pearson.
3. Introduction to Computers, Peter Norton, 6/e Mc Graw Hill
4. Upgrading and Repairing, PC’s 18th e, Scott Muller QUE, Pearson Education
5. Comdex Information Technology course tool kit, Vikas Gupta, WILEY Dreamtech
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY
ANANTAPUR

B.Tech. I Year (C.S.E.)

T P C
0 3/2 each 4

(9ABS106) ENGINEERING PHYSICS LAB and ENGINEERING CHEMISTRY LAB

ENGINEERING PHYSICS LAB

Any TEN of the following experiments are to be performed during the Academic year.

Sl.No. Name of the Experiment

2. Dispersive power of the prism – Spectrometer.
4. Determination of particle size by using a laser source.
5. Determination of thickness of a thin wire using parallel fringes.
7. Magnetic field along the axis of a current carrying coil – Stewart and Gee’s method.
8. Numerical aperture of an optical fiber.
9. Hall effect.
11. Energy gap of a material of p-n junction
12. Determination of rigidity modulus of a wire material – Torsional pendulum
13. Determination of dielectric constant.
15. Melde’s experiment – Transverse & Longitudinal modes.
Equipment required:

Spectrometer, Grating, Prism, Mercury vapour lamp, Sodium vapour lamp, Travelling Microscope, Wedge arrangement, Newton rings setup, Stewart-Gee’s apparatus, He-Ne laser source, Optical fiber, Hall effect kit, B-H loop kit, Energy gap kit (four probe method), Torsional pendulum, Dielectric constant kit, Sonometer, Melde’s apparatus

ENGINEERING CHEMISTRY LAB

2. Preparation of Standard Potassium Dichromate and Estimation of Copper, by Iodometry.
4. Preparation of Standard EDTA and Estimation of Copper
5. Determination of Manganese in Steel and Iron in Cement.
6. Determination of strength of the given Hydrochloric acid against standard sodium hydroxide solution by Conductometric titration
7. Determination of viscosity of the oils through Redwood viscometer
8. Determination of calorific value of fuel using Bomb calorimeter
9. Estimation of dissolved oxygen
10. Determination of Eutectic Temperature of binary system (Urea – Benzoic Acid)

BOOKS:

1. Chemistry-lab manual by Dr K.N.Jayaveera and K.B. Chandra Sekhar, S.M. Enterprizes Ltd.
2009-10

Equipment Required:

1. Glass ware: Pipettes, Burettes, Volumetric Flasks, Beakers, Standard flasks, Measuring jars, Boiling Test tubes, reagent bottles, (Borosil)
2. Analytical balance (keroy) (15 Nos)
3. Calorimeter
4. Bomb Calorimeter
5. Redwood viscometer No.1& No.2
6. Conductometer/ Conductivity bridge
7. Wash bottles, test tube stands, burette stands
8. Gas cylinders with Bunsen burners
9. Chemicals: Hydrochloric acid, sodiumhydroxide, EDTA, EBT indicator, fast sulfon black-f, urea, benzoic acid, methanol, Mohr’s salt, copper sulphate, magnesium sulphate, ammonia, ammonium sulphate, calcium sulphate etc.,
The Language Lab focuses on the production and practice of sounds of language and equips students with the use of English in everyday situations and contexts.

Objectives:
1. To train students to use language effectively in everyday conversations, to participate in group discussions, to help them face interviews, and sharpen public speaking skills
2. To expose the students to a varied blend of self-instructional, learner-friendly modes of language learning
3. To enable them to learn better pronunciation through stress on word accent, intonation, and rhythm
4. To initiate them into greater use of the computer in resume preparation, report-writing, format-making etc.
5. To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required ability to face computer-based competitive exams such GRE, TOEFL, GMAT etc.

SYLLABUS:
The following course content is prescribed for the English Language Laboratory sessions:

1. Introduction to the Sounds of English- Vowels, Diphthongs & Consonants.
2. Introduction to Stress and Intonation.
3. Situational Dialogues (giving directions etc.)
4. Speaking on the mobiles and telephone conversation
5. Role Play.
7. ‘Just A Minute’ Sessions (JAM).
8. Describing Objects / Situations / People.
9. Information Transfer
10. Debate

Minimum Requirement:
The English Language Lab shall have two parts:
i) The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.
ii) The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a T.V., a digital stereo–audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:
i) P – IV Processor
   a) Speed – 2.8 GHZ
   b) RAM – 512 MB Minimum
   c) Hard Disk – 80 GB
   ii) Headphones of High quality

PRESCRIBED SOFTWARE: GLOBARENA

Suggested Software:
• Cambridge Advanced Learners’ English Dictionary with CD.
• The Rosetta Stone English Library
• Clarity Pronunciation Power – Part I
• Mastering English in Vocabulary, Grammar, Spellings, Composition
• Dorling Kindersley series of Grammar, Punctuation, Composition etc.
• Language in Use, Foundation Books Pvt Ltd with CD
• Learning to Speak English - 4 CDs
• Microsoft Encarta with CD
• Murphy’s English Grammar, Cambridge with CD
• English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge
Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

3. **Speaking English Effectively**, Krishna Mohan & NP Singh (Macmillan)
8. **DELTAs key to the Next Generation TOEFL Test**, 6 audio CDS, New Age International Publishers, 2007
UNIT – I

UNIT – II

UNIT – III
Binomial and poisson’s distributions Normal distribution – Related properties.

UNIT – IV
Sampling distribution: Populations and samples – Sampling distribution of mean (known and unknown) proportions, sums and differences.

UNIT – V
Estimation: Point estimation – Interval estimation – Bayesian estimation.

UNIT – VI
Test of Hypothesis – Means – Hypothesis concerning one and two means – Type I and Type II errors. One tail, two-tail tests.

UNIT – VII
Tests of significance – Student’s t-test, F-test, $\Psi^2$ test, Estimation of proportions.

UNIT – VIII
Queuing Theory: Pure Birth and Death process, M/M/1 model and simple problems.
TEXT BOOKS:

REFERENCES:
3. Introduction to Probability, Charles M. Grinstead, J. Laurie Snell, University Press.
UNIT - I
Introduction to Electrical Engineering: ohm’s law, basic circuit components, Kirchhoff’s laws. Simple problems.

UNIT-II

UNIT-III
Alternating Quantities: Principle of ac voltages, waveforms and basic definitions, root mean square and average values of alternating currents and voltage, form factor and peak factor, phasor representation of alternating quantities, the J operator and phasor algebra, analysis of ac circuits with single basic network element, single phase series and parallel circuits.

UNIT-IV

UNIT-V
D.C Generators: Principle of operation of dc machines, types of D.C generators, e.m.f equation in D.C generator, O.C.C. of a D.C. Shunt generator

UNIT-VI
D.C motors: Principle of operation of dc motors, types of D.C motors, torque equation, losses and efficiency calculation in D.C motor-Swinburne’s test
UNIT-VII
Three phase induction motors: Principle of operation, slip and rotor frequency, torque (simple problems).

UNIT VIII
Measuring Instruments: Introduction, classification of instruments, operating principles, essential features of measuring instruments, Moving coil permanent magnet (PMMC) and moving Iron instruments (Voltmeters and Ammeters)- Extension of range of the meters.

TEXT BOOKS:
1. Basic Electrical Engineering - By M.S.Naidu and S. Kamakshiah – TMH.
3. Electrical and Electronic Technology-By Hughes – Pearson Education.

REFERENCES:
UNIT-I
Mathematical Logic: Statements and notations, Connectives, Well formed formulas, Truth Tables, tautology, equivalence implication, Normal forms, Quantifiers, universal quantifiers

UNIT-II

UNIT-III

UNIT-IV
Algebraic structures: Algebraic systems Examples and general properties, Semi groups and monads, groups sub groups homomorphism, Isomorphism.

UNIT-V
Elementary Combinatorics: Basis of counting, Enumerating Combinations & Permutations, with repetitions, Constrained repetitions, Binomial Coefficients, Binomial Multinomial theorems, the principles of Inclusion – Exclusion. Pigeon hole principles and its application.

UNIT-VI
Recurrence Relation: Generating Functions and Sequences, Calculating Coefficient of generating function, Recurrence relations,

UNIT-VII
**Graph Theory**: Representation of Graph, DFS, BFS, Spanning Trees, planar Graphs.

UNIT-VIII
Graph Theory and Applications, Basic Concepts Isomorphism and Sub graphs, Multi graphs and Euler circuits, Hamiltonian graphs, Chromatic Numbers

TEXT BOOKS:

REFERENCES:
4. Discrete Mathematics with Applications, Thomas Koshy, Elsevier
5. Logic and Discrete Mathematics, Grass Man & Trembley, Pearson Education.
B.Tech. II-I-Sem. (C.S.E)  

T  
P  
C  

4  
0  
4  

(9A05302) ADVANCED DATA STRUCTURES  
(Common to CSE, CSSE, IT, ECM)  

UNIT I :
C++ Class Overview- Class Definition, Objects, Class Members, Access Control, Class Scope, Constructors and destructors, parameter passing methods, Inline functions, static class members, this pointer, friend functions, dynamic memory allocation and deallocation (new and delete), exception handling.  

UNIT II :
Function Over Loading, Operator Overloading, Generic Programming- Function and class templates, Inheritance basics, base and derived classes, inheritance types, base class access control, runtime polymorphism using virtual functions, abstract classes, streams I/O.  

UNIT III :
Algorithms, performance analysis- time complexity and space complexity. Review of basic data structures- The list ADT, Stack ADT, Queue ADT, Implementation using template classes in C++.  

UNIT IV :
Dictionaries, linear list representation, skip list representation, operations insertion, deletion and searching, hash table representation, hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing, comparison of hashing and skip lists.  

UNIT V :
Priority Queues – Definition, ADT, Realizing a Priority Queue using Heaps, Definition, insertion, Deletion, External Sorting- Model for external sorting, Multiway merge, Polyphase merge.
UNIT VI:
Search Trees (Part1):-
Binary Search Trees, Definition, ADT, Implementation, Operations-
Searching, Insertion and Deletion, AVL Trees, Definition, Height of an
AVL Tree, Operations – Insertion, Deletion and Searching

UNIT VII:
Search trees (part- II) : Introduction to Red –Black and Splay Trees, B-
Trees, B-Tree of order m, height of a B-Tree, insertion, deletion and
searching, Comparison of Search Trees

UNIT VIII:
Pattern matching and Tries : Pattern matching algorithms-Brute force,
the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm,
Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:
1. Data structures and Algorithms using C++, Ananda Rao
Akepogu and Radhika Raju Palagiri, Pearson Education.
2. Data structures, Algorithms and Applications in C++, S.Sahni,
University Press (India) Pvt.Ltd, 2nd edition, Universities
Press.

REFERENCES:
1. Data structures and Algorithms in C++, Michael T.Goodrich,
R.Tamassia and .Mount, Wiley student edition, John Wiley and
Sons.
2. Data structures and Algorithm Analysis in C++, Mark Allen
Drozdek, Thomson
4. Data structures using C and C++, Langsam, Augenstei and
Tanenbaum, PHI.
5. Problem solving with C++, The OOP, Fourth edition,
W.Savitch, Pearson education.
6. Data Structures using C++, D.S. Malik, Cengage Learning,
India Edition.
UNIT-I
BINARY SYSTEMS: Digital Systems, Binary Numbers, Number base conversions, Octal and Hexadecimal Numbers, complements, Signed binary numbers, Binary codes, Binary Storage and Registers, Binary logic.

UNIT-II
BOOLEAN ALGEBRA AND LOGIC GATES: Basic Definitions, Axiomatic definition of Boolean Algebra, Basic theorems and properties of Boolean algebra, Boolean functions canonical and standard forms, other logic operations, Digital logic gates, integrated circuits.

UNIT-III
GATE – LEVEL MINIMIZATION: The map method, Four-variable map, Five-Variable map, product of sums simplification Don’t-care conditions, NAND and NOR implementation other Two-level implementations, Exclusive – Or function, Hardware Description language (HDL).

UNIT - IV
COMBINATIONAL LOGIC: Combinational Circuits, Analysis procedure Design procedure, Binary Adder-Subtractor Decimal Adder, Binary multiplier, magnitude comparator, Decoders, Encoders, Multiplexers, HDL for combinational circuits.

