(4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I- SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D31102	Advanced Thermodynamics	4	-	4
15D31103	Conduction and Radiation Heat Transfer	4	-	4
15D33101	Internal Combustion Engineering	4	-	4
15D33102	Alternative Fuels for I.C. Engines	4	-	4
	ELECTIVE-I	4	-	4
15D33103	Automotive Air Conditioning Systems			
15D33104	Alternative Fuels and Propulsion Systems			
15D33105	Turbo Machines			
15D33106	Theory of Fuels and Lubricants			
	ELECTIVE-II	4	-	4
15D33107	Automobile Air Pollution and Environment			
15D33108	Jet propulsion & Rocket Engineering			
15D33109	Electric and Hybrid Vehicles			
15D33110	Production of Automobile Components			
15D33111	"Performance Testing of Internal	0	4	2
	Combustion Engines" Lab			
TOTAL		24	4	26

II - SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D33201	Combustion in I.C. Engines	4	-	4
15D31202	Convective Heat & Mass Transfer	4	-	4
15D31204	Advanced Fluid Mechanics	4	-	4
15D33202	Engine Emissions and Control	4	-	4
	ELECTIVE-III	4	-	4
15D33203	Super Charging & Scavenging.			
15D33204	Vehicle Maintenance			
15D33205	Engine Management Systems			
15D33206	Instrumentation and Experimental Techniques			
	ELECTIVE-IV	4	-	4
15D33207	Automotive Aerodynamics			
15D33208	Vehicle Control Systems			
15D33209	Manufacturing and Testing of I.C. Engines and			
	Components			
15D33210	Automotive Safety			
15D54201	Research Methodology (Audit Course)			
15D33211	"Testing of Combustion & Emissions of	0	4	2
	Internal Combustion Engines" Lab			
TOTAL		24	4	26

Code	Subject	Т	Р	С
15D33301	III Semester	0	4	2
	Seminar - I			
15D33401	IV Semester	0	4	2
	Seminar - II			
15D33302	III & IV Semester			44
	Project Work			
	Total	24	8	48

Note : All End Examinations (Theory and Practical) are of Three Hours Duration.

T – Tutorial L – Theory P- Practical / Drawing C - Credits

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. (Advanced I.C. Engines)</u>

(4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I- SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D31102	Advanced Thermodynamics	4	-	4
15D31103	Conduction and Radiation Heat Transfer	4	-	4
15D33101	Internal Combustion Engineering 4		-	4
15D33102	Alternative Fuels for I.C. Engines 4		-	4
	ELECTIVE-I	4	-	4
15D33103	Automotive Air Conditioning Systems			
15D33104	Alternative Fuels and Propulsion Systems			
15D33105	Turbo Machines			
15D33106	Theory of Fuels and Lubricants			
	ELECTIVE-II	4	-	4
15D33107	Automobile Air Pollution and Environment			
15D33108	Jet propulsion & Rocket Engineering			
15D33109	Electric and Hybrid Vehicles			
15D33110	Production of Automobile Components			
15D33111	"Performance Testing of Internal	0	4	2
	Combustion Engines" Lab			
TOTAL		24	4	26

R15

M.Tech - ADVANCED I.C. ENGINES

I-SEMESTER

L P C 4 - 4

ADVANCED THERMODYNAMICS (Common to R&A/C & Advanced I.C. Engines) (15D31102)

UNIT-I

THERMODYNAMIC RELATIONS:

Introduction-Helmhotz free energy function-Gibbs free energy function-coefficient of volumetric expansion-isothermal compressibility-differential relation for U,H,G&F-Maxwell relations.

GENERALIZED RELATIONS:

Generalized relation for Cp,Cv,K,B-relations for internal energy and enthalpy-the various Tds equation-clapeyron equation-gas tables-enthalpy and internal energy- pressure ratio-volume ratio-change of entropy-Introduction to third law of thermodynamics.

UNIT-II

EXERGY:

Introduction-availability of heat –availability of a closed system-availability function of the closed system-availability of steady flow system- availability function of open system.

IRREVERSIBILITY:

Introduction-irreversibility for closed and open system-steady flow process effectivenesssecond law analysis of the power plant.

UNIT-III

NONREACTIVE GAS MIXTURES:

Introduction-basic definitions for gas mixtures-PVT relations ship for mixtures of ideal gases-properties of mixtures of ideal gases-entropy change due to mixing – mixtures of perfect gases at different initial pressure and temperatures.

UNIT-IV

GAS SPOWER CYCLES:

Introduction-air standard cycles-carnot cycle-ottocycle –disel cycle-dual cycles-comparison between Otto, Diesel, dual cycles-variations between the air standard Otto cycle and actual cycle-Sterlling cycle-Erickson cycle-Atkinson cycle-Brayton cycle- Lenoir cycle.

UNIT-V

VAPOUR POWER CYCLES:

Introduction-the carnot vapor cycle-rankine cycle-effects of operation condition on efficiency-principles of increasing the thermal efficiency- method of increasing thermal efficiency.

DIRECT ENERGY CONVERSION:

Introduction-thermoelectric converters-thermo-ionic converters magneto hydrodynamics generators-solar power cells plant –fuel cell hydrogen –hydrogen fuel cells-direct and indirect oxidation fuel cells-biochemeical fuel cells.(no problems)

REFERENCE BOOKS:

- 1. Advanced Thermodynamics: Van Wyllan, TMGH
- Individue of the modynamics: Vali Vyhan, TMGH
 Engineering Thermodynamics: P.K.Nag, TMGH Advanced Thermodynamics: Ray & Sarao, Central Publishers.

I-SEMESTER

L P C 4 - 4

CONDUCTION AND RADIATION HEAT TRANSFER (Common to R&A/C & Advanced I.C. Engines) (15