UNIT - V
SYNCHRONOUS SEQUENTIAL LOGIC: Sequential circuits, latches, Flip-Flops Analysis of clocked sequential circuits, HDL for sequential circuits, State Reduction and Assignment, Design Procedure.
UNIT - VI
Registers, shift Registers, Ripple counters synchronous counters, other counters, HDL for Registers and counters.

UNIT - VII
Introduction, Random-Access Memory, Memory Decoding, Error Detection and correction Read-only memory, Programmable logic Array programmable Array logic, Sequential Programmable Devices.

UNIT-VIII

TEXT BOOKS :


REFERENCES :

2. Switching and Logic Design, C.V.S. Rao, Pearson Education
UNIT- I
PN JUNCTION DIODE:

UNIT- II
RECTIFIERS AND FILTERS: PN Junction as a Rectifier, Half wave rectifier, ripple factor, full wave rectifier, Bridge Rectifier, Harmonic components in a rectifier circuit, Inductor filter, Capacitor filter, L-section filter, Π-section filter, Use of Zener Diode as a Regulator, Problems on rectifier circuits, and voltage regulator.

UNIT- III

UNIT- IV
UNIT- V
FIELD EFFECT TRANSISTOR:

UNIT- VI
FET AMPLIFIERS:
Common Source, and Common Drain Amplifiers using FET, Generalized FET Amplifier, Biasing of FET, FET as Voltage Variable Resistor, Comparison between BJT and FET.

UNIT-VII
SMALL SIGNAL ANALYSIS OF BJT AMPLIFIERS:
BJT Modeling, Hybrid Modeling, Determination of h-Parameters from Transistor Characteristics, Measurement of h-Parameters, Analysis of CE, CB and CC configurations using h-Parameters, Comparision of CB, CE and CC configurations, Simplified Hybrid Model, Millers Theorem, Dual of Millers Theorem.

UNIT-VIII
SPECIAL PURPOSE ELECTRONIC DEVICES:

TEXT BOOKS:
REFERENCES:
3. Introduction to Electronic Devices and Circuits – Rober T. Paynter, PE
1. Verification of Superposition theorem.
2. Verification of Thevenin’s theorem.
3. Open Circuit characteristics of D.C. Shunt generator.
4. Swinburne’s Test on DC shunt machine (Predetermination of efficiency of a given DC Shunt machine working as motor and generator).
6. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors).

PART – B : ELECTRONICS LAB

1. Identification, Specifications and Testing of R, L, C Components (colour codes), Potentiometers, Switches (SPDT, DPDT and DIP), Coils, Gang Condensers, Relays, Bread Boards, Identification and Specifications of active devices, Diodes, BJTs, Lowpower JFETs, MOSFETs, LEDs, LCDs, SCR, UJT, Linear and Digital ICs.
2. PN Junction Diode Characteristics (Forward bias, Reverse bias).
3. Zener Diode Characteristics and Zener as regulator.
4. Transistor CE Characteristics (Input and Output).
5. Rectifier without Filters (Full wave & Half wave).
6. Rectifier with Filters (Full wave & Half wave).
Objectives:
- To make the student learn an object oriented way of solving problems.
- To make the student write ADTS for all data structures.

Recommended Systems/Software Requirements:
- Intel based desktop PC with minimum of 166 MHZ or faster processor with atleast 64 MB RAM and 100 MB free disk space
- C++ compiler and STL Recommended

Week1:
Write C++ programs to implement the following using an array.
   a) Stack ADT  b) Queue ADT

Week2:
Write C++ programs to implement the following using a singly linked list.
   a) Stack ADT  b) Queue ADT

Week3:
Write C++ programs to implement the deque (double ended queue) ADT using a doubly linked list and an array.

Week 4:
Write a C++ program to perform the following operations:
   a) Insert an element into a binary search tree.
   b) Delete an element from a binary search tree.
   c) Search for a key element in a binary search tree.

Week5:
Write C++ programs that use recursive functions to traverse the given binary tree in
   a) Preorder  b) inorder  and c) postorder.
Week 6:
Write C++ programs that use non-recursive functions to traverse the given binary tree in
   a) Preorder  b) inorder and  c) postorder.

Week 7:
Write C++ programs for the implementation of bfs and dfs for a given graph.

Week 8:
Write C++ programs for implementing the following sorting methods:
   a) Merge sort  b) Heap sort

Week 9:
Write a C++ program to perform the following operations
   a) Insertion into a B-tree  b) Deletion from a B-tree

Week 10:
Write a C++ program to perform the following operation
   a) Insertion into an AVL-tree

Week 11:
Write a C++ program to implement all the functions of a dictionary (ADT) using hashing.

Week 12:
Write a C++ program for implementing Knuth-Morris-Pratt pattern matching algorithm.

(Note: Use Class Templates in the above Programs)

TEXT BOOKS:
6. The Art, Philosophy, and Science of OOP with C++, Rick Miller, SPD.
7. C++ for Programmers, P.J.Deitel and H.M.Deitel, PHI/Pearson
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY
ANANTAPUR

B.Tech. II-II-Sem. (C.S.E) T P C
(9ABS303) ENVIRONMENTAL SCIENCE
(Common to CE, BT, CSE, IT, ME, AE)

UNIT – I
MULTIDISCIPLINARY NATURE OF ENVIRONMENTAL STUDIES: – Definition, Scope and Importance – Need for Public Awareness.

UNIT – II
NATURAL RESOURCES: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT – III
ECOSYSTEMS: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:
   a. Forest ecosystem.
   b. Grassland ecosystem
   c. Desert ecosystem
   d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)
UNIT – IV
BIODIVERSITY AND ITS CONSERVATION: Introduction

UNIT – V
ENVIRONMENTAL POLLUTION: Definition, Cause, effects and control measures of:
   a. Air Pollution.
   b. Water pollution
   c. Soil pollution
   d. Marine pollution
   e. Noise pollution
   f. Thermal pollution
   g. Nuclear hazards

SOLID WASTE MANAGEMENT: Causes, effects and control measures of urban and industrial wates – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT – VI

UNIT – VII

UNIT – VIII
FIELD WORK : Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, birds – river, hill slopes, etc..

TEXT BOOKS:
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCES:
2. Comprehensive Environmental studies by J. P. Sharma, Laxmi publications.
4. Introduction to Environmental engineering and science by Gilbert M. Masters and Wendell P. Ela – Prinice hall of India Private limited.
UNIT I:
BASIC STRUCTURE OF COMPUTERS: Computer Types, Functional units, Basic operational concepts, Bus Structures, Software, Performance, Multiprocessors and multi computers, Data Representation- Fixed Point Representation, Floating – Point Representation, Error Detection codes.

UNIT II:
REGISTER TRANSFER AND MICROOPERATIONS: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Microoperations, logic microoperations, shift micro operations, Arithmetic logic shift unit, Instruction codes, Computer Registers, Computer instructions, Instruction cycle.

Memory – Reference Instructions - Input – Output and Interrupt, STACK organization, Instruction formats, Addressing modes, DATA Transfer and manipulation, Program control, Reduced Instruction Set Computer.

UNIT III:
MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, microprogram example, design of control unit, Hard wired control, Microprogrammed control.

UNIT IV:

UNIT V:
THE MEMORY SYSTEM: Basic concepts, semiconductor RAM memories, Read-only memories, Cache memories, performance
considerations, Virtual memories, secondary storage, Introduction to RAID.

UNIT VI

UNIT VII:
PIPELINE AND VECTOR PROCESSING: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processors.

UNIT VIII:

TEXT BOOKS:

REFERENCES:
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY
ANANTAPUR

B.Tech. II-II-Sem. (C.S.E)  T  P  C
4  0  4

(9A05401) DATABASE MANAGEMENT SYSTEMS
(Common to CSE, CSSE, IT)

UNIT-I

UNIT-II

UNIT-III
The Relational Database Model: A Logical View of Data-Keys-Integrity Rules-Relational Set Operators-The Data Dictionary and the System Catalog-Relationships within the Relational Database-Data Redundancy Revisited-Indexes-Codd’s Relational Database Rules.

UNIT-IV
Structured Query Language (SQL): Introduction to SQL-Data Definition Commands-Data Manipulation Commands-SELECT Queries- Advanced Data Definition Commands-Advanced SELECT Queries-Virtual Tables: Creating a View-Joining Database Tables.
Advanced SQL: Relational Set Operators-SQL Join Operators-Subqueries and Correlated Queries-SQL Functions-Oracle Sequences-Updatable Views-Procedural SQL-Embedded SQL.
UNIT-V

UNIT-VI

UNIT-VII

UNIT-VIII

TEXT BOOKS:
REFERENCES:
3. Introduction to Database Systems, C. J. Date, Pearson Education.
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
UNIT I:
Object oriented thinking: Need for oop paradigm, A way of viewing world – Agents, responsibility, messages, methods, classes and instances, class hierarchies (Inheritance), method binding, overriding and exceptions, summary of oop concepts, coping with complexity, abstraction mechanisms.

UNIT II:
Java Basics: History of Java, Java buzzwords, data types, variables, scope and life time of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, classes and objects – concepts of classes, objects, constructors, methods, Introducing access control, this keyword, garbage collection, overloading methods and constructors, parameter passing, recursion, string handling.

UNIT III:
Inheritance: Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance, Member access rules, super uses, using final with inheritance, polymorphism- method overriding, abstract classes.

UNIT IV:
Packages and Interfaces: Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring packages – Java.io, java.util.
UNIT V:
**Exception handling and multithreading** - Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, java built in exceptions, creating own exception sub classes. Differences between multi threading and multitasking, thread life cycle, creating threads, synchronizing threads.

UNIT VI:
**Event Handling** : Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes, inner classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, check box groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – boarder, grid, flow, card and grid bag.

UNIT VII:
**Applets** – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.

UNIT VIII:
**Networking** – Basics of network programming, addresses, ports, sockets, simple client server program, multiple clients, Java .het package, Enumerations, autoboxing, annotations, generics.

**TEXT BOOKS :**

1. Java; the complete reference, 7th edition, Herbert schildt, TMH.
2. Understanding OOP with Java, updated edition, T. Budd, Pearson Education.
REFERENCES:
2. An introduction to Java programming and object oriented application development, R.A. Johnson- Thomson.
The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages.

- Classify machines by their power to recognize languages.
- Employ finite state machines to solve problems in computing.
- Explain deterministic and non-deterministic machines.
- Comprehend the hierarchy of problems arising in the computer sciences.

UNIT I:
Fundamentals: Strings, Alphabet, Language, Operations, Finite state machine, definitions, finite automaton model, acceptance of strings, and languages, deterministic finite automaton and non deterministic finite automaton, transition diagrams and Language recognizers.

UNIT II:
Finite Automata: NFA with Ï transitions - Significance, acceptance of languages. Conversions and Equivalence: Equivalence between NFA with and without Ï transitions, NFA to DFA conversion, minimisation of FSM, equivalence between two FSM’s, Finite Automata with output-Moore and Melay machines.

UNIT III:
Regular Languages: Regular sets, regular expressions, identity rules, Constructing finite Automata for a given regular expressions, Conversion of Finite Automata to Regular expressions, Pumping lemma of regular sets, closure properties of regular sets (proofs not required).

UNIT IV:
Grammar Formalism: Regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and FA, inter conversion, Context free grammar, derivation trees, sentential forms, Right most and leftmost derivation of strings.
UNIT V :  

UNIT VI :  
Push Down Automata : Push down automata, definition, model, acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence. Equivalence of CFL and PDA, interconversion. (Proofs not required), Introduction to DCFL and DPDA.

UNIT VII :  
Turing Machine : Turing Machine, definition, model, design of TM, Computable functions, recursively enumerable languages, Church’s hypothesis, counter machine, types of Turing machines (proofs not required).

UNIT VIII  
Computability Theory : Chomsky hierarchy of languages, linear bounded automata and context sensitive language, LR(0) grammar, decidability of problems, Universal Turing Machine, undecidability of posts. Correspondence problem, Turing reducibility, Definition of P and NP problems, NP complete and NP hard problems.

TEXT BOOKS :  

REFERENCES :  
1. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.  
2. Introduction to languages and the Theory of Computation, John C Martin, TMH.  
B.Tech. II-II-Sem. (C.S.E)  
4 0  4

(9A05403) DESIGN AND ANALYSIS OF ALGORITHMS  
(Common to CSE, CSSE, IT)

UNIT I :  
Introduction: Algorithm, Psuedocode for expressing algorithms, 
Performance Analysis-Space complexity, Time complexity, Asymptotic 
Notation- Big oh notation, Omega notation, Theta notation and Little oh 
notation, Basics of probability theory , Amortized complexity

UNIT II :  
Disjoint Sets- disjoint set operations, union and find algorithms, 
spanning trees, connected components and biconnected components.

UNIT III :  
Divide and conquer: General method, applications-Binary search, Quick 
sort, Merge sort, Strassen’s matrix multiplication.

UNIT IV :  
Greedy method: General method, applications-Job sequencing with 
dead-lines, knapsack problem, Minimum-cost spanning trees, Single 
source shortest path.

UNIT V :  
Dynamic Programming: General method, applications-Matrix chain 
multiplication, Optimal binary search trees, 0/1 knapsack, All pairs 
shortest path ,The Travelling sales person problem, Reliability design.

UNIT VI :  
Backtracking: General method, applications-8-queen problem, sum of 
subsets, graph coloring, Hamiltonian cycles.

UNIT VII :  
Branch and Bound: General method, applications - Travelling sales 
person(*), 0/1 knapsack problem- LC Branch and Bound solution, FIFO 
Branch and Bound solution.
UNIT VIII :
NP-Hard and NP-Complete problems: Basic concepts, nondeterministic algorithms, The classes-NP-Hard and NPComplete , Cook’s theorem(*).

TEXT BOOKS :
2. Design and Analysis Algorithms - Parag Himanshu Dave, Himanshu Bhalchandra Dave Publisher: Pearson

REFERENCES :
5. Algorithms – Richard Johnsonbaugh and Marcus Schaefer, Pearson Education
Objectives:
- To make the student learn an object oriented way of solving problems.
- To teach the student to write programs in Java to solve the problems

Recommended Systems/Software Requirements:
- Intel based desktop PC with minimum of 166 MHZ or faster processor with atleast 64 MB RAM and 100 MB free disk space
- JDK Kit. Recommended

Week 1:
a) Write a Java program that prints all real solutions to the quadratic equation \( ax^2 + bx + c = 0 \). Read in \( a, b, c \) and use the quadratic formula. If the discriminant \( b^2 - 4ac \) is negative, display a message stating that there are no real solutions.

b) The Fibonacci sequence is defined by the following rule:
The fist two values in the sequence are 1 and 1. Every subsequent value is the sum of the two values preceding it. Write a Java program that uses both recursive and non recursive functions to print the nth value in the Fibonacci sequence.

Week 2:
a) Write a Java program that prompts the user for an integer and then prints out all prime numbers up to that integer.

b) Write a Java program to multiply two given matrices.

c) Write a Java Program that reads a line of integers, and then displays each integer, and the sum of all the integers (Use StringTokenizer class of java.util)
Week 3:
a) Write a Java program that checks whether a given string is a palindrome or not. Ex: MADAM is a palindrome.
b) Write a Java program for sorting a given list of names in ascending order.
c) Write a Java program to make frequency count of words in a given text.

Week 4:
a) Write a Java program that reads a file name from the user, then displays information about whether the file exists, whether the file is readable, whether the file is writable, the type of file and the length of the file in bytes.
b) Write a Java program that reads a file and displays the file on the screen, with a line number before each line.
c) Write a Java program that displays the number of characters, lines and words in a text file.

Week 5:
a) Write a Java program that:
   i) Implements stack ADT.
   ii) Converts infix expression into Postfix form
   iii) Evaluates the postfix expression

Week 6:
a) Develop an applet that displays a simple message.
b) Develop an applet that receives an integer in one text field, and computes its factorial Value and returns it in another text field, when the button named “Compute” is clicked.

Week 7:
Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -, *, % operations. Add a text field to display the result.

Week 8:
a) Write a Java program for handling mouse events.
Week 9:

a) Write a Java program that creates three threads. First thread displays “Good Morning” every one second, the second thread displays “Hello” every two seconds and the third thread displays “Welcome” every three seconds.

b) Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication.

Week 10:

Write a program that creates a user interface to perform integer divisions. The user enters two numbers in the textfields, Num1 and Num2. The division of Num1 and Num2 is displayed in the Result field when the Divide button is clicked. If Num1 or Num2 were not an integer, the program would throw a NumberFormatException. If Num2 were Zero, the program would throw an ArithmeticException. Display the exception in a message dialog box.

Week 11:

Write a Java program that implements a simple client/server application. The client sends data to a server. The server receives the data, uses it to produce a result, and then sends the result back to the client. The client displays the result on the console. For ex: The data sent from the client is the radius of a circle, and the result produced by the server is the area of the circle. (Use java.net)

Week 12:

a) Write a java program that simulates a traffic light. The program lets the user select one of three lights: red, yellow, or green. When a radio button is selected, the light is turned on, and only one light can be on at a time. No light is on when the program starts.

b) Write a Java program that allows the user to draw lines, rectangles and ovals.

Week 13:

a) Write a java program to create an abstract class named Shape that contains an empty method named numberOfSides(). Provide three classes named Trapezoid, Triangle and Hexagon such that each one of the classes extends the class Shape. Each one of the classes
contains only the method numberOfSides() that shows the number of sides in the given geometrical figures.

b) Suppose that a table named Table.txt is stored in a text file. The first line in the file is the header, and the remaining lines correspond to rows in the table. The elements are separated by commas. Write a java program to display the table using Jtable component.

TEXT BOOKS:
2. Introduction to Java programming, Sixth edition, Y.Daniel Liang, Pearson Education
Objective: This lab enables the students to practice the concepts learnt in the subject DBMS by developing a database for an example company named “Roadway Travels” whose description is as follows. The student is expected to practice the designing, developing and querying a database in the context of example database “Roadway travel”. Students are expected to use “Mysql” database.

**Roadway Travels**

"Roadway Travels" is in business since 1997 with several buses connecting different places in India. Its main office is located in Hyderabad.

The company wants to computerize its operations in the following areas:

- Reservations and Ticketing
- Cancellations

**Reservations:**

Reservations are directly handled by booking office. Reservations can be made 30 days in advance in either cash or credit. In case the ticket is not available, a wait listed ticket is issued to the customer. This ticket is confirmed against the cancellation.

**Cancellation and Modifications:**

Cancellations are also directly handed at the booking office. Cancellation charges will be charged. Wait listed tickets that do not get confirmed are fully refunded.

**Week1: E-R Model**

Analyze the problem carefully and come up with the entities in it. Identify what data has to be persisted in the database. This contains the entities, attributes etc.
Identify the primary keys for all the entities. Identify the other keys like candidate keys, partial keys, if any.

*The student is required to submit a document by writing the Entities and Keys.*

Example: **Entities:**

1. BUS
2. Ticket
3. Passenger

**PRIMARY KEY ATTRIBUTES:**

1. Ticket ID (Ticket Entity)
2. Passport ID (Passenger Entity)

Apart from the above mentioned entities you can identify more. The above mentioned are few.

**Week2: Concept design with E-R Model**

Relate the entities appropriately. Apply cardinalities for each relationship. Identify strong entities and weak entities (if any). Indicate the type of relationships (total / partial). Try to incorporate generalization, aggregation, specialization etc wherever required.

*The student is required to submit a document by drawing the E-R diagram.*

Example: **E-R diagram for bus**
**Week3: Relational Model**

Represent all the entities (Strong, Weak) in tabular fashion. Represent relationships in a tabular fashion. There are different ways of representing relationships as tables based on the cardinality. Represent attributes as columns in tables or as tables based on the requirement. Different types of attributes (Composite, Multivalued, and Derived) have different way of representation.

The student is required to submit a document by Represent relationships in a tabular fashion.

Example: The passenger tables look as below. This is an example. You can add more attributes based on your E-R model.

<table>
<thead>
<tr>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Passport ID</td>
</tr>
</tbody>
</table>

**Week4: Normalization**

Database normalization is a technique for designing relational database tables to minimize duplication of information and, in so doing, to safeguard the database against certain types of logical or structural problems, namely data anomalies. For example, when multiple instances of a given piece of information occur in a table, the possibility exists that these instances will not be kept consistent when the data within the table is updated, leading to a loss of data integrity. A table that is sufficiently normalized is less vulnerable to problems of this kind, because its structure reflects the basic assumptions for when multiple instances of the same information should be represented by a single instance only.

**Week5: Installation of Mysql and practicing DDL commands**

Installation of MySql. In this week you will learn Creating databases, How to create tables, altering the database, dropping tables and databases if not required. You will also try truncate, rename commands etc.
Example for creation of a table.

CREATE TABLE Passenger (  
    Passport id INTEGER PRIMARY KEY,
    Name    CHAR (50) NULL,
    Age     Integer,
    Sex     Char
);

Note: Detailed creation of tables is given at the end.

Week6: Practicing DML commands

DML commands are used to manage data within schema objects. Some examples:
- SELECT - retrieve data from the database
- INSERT - insert data into a table
- UPDATE - updates existing data within a table
- DELETE - deletes all records from a table, the space for the records remain

Inserting values into Bus table:
Insert into Bus values (1234,'Hyderabad', 'Tirupathi');
Insert into Bus values (2345,'Hyderabad', 'Bangalore');

Inserting values into Bus table:
Insert into Passenger values (1, 45,'ramesh', 45,'M','abc123');
Insert into Passenger values (2, 78,'geetha', 36,'F','abc124');

Few more Examples of DML commands:
Select * from Bus; (selects all the attributes and display)
UPDATE BUS SET Bus No = 1 WHERE BUS NO=2;

Week7: Querying
This week practice on queries (along with sub queries) using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints etc.
Practice the following Queries:
1. Display unique PNR_no of all passengers.
2. Display all the names of male passengers.
3. Display the ticket numbers and names of all the passengers.
4. Display the source and destination having journey time more than 10 hours.
5. Find the ticket numbers of the passengers whose name start with ‘A’ and ends with ‘H’.
6. Find the names of passengers whose age is between 30 and 45.
7. Display all the passengers names beginning with ‘A’
8. Display the sorted list of passengers names
9. Display the Bus numbers that travel on Sunday and Wednesday
10. Display the details of passengers who are traveling either in AC or NON_AC(Using only IN operator)

Week8 and week9: Querying (continued…)

This students practices on queries using Aggregate functions (COUNT, SUM, AVG, and MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.

- Write a Query to display the Information present in the Passenger and cancellation tables. **Hint:** Use UNION Operator.
- Write a Query to display different travelling options available in British Airways.
- Display the number of days in a week on which the 9W01 bus is available.
- Find number of tickets booked for each PNR_no using GROUP BY CLAUSE. **Hint:** Use GROUP BY on PNR_No.
- Find the distinct PNR numbers that are present.
- Find the number of tickets booked in each class where the number of seats is greater than 1. **Hint:** Use GROUP BY, WHERE and HAVING CLAUSES.
- Find the total number of cancelled seats.
- Write a Query to count the number of tickets for the buses, which travelled after the date '14/3/2009'. **Hint:** Use HAVING CLAUSES.
Week 10: Triggers
This week student works on Triggers. Creation of insert trigger, delete trigger, update trigger. Practice triggers using the above database.

Eg: CREATE TRIGGER updcheck BEFORE UPDATE ON passenger
    FOR EACH ROW
    BEGIN
    IF NEW.TickentNO > 60 THEN
        SET New.Tickent no = Ticket no;
    ELSE
        SET New.Ticketno = 0;
    END IF;
    END;

Week 11: Procedures
In this session the student learns Creation of stored procedure, Execution of procedure and modification of procedure. Practice procedures using the above database.

Eg: CREATE PROCEDURE myProc()
    BEGIN
    SELECT COUNT(Tickets) FROM Ticket WHERE age>=40;
    End;

Week 12: Cursors
Do the following: Declare a cursor that defines a result set. Open the cursor to establish the result set. Fetch the data into local variables as needed from the cursor, one row at a time. Close the cursor when done

CREATE PROCEDURE myProc(in_customer_id INT)
    BEGIN
    DECLARE v_id   INT;
    DECLARE v_name VARCHAR(30);
    DECLARE c1 CURSOR FOR SELECT stdId,stdFirstname
    FROM students WHERE stdId=in_customer_id;
    OPEN c1;
FETCH c1 into v_id, v_name;
Close c1;
END;

Tables
BUS
Bus No: Varchar: PK (public key)
Source : Varchar
Destination : Varchar

Passenger
PNR_No : Numeric(9) : PK
Ticket_No: Numeric (9)
Name: Varchar(15)
Age : int (4)
Sex:Char(10) : Male / Female
PPNO: Varchar(15)

Reservation
PNR_No: Numeric(9) : FK
Journey_date : datetime(8)
No_of_seats : int (8)
Address : Varchar (50)
Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer
Status: Char (2) : Yes / No

Cancellation
PNR_No: Numeric(9) : FK
Journey_date : datetime(8)
No_of_seats : int (8)
Address : Varchar (50)
Contact_No: Numeric (9) --> Should not be less than 9 and Should not accept any other character other than Integer
Status: Char (2) : Yes / No

Ticket
Ticket_No: Numeric (9): PK
Journey_date : datetime(8)
Age: int (4)
Sex: Char(10) : Male / Female
Source : Varchar
Destination : Varchar
Dep_time : Varchar

Text Books:
4. Oracle PL/SQL Programming, Steven Feuerstein, SPD.
5. SQL & PL/SQL for Oracle 10g, Black Book, Dr.P.S.Deshpande, Dream Tech.
6. Oracle Database 11g PL/SQL Programming, M.Mc Laughlin, TMH.
7. SQL Fundamentals, J.J.Patrick, Pearson Education.

****
(9A05501) PRINCIPLES OF PROGRAMMING LANGUAGES
(Common to CSE, ECM)

UNIT I

UNIT II
Syntax and Semantics: general Problem of describing Syntax and Semantics, formal methods of describing syntax, BNF, EBNF for common programming languages features, parse trees, ambiguous grammars, attribute grammars, Denotational semantics and axiomatic semantics for common programming language features.

UNIT III
Data types: Introduction, primitive, character, user defined, array, associative, record, union, pointer and reference types, design and implementation uses related to these types. Names, Variable, concept of binding, type checking, strong typing, type compatibility, named constants, variable initialization.

UNIT IV
Expressions and Statements: Arithmetic relational and Boolean expressions, Short circuit evaluation mixed mode assignment, Assignment Statements, Control Structures: Statement Level, Compound Statements, Selection, Iteration, Unconditional Statements, guarded commands.
UNIT V
Subprograms and Blocks: Fundamentals of sub-programs, Scope and lifetime of variable, static and dynamic scope, Design issues of subprograms and operations, local referencing environments, parameter passing methods, overloaded sub-programs, generic sub-programs, parameters that are sub-program names, design issues for functions user defined overloaded operators, co routines.

UNIT VI
Abstract Data types: Abstractions and encapsulation, introductions to data abstraction, design issues, language examples, C++ parameterized ADT, object oriented programming in small talk, C++, Java, C#, Ada 95, Concurrency: Subprogram level concurrency, semaphores, monitors, massage passing, Java threads, C# threads.

UNIT VII
Exception handling: Exceptions, exception Propagation, Exception handler in Ada, C++ and Java. Logic Programming Language: Introduction and overview of logic programming, basic elements of prolog, application of logic programming.

UNIT VIII

TEXT BOOKS:

REFERENCES:

3. LISP, Patric Henry Winston and Paul Horn, Pearson Education.
UNIT I

UNIT II

UNIT III
Requirements engineering process: Feasibility studies, Requirements elicitation and analysis, Requirements validation, Requirements management. System models: Context Models, Behavioral models, Data models, Object models, structured methods.

UNIT IV
Design Engineering: Design process and Design quality, Design concepts, the design model, pattern based software design. Creating an architectural design: software architecture, Data design, Architectural styles and patterns, Architectural Design, assessing alternative architectural designs, mapping data flow into software architecture.

UNIT V
Modeling component-level design: Designing class-based components, conducting component-level design, Object constraint language,
designing conventional components. Performing User interface design: Golden rules, User interface analysis and design, interface analysis, interface design steps, Design evaluation.

UNIT VI
Testing Strategies: A strategic approach to software testing, test strategies for conventional software, Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging. Product metrics: Software Quality, Frame work for Product metrics, Metrics for Analysis Model, Metrics for Design Model, Metrics for source code, Metrics for testing, Metrics for maintenance.

UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
UNIT I

UNIT II
Basic Raster Graphics Algorithms For Drawing 2D Primitives: Overview, Scan Converting Lines, Scan Converting Circles, Scan Converting Ellipses, Filling Rectangles, Filling Polygons, Filling Ellipse Arcs, Pattern Filling, Thick Primitives, Line Style and Pen Style, Clipping in a Raster World, Clipping Lines, Clipping Circles and Ellipses, Clipping Polygons, Generating Characters, SRGP Copy Pixel, Antialiasing.

UNIT III
UNIT IV

UNIT V
Representing Curves and Surfaces: Polygon Meshes, Parametric Cubic Curves, Parametric Bicubic Surfaces, Quadratic Surfaces.

UNIT VI

UNIT VII

UNIT VIII
TEXT BOOKS:

REFERENCES:
5. Computer Graphics, Steven Harrington, TMH
UNIT I
Overview of Compilation: Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for common programming language features, pass and Phases of translation, interpretation, bootstrapping, data structures in compilation – LEX lexical analyzer generator.

UNIT II
Top down Parsing: Context free grammars, Top down parsing – Backtracking, LL (1), recursive descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

UNIT III
Bottom up parsing: Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing, handling ambiguous grammar, YACC – automatic parser generator.

UNIT IV
Semantic analysis: Intermediate forms of source Programs – abstract syntax tree, polish notation and three address codes. Attributed grammars, Syntax directed translation, Conversion of popular Programming languages language Constructs into Intermediate code forms, Type checker.

UNIT V
Symbol Tables: Symbol table format, organization for block structures languages, hashing, tree structures representation of scope information. Block structures and non block structure storage allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings and records.
UNIT VI
Code optimization: Consideration for Optimization, Scope of Optimization, local optimization, loop optimization, frequency reduction, folding, DAG representation.

UNIT VII
Data flow analysis: Flow graph, data flow equation, global optimization, redundant sub expression elimination, Induction variable elements, Live variable analysis, Copy propagation.

UNIT VIII
Object code generation: Object code forms, machine dependent code optimization, register allocation and assignment generic code generation algorithms, DAG for register allocation.

TEXT BOOKS:

REFERENCES:
1. Lex & Yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
UNIT I
Operating Systems Overview: Operating systems functions, Overview of computer operating systems, protection and security, distributed systems, special purpose systems, operating systems structures: operating system services and systems calls, system programs, operating system structure, operating systems generation.

UNIT II

UNIT III
Concurrency: Process synchronization, the critical-section problem, Peterson’s Solution, synchronization Hardware, semaphores, classic problems of synchronization, monitors, Synchronization examples, atomic transactions. Case studies UNIX, Linux, Windows.

UNIT IV
Memory Management: Swapping, contiguous memory allocation, paging, structure of the page table, segmentation, virtual memory, demand paging, page-replacement, algorithms, Allocation of frames, Thrashing case studies UNIX, Linux, Windows.

UNIT V
Principles of deadlock: system model, deadlock characterization, deadlock prevention, detection and avoidance, recovery form deadlock.

UNIT VI
File system Interface: The concept of a file, Access Methods, Directory structure, File system mounting, File sharing, protection. File System implementation: File system structure, file system implementation,
directory implementation, allocation methods, free-space management, efficiency and performance, case studies. UNIX, Linux, Windows

UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
6. An Introduction to Operating Systems, P.C.P. Bhatt, PHI.
B.Tech. III-I-Sem. (C.S.E)  

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

(9A05506) COMPUTER NETWORKS  
(Common to CSE, IT)

UNIT I

UNIT II
The Data Link Layer: Data link Layer Design Issues, Elementry Data Link Protocols, Sliding Window Protocols.

UNIT III

UNIT IV

UNIT V
Internetworking, The Network Layer in the Internet.

UNIT VI
UNTI VII

UNTI VIII

TEXT BOOKS:

REFERENCES:
5. Computer and Communication Networks, Nader F. Mir, Pearson Education
1. Introduction

The Advanced English Language Skills Lab introduced at the 3rd year B.Tech level is considered essential for the student for focusing on his/her career. At this stage it is imperative for the student to start preparing for the ever growing competition in the job market. In this scenario, in order to be on par with the best, he/she needs to improve his/her Communication and soft skills.

This course focuses on the practical aspects of English incorporating all the four (LRSW) skills relevant to the requirements of the prospective employers in view of globalization. The proposed course will enable the students to perform the following:

- Intensive reading to improve comprehension and communication
- Attentive listening for better understanding
- Write project/research/technical reports
- Write Resume’ to attract attention
- Discuss ideas / opinions for better solutions
- Face interviews confidently
- Gather information, organize ideas, and present them effectively before an audience
- To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required ability to face computer-based competitive exams such GRE, TOEFL, CAT, GMAT etc.
2. Objectives:
Keeping in mind the previous exposure of the student to English, this lab focuses on improving the student’s proficiency in English at all levels. The lab intends to train students to use language effectively, to participate in group discussions, to help them face interviews, and sharpen public speaking skills and enhance the confidence of the student by exposing him/her to various situations and contexts which he/she would face in his/her career.

3 Syllabus
The following course content is prescribed for the Advanced Communication Skills Lab:

Reading Comprehension -- Reading for facts, guessing meanings from context, speed reading, scanning, skimming for building vocabulary(synonyms and antonyms, one word substitutes, prefixes and suffixes, idioms and phrases.)

Listening Comprehension-- Listening for understanding, so as to respond relevantly and appropriately to people of different backgrounds and dialects in various personal and professional situations.

Technical Report Writing—Types of formats and styles, subject matter, organization, clarity, coherence and style, data-collection, tools, analysis

Resume’ Writing—Structure, format and style, planning, defining the career objective, projecting one’s strengths, and skills, creative self marketing, cover letter

Group Discussion-- Communicating views and opinions, discussing, intervening, providing solutions on any given topic across a cross-section of individuals,(keeping an eye on modulation of voice, clarity, body language, relevance, fluency and coherence) in personal and professional lives.
Interview Skills—Concept and process, pre-interview planning, mannerisms, body language, organizing, answering strategies, interview through tele and video-conferencing

Technical Presentations (Oral)—Collection of data, planning, preparation, type, style and format, use of props, attracting audience, voice modulation, clarity, body language, asking queries.

4. Minimum Requirements
The English Language Lab shall have two parts:

The Computer aided Language Lab for 60 students with 60 systems, one master console, LAN facility and English language software for self-study by learners.

The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a TV, A digital stereo-audio and video system, Camcorder etc.

System Requirement (Hardware Component):
Computer network with LAN with a minimum of 60 multimedia systems with the following specifications:
P-IV Processor, Speed-2.8 GHz, RAM_512 MB minimum, Hard Disk-80 GB, Headphones

Prescribed Software: GLOBARENA
Books Suggested for English Language Lab Library (to be located within the lab in addition to the CDs of the text book which are loaded on the systems):

6. The ACE of Soft Skills by Gopal Ramesh and Mahadevan Ramesh, Pearson Education, 2010
9. From Campus To Corporate by KK Ramachandran and KK Karthick, Macmillan Publishers India Ltd, 2010
B.Tech. III-I-Sem. (C.S.E) T P C
(9A05507) COMPUTER NETWORKS and OPERATING SYSTEMS LAB

Objective:
- To understand the functionalities of various layers of OSI model
- To understand the operating system functionalities

System/Software Requirement
- Intel based desktop PCs LAN CONNECTED with minimum of 166 MHZ or faster processor with at least 64 MB RAM and 100 MB free disk space

Part - A
1. Implement the data link layer framing methods such as character, character stuffing and bit stuffing.
2. Implement on a data set of characters the three CRC polynomials – CRC 12, CRC 16 and CRC CCIP.
3. Implement Dijkstra’s algorithm to compute the shortest path through a graph.
4. Take an example subnet graph with weights indicating delay between nodes. Now obtain Routing table at each node using distance vector routing algorithm.
5. Take an example subnet of hosts. Obtain broadcast tree for it.
6. Take a 64 bit playing text and encrypt the same using DES algorithm.
7. Write a program to break the above DES coding.
8. Using RSA algorithm Encrypt a text data and Decrypt the same.

Part - B
1. Simulate the following CPU scheduling algorithms
   a) Round Robin b) SJF c) FCFS d) Priority
2. Simulate all file allocation strategies
   a) Sequential b) Indexed c) Linked
3. Simulate MVT and MFT.
4. Simulate all File Organization Techniques
   a) Single level directory b) Two level c) Hierarchical d) DAG
5. Simulate Bankers Algorithm for Dead Lock Avoidance.
7. Simulate all page replacement algorithms
   a) FIFO b) LRU c) LFU Etc. …
8. Simulate Paging Technique of memory management.
UNIT I
Introduction to UML: Importance of modeling, principles of modeling, object oriented modeling, conceptual model of the UML, Architecture, Software Development Life Cycle.

UNIT II
Basic Structural Modeling: Classes, Relationships, common Mechanisms, and diagrams.
Advanced Structural Modeling: Advanced classes, advanced relationships, Interfaces, Types and Roles, Packages.

UNIT III
Class & Object Diagrams: Terms, concepts, modeling techniques for Class & Object Diagrams.

UNIT IV

UNIT V
Basic Behavioral Modeling-II: Use cases, Use case Diagrams, Activity Diagrams.

UNIT VI
Advanced Behavioral Modeling: Events and signals, state machines, processes and Threads, time and space, state chart diagrams.

UNIT VII
Architectural Modeling: Component, Deployment, Component diagrams and Deployment diagrams.

UNIT VIII
Case Study: The Unified Library application.
TEXT BOOKS:

2. UML 2 Toolkit, Hans-Erik Eriksson, Magnus Penker, Brian Lyons, David Fado, WILEY-Dreamtech India Pvt. Ltd.

REFERENCES:

5. Learning UML 2.0, Russ Miles and Kim Hamilton, O’Reilly, SPD.
7. UML and C++, R.C.Lee and W.M.Tepfenhart, PHI.
10. Mark Priestley: Practical Object-Oriented Design with UML, TMH.
UNIT I
General Overview of the System: System structure, User perspective, Operating system services, Assumptions about hardware. Introduction to the Kernel: Architecture of the UNIX operating system, Introduction to system concepts, Kernel data structures, System administration.

UNIT II
The Buffer Cache: Buffer Headers, Structure of the buffer pool, Scenarios for retrieval of a buffer, Reading and writing disk blocks, Advantages and disadvantages of the buffer cache.

UNIT III
Internal Representation of Files: Inodes, Structure of a regular file, Directories, Conversion of a path name to an Inode, Super block, Inode assignment to a new file, Allocation of disk blocks, Other file types.

UNIT IV
System Calls for the File System: Open, Read, Write, File and record locking, Adjusting the position of file I/O, Close, File creation, Creation of special files, Change directory and change root, Change owner and change mode, Stat and Fstat, Pipes, Dup, Mount and Unmounting file systems, Link, Unlink, File system abstractions, File system maintenance.

UNIT V
Structure of Processes: Process states and transitions, Layout of system memory, Context of a process, Saving the context of a process, Manipulation of the process address space, Sleep.

UNIT VI
UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
2. Understanding the LINUX Kernel, Daniel P. Bovet and Marco cesati, O’REILLY Publications, 2005
(9A05603) OPTIMIZING TECHNIQUES
(Common to CSE, CSSE)

UNIT I

UNIT II
Functions of a Several Variables: Optimality Criteria, Direct-Search Methods, Gradient Based Methods, Comparison of Methods and Numerical Results.

UNIT III

UNIT IV

UNIT V
UNIT VI

UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
UNIT-I
INTRODUCTION
Architecture of 8086 microprocessor, special functions of general purpose registers. 8086 flag register and function of 8086 flags, addressing modes of 8086, instruction set of 8086, assembler directives, simple programs, procedures and macros.

UNIT-II
ASSEMBLY LANGUAGE PROGRAMMING
Assembly language programs involving logical, branch and call instructions, sorting, evaluation of arithmetic expressions, string manipulation.

UNIT-III
ARCHITECTURE OF 8086 & INTERFACING
Pin diagram of 8086-Minimum mode and maximum mode of operation, Timing diagram, memory interfacing to 8086 (static RAM and EPROM). Need for DMA. DMA data transfer method. Interfacing with 8237/8257.

UNIT-IV
PROGRAMMABLE INTERFACING DEVICES

UNIT-V
SERIAL DATA TRANSFER SCHEMES
Asynchronous and synchronous data transfer schemes. 8251 USART architecture and interfacing. TTL to RS232C and RS232C to TTL
conversion. Sample program of serial data transfer. Introduction to high-speed serial communications standards, USB.

UNIT-VI
PROGRAMMABLE INTERRUPT CONTROLLERS
PIC 8259, Programming with 8259, Programmable interval timer 8253, Modes of 8253, Programming examples with 8253.

UNIT-VII
8051 MICROCONTROLLER AND ITS PROGRAMMING

UNIT-VIII
ADVANCED MICROCONTROLLERS

TEXT BOOKS:


REFERENCES:

3. Micro computer system 8066/8088 family Architecture, programming and Design-By Liu and GA Gibson, PHI, 2nd Ed.
UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
UNIT VI
Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic commit protocols, Concurrency control in distributed transactions, Distributed deadlocks, Transaction recovery, Replication-Introduction, System model and group communication, Fault tolerant services, Transactions with replicated data.

UNIT VII
Security: Introduction, Overview of Security techniques, Cryptographic algorithms, Digital signatures, Case studies-Kerberos, TLS, 802.11 WiFi.

UNIT VIII
Distributed shared memory, Design and Implementation issues, Sequential consistency and Ivy case study, Release consistency and Munin case study, Other consistency models, CORBA case study: Introduction, CORBA RMI, CORBA Services.

TEXT BOOKS:

REFERENCES:
UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Knowledge Representation: Ontological Engineering, Categories and Objects, Actions, Situations, and Events, Mental Events and Mental Objects, The Internet Shopping World, Reasoning Systems for
Categories, Reasoning with Default Information, Truth Maintenance Systems.

UNIT VI

UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
2. Introduction to Artificial Intelligence, Eugene Charniak and Drew McDermott, Pearson Education.
I. Microprocessor 8086:
   1. Introduction to MASM/TASM.
   2. Arithmetic operation – Multi byte Addition and Subtraction, Multiplication and Division – Signed and unsigned Arithmetic operation, ASCII – arithmetic operation.
   3. Logic operations – Shift and rotate – Converting packed BCD to unpacked BCD, BCD to ASCII conversion.
   4. By using string operation and Instruction prefix: Move Block, Reverse string, Sorting, Inserting, Deleting, Length of the string, String comparison.
   5. DOS/BIOS programming: Reading keyboard (Buffered with and without echo) – Display characters, Strings.

II. Interfacing:
   1. 8259 – Interrupt Controller: Generate an interrupt using 8259 timer.
   2. 8279 – Keyboard Display: Write a small program to display a string of characters.
   3. 8255 – PPI: Write ALP to generate sinusoidal wave using PPI.
   4. 8251 – USART: Write a program in ALP to establish Communication between two processors.

III. Microcontroller 8051
   1. Reading and Writing on a parallel port.
   2. Timer in different modes.
   3. Serial communication implementation.

Equipment required for Laboratories:
   1. 8086 µP Kits
2. 8051 Micro Controller kits
3. Interfaces/peripheral subsystems
   i) 8259 PIC
   ii) 8279- KB/Display
   iii) 8255 PPI
   iv) 8251 USART
4. ADC Interface
5. DAC Interface
6. Traffic Controller Interface
7. Elevator Interface
UNIX INTERNALS LAB

1. Program on process creation and Execution
   a. To display Environment variables.
   b. To implement Different types of exec functions.

2. Write a program
   a. To Opening a stream
   b. To Read and Write a stream
   c. To Position a Stream

3. Write a program to
   a. Create a file
   b. Add record to file
   c. Modify records
   d. Delete records
   e. Find status and mode value of a file

4. Write a Program that takes certain file names along the command line arguments and remove if there exists any duplicates.

5. Write a Program to find whether a file is having read, write, execute permissions and also check whether a given name is file or directory.

6. Write a program to create a chain of Processes.

7. Write a program to
   a. Create the semaphores
   b. Set values to semaphores
   c. Get the values from the semaphores
   d. Remove semaphores

8. Write a program to implement various operations on Message Queues.

9. Write a program to demonstrate
   a. Signal handling
   b. Terminal I/O

10. Perform Socket Programming Using
    a. UDP socket
    b. TCP socket
11. Write a program to
   a. Create a shared memory
   b. Write to shared memory
   c. Read from shared memory
12. Write a program to create two pipes.
13. Write a program which takes a source file name and directory name as command line argument and print a message ‘YES’, if the file is found in the given directory.
14. Design a directory structure that improves the efficiency of searching for pathnames by avoiding the linear search
15. Implement free disk block list with a bitmap instead of linked list.
16. Design a scheme that reduces the number of directory searches for file names by caching frequently used names.
17. Redesign getblk and brelse where the kernel follows a FIFO scheme instead of LRU.
18. Design algorithm for allocating and freeing memory page and page tables Many process can sleep on an address but the kernel may want to wakeup selected processes that receive a signal assuming that the signal mechanism can identify the particular processes, remodify the wakeup algorithm so that only one process is woken up on a sleep address instead of all the processes.
19. Implement a new system call newpgrp(PID, ngrp), that resets the process group of another process identified by the process ID PID to ngrp.
20. Implement a new system call nowait(PID) where PID identifies a child of the process issuing the call when issuing the call the process informs the kernel that it will never wait for the child process to exit, so that the kernel can immediately cleanup the child process slot when the child dies.
UNIT I
Introduction to Web Technologies: Introduction to Web servers like Apache 1.1, IIS, XAMPP (Bundle Server), WAMP (Bundle Server), Handling HTTP Request and Response, installations of above servers.

UNIT II
Introduction to PHP: The problem with other Technologies (Servelets and JSP), Downloading, installing, configuring PHP, Programming in a Web environment and The anatomy of a PHP Page.

UNIT III
Overview of PHP Data types and Concepts: Variables and data types, Operators, Expressions and Statements, Strings, Arrays and Functions.

UNIT IV
Overview of Classes, Objects, and Interfaces: Creating instances using Constructors, Controlling access to class members, Extending classes, Abstract classes and methods, using interfaces, Using class destructors, File Handling and Using Exceptions.

UNIT V

UNIT VII
Creating and Using Forms: Understanding Common Form Issues, GET vs. POST, Validating form input, Working with multiple forms, and Preventing Multiple Submissions of a form.
UNIT VII
PHP and Database Access: Basic Database Concepts, Connecting to a MYSQL database, Retrieving and Displaying results, Modifying, Updating and Deleting data. MVC architecture.

UNIT VIII
PHP and Other Web Technologies: PHP and XML, PHP and AJAX

TEXT BOOKS:

REFERENCES:
1. Open Source Web Development with LAMP using Linux, Apache, MySQL, Perl and PHP, J.Lee and B.Ware(Addison Wesley) Pearson Education.
3. PHP 5.1, I. Bayross and S.Shah, The X Team, SPD.
4. PHP and MySQL by Example, E.Quigley, Prentice Hall(Pearson).
5. PHP Programming solutions, V.Vaswani, TMH.
UNIT I
Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs.

UNIT II
Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and Achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT III
Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing.

UNIT IV
Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT V
Paths, Path products and Regular expressions: path products & path expression, reduction Procedure, applications, regular expressions & flow anomaly detection.

UNIT VI
Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT VII
State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.
UNIT VIII
Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like JMeter or Win-runner).

TEXT BOOKS:

REFERENCES:
1. The craft of software testing - Brian Marick, Pearson Education.
7. Software Testing, M.G.Limaye, TMH.
UNIT I: INTRODUCTION TO MANAGERIAL ECONOMICS
Definition, nature and scope of managerial economics- relation with other disciplines- Demand Analysis: Demand Determinants, Law of Demand and its exceptions

UNIT II: ELASTICITY OF DEMAND
Definition, Types, Measurement and Significance of Elasticity of Demand. Demand forecasting, factors governing demand forecasting, methods of demand forecasting (Survey methods, Statistical methods, Expert opinion method, Test marketing, Controlled experiments, Judgmental approach to Demand Forecasting)

UNIT III: THEORY OF PRODUCTION AND COST ANALYSIS
Production Function – Isoquants and Isocosts, MRTS, least cost combination of inputs, Cobb-Douglas production function, laws of returns, internal and external economies of scale.
Cost Analysis: Cost concepts, opportunity cost, fixed Vs variable costs, explicit costs Vs Implicit costs, out of pocket costs Vs Imputed costs. Break-Even Analysis (BEA) - Determination of Break Even Point (Simple Problems)- Managerial significance and limitations of BEA.

UNIT IV: INTRODUCTION TO MARKETS AND PRICING POLICIES
Market structures: Types of competition, features of perfect competition, monopoly- monopolistic competition. Price-Output determination under perfect competition and monopoly - Methods of Pricing-cost plus pricing, marginal cost, limit pricing, skimming pricing, bundling pricing, sealed bid pricing and peak load pricing.
UNIT V: BUSINESS ORGANISATIONS AND NEW ECONOMIC ENVIRONMENT
Characteristic features of business, features and evaluation of sole proprietorship, partnership, Joint Stock Company, public enterprises and their types, changing business environment in post-liberalization scenario.

UNIT VI: CAPITAL AND CAPITAL BUDGETING
Capital and its significance, types of capital, estimation of fixed and working capital requirements, methods and sources of raising finance. Nature and scope of capital budgeting, features of capital budgeting proposal, methods of capital budgeting – payback method, accounting rate of return (ARR) and Net present value method (Simple problems).

UNIT VII: INTRODUCTION TO FINANCIAL ACCOUNTING

UNIT VIII: FINANCIAL ANALYSIS THROUGH RATIOS
Computation, Analysis and Interpretation of financial statements through Liquidity Ratios (Current and Quick ratio), Activity ratios (Inventory Turnover Ratio and Debtor Turnover Ratio), Capital Structure Ratios (Debt- Equity Ratio, Interest Coverage Ratio) and Profitability ratios (Gross Profit Ratio, Net Profit Ratio, Operating Ratio, P/E Ratios and EPS), Du Pont Chart.

TEXT BOOKS:

REFERENCES
5. H.L. Ahuja: Managerial Economics, S.Chand, 3/e, 2009
UNIT I
Introduction: The different forms of computing, The strengths and weaknesses of Distributed computing, Operating system concepts relevant to distributed computing, the architecture of distributed applications. Paradigms for Distributed Applications, choosing a Paradigm for an application (trade-offs).

UNIT II
Parallel computing overview, parallel programming models and Paradigms.

UNIT III
Cluster computing: Introduction, Cluster Architecture, Applications of Clusters.

UNIT IV

UNIT V
Merging the Grid services Architecture with the Web Services Architecture.

UNIT VI
Open Grid Service Architecture: Introduction, Architecture and Goal, Sample Use cases: Commercial Data Center, National Fusion Collaboratory, Online Media and Entertainment. OGSA platform Components, Open Grid Services Infrastructure.
UNIT VII
Globus GT3 Toolkit: Architecture, Programming Model.

UNIT VIII
A sample implementation, High Level services, OGSI.NET Middleware Solutions.

TEXT BOOKS:

REFERENCES:
UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
UNIT VI
Scalable, Multithreaded, and Dataflow Architectures: Latency, Hiding Techniques, Principles of Multithreading, Fine-Grain Multicomputers, Scalable and Multithreaded Architectures, Dataflow and Hybrid Architectures.

UNIT VII
Instruction Level Parallelism: Introduction, Basic Design Issues, Problem Definition, Model of a Typical Processor, Operand Forwarding, Reorder Buffer, Register Renaming-Tomasulo’s Algorithm, Branch Prediction, Limitations in Exploiting Instruction Level Parallelism, Thread Level Parallelism.

UNIT VIII

TEXT BOOKS:

REFERENCES:
3. Computer Architecture and Parallel Processing by Hwang and Briggs.
UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Pattern Types: Architectural Patterns, Structural Patterns, Patterns for Distribution, Patterns for Interactive Systems.

UNIT VI
UNIT VII
Architectural Description Languages: ADL’s today, capturing Architectural Information in an ADL, Application of ADL’s in system Development, Choosing an ADL, Example of ADL.

UNIT VIII

TEXT BOOKS:
1. S/W Arch. Perspective: on an Emerging Discipline, Mary Show, David Garlan, 1996, PHI.

REFERENCES:
3. Introduction to Team Software Process, W.Humphery, 2002, PEA.
6. Design Patterns, Gamma et al, 1995, PEA.
8. Software Architecture, Shaw, gamma, 1996, PHI.
UNIT I
Introduction: Fundamentals of data mining, Data Mining Functionalities, Classification of Data Mining systems, Data Mining Task Primitives, Integration of a Data Mining System with a Database or a Data Warehouse System, Major issues in Data Mining. Data Preprocessing: Need for Preprocessing the Data, Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation.

UNIT II
Data Warehouse and OLAP Technology for Data Mining: Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Further Development of Data Cube Technology, From Data Warehousing to Data Mining. Data Cube Computation and Data Generalization: Efficient Methods for Data Cube Computation, Further Development of Data Cube and OLAP Technology, Attribute-Oriented Induction.

UNIT III
Mining Frequent Patterns, Associations and Correlations: Basic Concepts, Efficient and Scalable Frequent Itemset Mining Methods, Mining various kinds of Association Rules, From Association Mining to Correlation Analysis, Constraint-Based Association Mining.

UNIT IV
Classification and Prediction: Issues Regarding Classification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Rule-Based Classification, Classification by Backpropagation, Support Vector Machines, Associative Classification, Lazy Learners, Other Classification Methods, Prediction, Accuracy and Error measures, Evaluating the accuracy of a Classifier or a Predictor, Ensemble Methods.
UNIT V
Cluster Analysis Introduction : Types of Data in Cluster Analysis, A Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods, Density-Based Methods, Grid-Based Methods, Model-Based Clustering Methods, Clustering High-Dimensional Data, Constraint-Based Cluster Analysis, Outlier Analysis.

UNIT VI
Mining Streams, Time Series and Sequence Data: Mining Data Streams, Mining Time-Series Data, Mining Sequence Patterns in Transactional Databases, Mining Sequence Patterns in Biological Data, Graph Mining, Social Network Analysis and Multirelational Data Mining.

UNIT VII
Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects, Spatial Data Mining, Multimedia Data Mining, Text Mining, Mining the World Wide Web.

UNIT VIII
Applications and Trends in Data Mining: Data Mining Applications, Data Mining System Products and Research Prototypes, Additional Themes on Data Mining and Social Impacts of Data Mining.

TEXT BOOKS:
2. Introduction to Data Mining – Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Pearson Education.

REFERENCES:
4. Data Warehousing Fundamentals, Paulraj Ponnaiah Wiley Student Edition
5. The Data Warehouse Life cycle Tool kit, Ralph Kimball Wiley Student edition
7. Data Mining Introductory and advanced topics, Margaret H Dunham, Pearson Education
UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
UNIT VI

UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
5. Software Project Management from Concept to Development, Kaeron Conway, Dream Tech.
UNIT I

UNIT II

UNIT III

UNIT IV
SNMP Management: SNMPv2, Major Changes in SNMPv2, SNMPv2 System Architecture, SNMPv2 Structure of Management Information, SNMPv2 Management Information Base, SNMPv2 Protocol.

UNIT V
UNIT VI
SNMP Management: RMON, Remote Monitoring, RMON SMI and MIB, RMON1, RMON2, A Case Study on Internet Traffic.

UNIT VII
Some Current Network Management Topics: Web-Based Management, XML-Based Network Management.

UNIT VIII
Additional topics in Networks Management, Distributed Network Management, Reliable and Fault Tolerant Network Management.

TEXT BOOKS:

REFERENCES:
1. Practical Guide to SNMPv3 and Network Management, David Zeltserman, PHI.
3. Network management, Morris, Pearson Education.
5. Distributed Network Management, Paul, John Wiley.
UNIT I

UNIT II

UNIT III

UNIT IV

UNIT V
Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, S/MIME.

UNIT VI
UNIT VII

UNIT VIII

TEXT BOOKS:

REFERENCES:
1. Information Security, Markow, Breithaupt, Pearson Education.
Objective:
To create a fully functional website with mvc architecture. To Develop an online Book store using we can sell books (Ex. amazon.com).

Hardware and Software required:
1. A working computer system with either Windows or Linux
2. A web browser either IE or firefox
3. Apache web server or IIS Webserver
4. XML editor like Altova Xml-spy [www.Altova.com/XMLSpy – free], Stylusstudio, etc.,
5. A database either Mysql or Oracle
6. JVM(Java virtual machine) must be installed on your system
7. BDK(Bean development kit) must be also be installed

Week-1:
Design the following static web pages required for an online book store web site.

1) HOME PAGE:
The static home page must contain three frames.

Top frame: Logo and the college name and links to Home page, Login page, Registration page, Catalogue page and Cart page (the description of these pages will be given below).
Left frame: At least four links for navigation, which will display the catalogue of respective links.
For e.g.: When you click the link “CSE” the catalogue for CSE Books should be displayed in the Right frame.
Right frame: The pages to the links in the left frame must be loaded here. Initially this page contains description of the web site.
### Description of the Web Site

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td></td>
</tr>
</tbody>
</table>

| CSE  | ECE  | EEE  | CIVIL |

#### 2) LOGIN PAGE:

This page looks like below:

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td><strong>Login</strong></td>
</tr>
</tbody>
</table>

| CSE  | ECE  | EEE  | CIVIL |

```
Login :
Password:
```

```
Submit  Reset
```
2. Author Name.
3. Publisher.
5. Add to cart button.

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Login</td>
</tr>
<tr>
<td>CSE</td>
<td><img src="image" alt="XML Bible" /></td>
</tr>
<tr>
<td>ECE</td>
<td><img src="image" alt="AI" /></td>
</tr>
<tr>
<td>EEE</td>
<td><img src="image" alt="Java 2" /></td>
</tr>
<tr>
<td>CIVIL</td>
<td><img src="image" alt="HTML" /></td>
</tr>
</tbody>
</table>

Note: Week 2 contains the remaining pages and their description.

**Week-2:**

**4) CART PAGE:**
The cart page contains the details about the books which are added to the cart.
The cart page should look like this:

<table>
<thead>
<tr>
<th>Logo</th>
<th>Web Site Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Login</td>
</tr>
<tr>
<td></td>
<td>Registration</td>
</tr>
<tr>
<td></td>
<td>Catalogue</td>
</tr>
<tr>
<td></td>
<td>Cart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSE</th>
<th>Book name</th>
<th>Price</th>
<th>Quantity</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE</td>
<td>Java 2</td>
<td>$35.5</td>
<td>2</td>
<td>$70</td>
</tr>
<tr>
<td>EEE</td>
<td>XML bible</td>
<td>$40.5</td>
<td>1</td>
<td>$40.5</td>
</tr>
</tbody>
</table>

Total amount: $130.5

5) REGISTRATION PAGE:

Create a “registration form “with the following fields:

1) Name (Text field)
2) Password (password field)
3) E-mail id (text field)
4) Phone number (text field)
5) Sex (radio button)
6) Date of birth (3 select boxes)
7) Languages known (check boxes – English, Telugu, Hindi, Tamil)
8) Address (text area)

WEEK 3:

VALIDATION:
Write JavaScript to validate the following fields of the above registration page.

1. Name (Name should contains alphabets and the length should not be less than 6 characters).
2. Password (Password should not be less than 6 characters length).
3. E-mail id (should not contain any invalid and must follow the standard pattern name@domain.com)
4. Phone number (Phone number should contain 10 digits only).

Note: You can also validate the login page with these parameters.

**Week-4:**

Design a web page using **CSS (Cascading Style Sheets)** which includes the following:
1) Use different font, styles:
   In the style definition you define how each selector should work (font, color etc.). Then, in the body of your pages, you refer to these selectors to activate the styles.

For example:

```html
<HTML>
<HEAD>
<style type="text/css">
.B.headline {color:red, font-size:22px, font-family:arial, text-decoration:underline}
</style>

</HEAD>

<BODY>
<b>This is normal bold</b><br>
Selector {cursor:value}

For example:

<html>
<head>
<style type="text/css">
.xlink {cursor:crosshair}
.hlink{cursor:help}
</style>
</head>
<body>
```
2) Set a background image for both the page and single elements on the page. You can define the background image for the page like this:

BODY {background-image:url(myimage.gif),}

3) Control the repetition of the image with the background-repeat property. As background-repeat: repeat Tiles the image until the entire page is filled, just like an ordinary background image in plain HTML.

4) Define styles for links as
   A:link
   A:visited
   A:active
   A:hover

Example:

   <style type="text/css">
   A:link {text-decoration: none}
   A:visited {text-decoration: none}
   A:active {text-decoration: none}
   A:hover {text-decoration: underline, color: red,}
   </style>
5) Work with layers:
For example:
LAYER 1 ON TOP:
<div style="position:relative, font-size:50px, z-index:2;">LAYER 1</div> <div style="position:relative, top:-50, left:5, color:red, font-size:80px, z-index:1">LAYER 2</div>

LAYER 2 ON TOP:
<div style="position:relative, font-size:50px, z-index:3;">LAYER 1</div> <div style="position:relative, top:-50, left:5, color:red, font-size:80px, z-index:4">LAYER 2</div>

6) Add a customized cursor:
Selector {cursor:value}
For example:

```html
<html>
<head>
<style type="text/css">
.xlink {cursor:crosshair}
.hlink{cursor:help}
</style>
</head>

<body>
<b>
<a href="mypage.htm" class="xlink">CROSS LINK</a>
<br>
<a href="mypage.htm" class="hlink">HELP LINK</a>
</b>
</body>
</html>
```
**Week-5:**

Write an XML file which will display the Book information which includes the following:

1) Title of the book
2) Author Name
3) ISBN number
4) Publisher name
5) Edition
6) Price

Write a Document Type Definition (DTD) to validate the above XML file.

Display the XML file as follows.
The contents should be displayed in a table. The header of the table should be in color GREY. And the Author names column should be displayed in one color and should be capitalized and in bold. Use your own colors for remaining columns.

Use XML schemas XSL and CSS for the above purpose.

Note: Give at least for 4 books. It should be valid syntactically.

Hint: You can use some xml editors like XML-spy

**Week-6:**

**VISUAL BEANS:**

Create a simple visual bean with a area filled with a color.
The shape of the area depends on the property shape. If it is set to true then the shape of the area is Square and it is Circle, if it is false.
The color of the area should be changed dynamically for every mouse click. The color should also be changed if we change the color in the “property window “.

**Week-7:**

1) Install IIS web server and APACHE. 
   While installation assign port number 4040 to IIS and 8080 to APACHE. Make sure that these ports are available i.e., no other process is using this port.

2) Access the above developed static web pages for books web site, using these servers by putting the web pages developed in week-1
and week-2 in the document root.
Access the pages by using the urls:
http://localhost:4040/rama/books.html (for tomcat)
http://localhost:8080/books.html (for Apache)

**Week-8:**

**User Authentication:**
Assume four users user1, user2, user3, and user4 having the passwords pwd1, pwd2, pwd3, and pwd4 respectively. Write a PHP for doing the following.
1. Create a Cookie and add these four user id’s and passwords to this Cookie.
2. Read the user id and passwords entered in the Login form (week1) and authenticate with the values (user id and passwords) available in the cookies.
If he is a valid user (i.e., user-name and password match) you should welcome him by name(user-name) else you should display “You are not an authenticated user”.
Use init-parameters to do this.

**Week-9:**
Install a database (Mysql or Oracle).
Create a table which should contain at least the following fields: name, password, email-id, phone number (these should hold the data from the registration form).

Write a PHP program to connect to that database and extract data from the tables and display them. Experiment with various SQL queries.
Insert the details of the users who register with the web site, whenever a new user clicks the submit button in the registration page (week2).

**Week-10:**
Write a PHP which does the following job:
Insert the details of the 3 or 4 users who register with the web site (week9) by using registration form. Authenticate the user when he submits the login form using the user name and password from the database (similar to week8 instead of cookies).
Week-11:
Create tables in the database which contain the details of items (books in our case like Book name, Price, Quantity, Amount) of each category. Modify your catalogue page (week 2) in such a way that you should connect to the database and extract data from the tables and display them in the catalogue page using PHP.

Week-12:
HTTP is a stateless protocol. Session is required to maintain the state. The user may add some items to cart from the catalog page. He can check the cart page for the selected items. He may visit the catalogue again and select some more items. Here our interest is the selected items should be added to the old cart rather than a new cart. Multiple users can do the same thing at a time (i.e., from different systems in the LAN using the ip-address instead of localhost). This can be achieved through the use of sessions. Every user will have his own session which will be created after his successful login to the website. When the user logs out his session should get invalidated (by using the method session.invalidate()). Modify your catalogue and cart PHP pages to achieve the above mentioned functionality using sessions.

Data Mining

Credit Risk Assessment

Description: The business of banks is making loans. Assessing the credit worthiness of an applicant is of crucial importance. You have to develop a system to help a loan officer decide whether the credit of a customer is good, or bad. A bank's business rules regarding loans must consider two opposing factors. On the one hand, a bank wants to make as many loans as possible. Interest on these loans is the bank's profit source. On the other hand, a bank cannot afford to make too many bad loans. Too many bad loans could lead to the collapse of the bank. The bank's loan policy must involve a compromise: not too strict, and not too lenient.
To do the assignment, you first and foremost need some knowledge about the world of credit. You can acquire such knowledge in a number of ways.

1. Knowledge Engineering. Find a loan officer who is willing to talk. Interview her and try to represent her knowledge in the form of production rules.

2. Books. Find some training manuals for loan officers or perhaps a suitable textbook on finance. Translate this knowledge from text form to production rule form.

3. Common sense. Imagine yourself as a loan officer and make up reasonable rules which can be used to judge the credit worthiness of a loan applicant.

4. Case histories. Find records of actual cases where competent loan officers correctly judged when, and when not to, approve a loan application.

The German Credit Data:
Actual historical credit data is not always easy to come by because of confidentiality rules. Here is one such dataset, consisting of 1000 actual cases collected in Germany. credit dataset (original) Excel spreadsheet version of the German credit data (Download from web).
In spite of the fact that the data is German, you should probably make use of it for this assignment. (Unless you really can consult a real loan officer!)

A few notes on the German dataset:
• DM stands for Deutsche Mark, the unit of currency, worth about 90 cents Canadian (but looks and acts like a quarter).
• owns_telephone. German phone rates are much higher than in Canada so fewer people own telephones.
• foreign_worker. There are millions of these in Germany (many from Turkey). It is very hard to get German citizenship if you were not born of German parents.
• There are 20 attributes used in judging a loan applicant. The goal is to classify the applicant into one of two categories, good or bad.

Subtasks: (Turn in your answers to the following tasks)
1. List all the categorical (or nominal) attributes and the real-valued attributes separately.

2. What attributes do you think might be crucial in making the credit assessment? Come up with some simple rules in plain English using your selected attributes.

3. One type of model that you can create is a Decision Tree - train a Decision Tree using the complete dataset as the training data. Report the model obtained after training.

4. Suppose you use your above model trained on the complete dataset, and classify credit good/bad for each of the examples in the dataset. What % of examples can you classify correctly? (This is also called testing on the training set) Why do you think you cannot get 100% training accuracy?

5. Is testing on the training set as you did above a good idea? Why or Why not?

6. One approach for solving the problem encountered in the previous question is using cross-validation. Describe what is cross-validation briefly. Train a Decision Tree again using cross-validation and report your results. Does your accuracy increase/decrease? Why? (10 marks)

7. Check to see if the data shows a bias against "foreign workers" (attribute 20), or "personal-status" (attribute 9). One way to do this (perhaps rather simple minded) is to remove these attributes from the dataset and see if the decision tree created in those cases is significantly different from the full dataset case which you have already done. To remove an attribute you can use the preprocess tab in Weka's GUI Explorer. Did removing these attributes have any significant effect? Discuss.

8. Another question might be, do you really need to input so many attributes to get good results? Maybe only a few would do. For example, you could try just having attributes 2, 3, 5, 7, 10, 17 (and
21, the class attribute (naturally)). Try out some combinations. (You had removed two attributes in problem 7. Remember to reload the arff data file to get all the attributes initially before you start selecting the ones you want.)

9. Sometimes, the cost of rejecting an applicant who actually has a good credit (case 1) might be higher than accepting an applicant who has bad credit (case 2). Instead of counting the misclassifications equally in both cases, give a higher cost to the first case (say cost 5) and lower cost to the second case. You can do this by using a cost matrix in Weka. Train your Decision Tree again and report the Decision Tree and cross-validation results. Are they significantly different from results obtained in problem 6 (using equal cost)?

10. Do you think it is a good idea to prefer simple decision trees instead of having long complex decision trees? How does the complexity of a Decision Tree relate to the bias of the model?

11. You can make your Decision Trees simpler by pruning the nodes. One approach is to use Reduced Error Pruning - Explain this idea briefly. Try reduced error pruning for training your Decision Trees using cross-validation (you can do this in Weka) and report the Decision Tree you obtain? Also, report your accuracy using the pruned model. Does your accuracy increase?

12. (Extra Credit): How can you convert a Decision Trees into "if-then-else rules". Make up your own small Decision Tree consisting of 2-3 levels and convert it into a set of rules. There also exist different classifiers that output the model in the form of rules - one such classifier in Weka is rules.PART, train this model and report the set of rules obtained. Sometimes just one attribute can be good enough in making the decision, yes, just one! Can you predict what attribute that might be in this dataset? OneR classifier uses a single attribute to make decisions (it chooses the attribute based on minimum error). Report the rule obtained by training a one R classifier. Rank the performance of j48, PART and oneR.
Task Resources:

Andrew Moore's Data Mining Tutorials (See tutorials on Decision Trees and Cross Validation)

- Decision Trees (Source: Tan, MSU)
- Tom Mitchell's book slides (See slides on Concept Learning and Decision Trees)
- Weka resources:
  - Introduction to Weka (html version) (download ppt version)
  - Download Weka
  - Weka Tutorial
  - ARFF format
  - Using Weka from command line
Software Testing
(Common to CSE, IT)

1. Write programs in ‘C’ Language to demonstrate the working of the following constructs:
   i) do...while ii) while….do iii) if…else iv) switch v) for

2. “A program written in ‘C’ language for Matrix Multiplication fails”
   Introspect the causes for its failure and write down the possible reasons for its failure.

3. Take any system (e.g. ATM system) and study its system specifications and report the various bugs.

4. Write the test cases for any known application (e.g. Banking application)

5. Create a test plan document for any application (e.g. Library Management System)

6. Study of any testing tool (e.g. Win runner)

7. Study of any web testing tool (e.g. Selenium)

8. Study of any bug tracking tool (e.g. Bugzilla, bugbit)

9. Study of any test management tool (e.g. Test Director)

10. Study of any open source-testing tool (e.g. Test Link)

11. Take a mini project (e.g. University admission, Placement Portal) and execute it. During the Life cycle of the mini project create the various testing documents* and final test report document.

*Note: To create the various testing related documents refer to the text “Effective Software Testing Methodologies by William E. Perry”

Case Tools

Students are divided into batches of 5 each and each batch has to draw the following diagrams using UML for an ATM system whose description is given below.
UML diagrams to be developed are:
1. Use Case Diagram.
2. Class Diagram.
3. Sequence Diagram.
5. State Diagram
6. Activity Diagram.
7. Component Diagram
8. Deployment Diagram.

**Description for an ATM System**

The software to be designed will control a simulated automated teller machine (ATM) having a magnetic stripe reader for reading an ATM card, a customer console (keyboard and display) for interaction with the customer, a slot for depositing envelopes, a dispenser for cash (in multiples of Rs. 100, Rs. 500 and Rs. 1000), a printer for printing customer receipts, and a key-operated switch to allow an operator to start or stop the machine. The ATM will communicate with the bank's computer over an appropriate communication link. (The software on the latter is not part of the requirements for this problem.)

The ATM will service one customer at a time. A customer will be required to insert an ATM card and enter a personal identification number (PIN) - both of which will be sent to the bank for validation as part of each transaction. The customer will then be able to perform one or more transactions. The card will be retained in the machine until the customer indicates that he/she desires no further transactions, at which point it will be returned - except as noted below.
The ATM must be able to provide the following services to the customer:

1. A customer must be able to make a cash withdrawal from any suitable account linked to the card, in multiples of Rs. 100 or Rs. 500 or Rs. 1000. Approval must be obtained from the bank before cash is dispensed.

2. A customer must be able to make a deposit to any account linked to the card, consisting of cash and/or checks in an envelope. The customer will enter the amount of the deposit into the ATM, subject to manual verification when the envelope is removed from the machine by an operator. Approval must be obtained from the bank before physically accepting the envelope.

3. A customer must be able to make a transfer of money between any two accounts linked to the card.

4. A customer must be able to make a balance inquiry of any account linked to the card.

5. A customer must be able to abort a transaction in progress by pressing the Cancel key instead of responding to a request from the machine.

The ATM will communicate each transaction to the bank and obtain verification that it was allowed by the bank. Ordinarily, a transaction will be considered complete by the bank once it has been approved. In the case of a deposit, a second message will be sent to the bank indicating that the customer has deposited the envelope. (If the customer fails to deposit the envelope within the timeout period, or presses cancel instead, no second message will be sent to the bank and the deposit will not be credited to the customer.)

If the bank determines that the customer's PIN is invalid, the customer will be required to re-enter the PIN before a transaction can proceed. If the customer is unable to successfully enter the PIN after three tries, the card will be permanently retained by the machine, and the customer will have to contact the bank to get it back.
If a transaction fails for any reason other than an invalid PIN, the ATM will display an explanation of the problem, and will then ask the customer whether he/she wants to do another transaction.

The ATM will provide the customer with a printed receipt for each successful transaction.

The ATM will have a key-operated switch that will allow an operator to start and stop the servicing of customers. After turning the switch to the "on" position, the operator will be required to verify and enter the total cash on hand. The machine can only be turned off when it is not servicing a customer. When the switch is moved to the "off" position, the machine will shut down, so that the operator may remove deposit envelopes and reload the machine with cash, blank receipts, etc.
UNIT I
INTRODUCTION TO MANAGEMENT:

UNIT II
DESIGNING ORGANIZATIONAL STRUCTURES:
Basic concepts related to Organisation - Departmentation and Decentralisation, Types of mechanistic and organic structures of organisation (Line organization, Line and staff organization, functional organization, Committee organization, matrix organization, Virtual Organisation, Cellular Organisation, team structure, boundaryless organization, inverted pyramid structure, lean and flat organization structure) and their merits, demerits and suitability.

UNIT III
OPERATIONS MANAGEMENT:
Principles and Types of Plant Layout-Methods of production (Job, batch and Mass Production), Work Study -Basic procedure involved in Method Study and Work Measurement- Statistical Quality Control: chart, R chart, c chart, p chart, (simple Problems), Acceptance Sampling, Deming’s contribution to quality.
UNIT IV
MATERIALS MANAGEMENT:
Objectives, Need for Inventory control, EOQ, ABC Analysis, Purchase Procedure, Stores Management and Stores Records.
Marketing: Functions of Marketing, Marketing Mix, Marketing Strategies based on Product Life Cycle, Channels of distribution

UNIT V
HUMAN RESOURCES MANAGEMENT (HRM):

UNIT VI
PROJECT MANAGEMENT (PERT/CPM):
Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing. (simple problems)

UNIT VII
STRATEGIC MANAGEMENT:

UNIT VIII
CONTEMPORARY MANAGEMENT PRACTICES:
Basic concepts of MIS, End User Computing, Materials Requirement Planning (MRP), Just-In-Time (JIT) System, Total Quality Management (TQM), Six sigma and Capability Maturity Model (CMM) Levels, Supply Chain Management, Enterprise Resource Planning (ERP), Performance Management, Business Process outsourcing
2009-10

(BPO), Business Process Re-engineering and Bench Marking, Balanced Score Card.

TEXT BOOKS:

REFERENCES:
5. Memoria & S.V.Gauker, Personnel Management, Himalaya, 25/e, 2005
UNIT I

UNIT II
Introduction To Design Patterns: Design Pattern Definition, Design Patterns in Small Talk MVC, Describing Design Patterns, Catalog of Design Patterns, Organizing the Catalog, Solving of Design Problems using Design Patterns, Selection of a Design Pattern, use of Design Patterns.

UNIT III
Designing A Document Editor: A Case Study: Design problems, Document structure, Formatting, Embellishing the User Interface, Supporting Multiple Look and Feel standards, Supporting Multiple Window Systems, User Operations, Spelling Checking and Hyphenation.

UNIT IV
Design Patterns Catalog: Creational Patterns, Abstract Factory, Builder, Factory Method, Prototype, Singleton. Discussion of Creational Patterns.

UNIT V
Structural Patterns-1: Adapter, Bridge, Composite, Decorator.

UNIT VI
UNIT VII

UNIT VIII
Behavioral Patterns-3: State, Strategy, Template Method, Visitor, Discussion of Behavioral Patterns. Expectations from Design Patterns.

TEXT BOOKS:
1. Design Patterns: Elements of Reusable Object Oriented Software, Gamma, Belm, Johnson, 1995, PEA.
2. Head First Design Patterns By Eric Freeman-Oreilly-SPD.

REFERENCES:
1. Java Design Patterns, Cooper, Pearson.
2. Object Oriented Design and Patterns, Horstmann, Wiley.
4. Applying UML Patterns, Larman, PEA.
UNIT I
Introduction to SOA, Evolution of SOA: Fundamental SOA, Common Characteristics of contemporary SOA, Benefits of SOA, A SOA timeline (from XML to Web Services to SOA), The continuing evolution of SOA (Standards organizations and Contributing vendors), The roots of SOA (comparing SOA to Past architectures).

UNIT II
Principles of Service-Orientation: Services-orientation and the enterprise, Anatomy of a service-oriented architecture, Common Principles of Service-orientation, Service orientation and Object-orientation, Service layer abstraction, Business service layer, Orchestration service layer.

UNIT III
Web Services and SOA: The Web services framework, Services (as Web Services), Service Registry, Service descriptions (with WSDL), Messaging (with SOAP), Transactions, Coordination, Business Activity, Orchestration, Choreography.

UNIT IV

UNIT V
UNIT VI
WS-addressing language basics, WS-Reliable Messaging language basics, Service Component Architecture basics.

UNIT VII
Enterprise Platforms and SOA: SOA platform basics, Enterprise Service Bus basics (including basic and complex patterns).

UNIT VIII
SOA support in J2EE, SOA support in .NET, SOA Reference Architecture.

TEXT BOOKS:

REFERENCES:
UNIT I
Evolution and Emergence of Web Services: Evolution of distributed computing, Core distributed computing technologies, client/server, CORBA, JAVA RMI, Micro Soft DCOM, MOM, Challenges in Distributed Computing, role of J2EE and XML in distributed computing, emergence of Web Services and Service Oriented Architecture (SOA).

UNIT II
Introduction to Web Services: The definition of web services, basic operational model of web services, tools and technologies enabling web services, benefits and challenges of using web services.

UNIT III
Web Services Architecture, Web services Architecture and its characteristics, core building blocks of web services, standards and technologies available for implementing web services, web services communication, basic steps of implementing web services, developing web services enabled applications.

UNIT IV
Core fundamentals of SOAP: SOAP Message Structure, SOAP Encoding, SOAP message exchange models, SOAP communication and messaging, SOAP security.

UNIT V
Developing Web Services using SOAP: Building SOAP Web Services, developing SOAP Web Services using Java, limitations of SOAP.
UNIT VI
Describing Web Services: WSDL, WSDL in the world of Web Services, Web Services life cycle, anatomy of WSDL definition document, WSDL bindings, WSDL Tools, limitations of WSDL.

UNIT VII
Discovering Web Services: Service discovery, role of service discovery in a SOA, service discovery mechanisms, UDDI: UDDI Registries, uses of UDDI Registry, Programming with UDDI, UDDI data structures, support for categorization in UDDI Registries, Publishing API, Publishing information to a UDDI Registry, searching information in a UDDI Registry, deleting information in a UDDI Registry, limitations of UDDI.

UNIT VIII

TEXT BOOKS:
3. XML, Web Services, and the Data Revolution, F.P.Coyle, Pearson Education.

REFERENCES:
2. Java Web Services, D.A. Chappell and T. Jewell, O’Reilly, SPD.
UNIT I

UNIT II
Ontology in Computer Science: Defining the Term Ontology, Differences Among Taxonomies, Thesauri, and Ontologies, Classifying Ontologies, Web Ontologies, Web Ontology Description Languages, Ontology, Categories, and Intelligence.

UNIT III

UNIT IV

UNIT V
UNIT VI
Methods for Ontology Development: Introduction, Uschold and King
Ontology Development Method, Toronto Virtual Enterprise Method,
Methontology, KACTUS Project Ontology Development Method,
Lexicon-Based Ontology Development Method, Simplified Methods.
Ontology Sources: Introduction, Metadata, Upper Ontologies, Other
Ontologic of Interest, Ontology Libraries.

UNIT VII
Semantic Web Software Tools: Introduction, Metadata and Ontology
Editors, Reasoners, Other tools.

UNIT VIII
Software Agents: Introduction, Agent Forms, Agent Architecture,
Agents in the Semantic web Context. Semantic Desktop: Introduction,
Semantic Desktop Metadata, Semantic Desktop Ontologies, Semantic
Desktop Architecture, Semantic Desktop Related Applications.
Ontology Application in Art: Introduction, Ontologies for the
Description of Works of Art, Metadata Schemas for The Description of
Works of Art, Semantic Annotation of Art Images.

TEXT BOOKS:
  Breitman, Marco Antonio Casanova and Walter Truszowski, Springer.

REFERENCES:
1. Information Sharing on the Semanting Web, Heiner
  Stuckenschmidt, Frank van Harmelen, Springer.
2. Semantic Web Primer, Grigoris Antoniou, Frank Van
3. Semantic Web Services: Concepts, Technologies and Applications,
  Rudi Studer, Stephan Grimm, Andreas Abeker, Springer
4. Towards the Semantic Web: Ontology Driven Knowledge
  Management, John Davis, Dieter Fensal, Frank Van Harmelen, J.
  Wiley.
UNIT I
Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management, Solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities.

UNIT II
Hardware and software components of the host environment, Key protocols and concepts used by each component, Physical and logical components of a connectivity environment, Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance Implications.

UNIT III
Concept of RAID and its components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Compare and contrast integrated and modular storage systems, High-level architecture and working of an intelligent storage system.

UNIT IV
Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN, Benefits of the different networked storage options, Understand the need for long-term archiving solutions and describe how CAS fulfills the need, Understand the appropriateness of the different networked storage options for different application environments.

UNIT V
List reasons for planned/unplanned outages and the impact of downtime, Impact of downtime, Differentiate between business
continuity (BC) and disaster recovery (DR), RTO and RPO, Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures.

UNIT VI
Architecture of backup/recovery and the different backup/recovery topologies, replication technologies and their role in ensuring information availability and business continuity. Remote replication technologies and their role in providing disaster recovery and business continuity capabilities.

UNIT VII
Identify key areas to monitor in a data center, Industry standards for data center monitoring and management, Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center. Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each domain.

UNIT VIII
Virtualization technologies, block-level and file-level virtualization technologies and processes.
Case Studies, The technologies described in the course are reinforced with EMC examples of actual solutions. Realistic case studies enable the participant to design the most appropriate solution for given sets of criteria.

TEXT BOOKS:
1. Information Storage and Management, EMC Corporation, Wiley.

REFERENCES:
UNIT I

UNIT II
IPv4 Addresses: Introduction, Classful Addressing, Classless Addressing, Special Addresses, NAT.

UNIT III

UNIT IV
Unicast Routing Protocols (RIP, OSPE, and BGP): Introduction, Intra- and Inter-Domain Routing, Distance Vector Routing, RIP, Link State Routing, OSPF, Path Vector Routing, BGP.

UNIT V

UNIT VI
Windows in TCP, Flow Control, Error Control, Congestion Control, TCP Timers, Options, TCP Package.
UNIT VII

UNIT VIII

TEXT BOOKS:
2. Introduction to Data Communications and Networking, Wayne Tomasi, Pearson.

REFERENCES:
UNIT I

UNIT II
Motivation for a Specialized MAC (Hidden and Exposed Terminals, Near and Far Terminals), SDMA, FDMA, TDMA, CDMA. MAC Protocols for GSM, Wireless LAN (IEEE802.11), Collision Avoidance (MACA, MACAW) Protocols.

UNIT III
IP and Mobile IP Network Layers, Packet Delivery and Handover Management, Location Management, Registration, Tunneling and Encapsulation, Route Optimization, DHCP.

UNIT IV

UNIT V
UNIT VI
Data Retrieval in Sensor Networks, Classification of WSNs, MAC layer, Routing layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

UNIT VII

UNIT VIII
Operating System – TinyOS, Imperative Language: nesC, Dataflow style language: TinyGALS, Node-Level Simulators, ns-2 and its sensor network extension, TOSSIM

TEXT BOOKS:

REFERENCES: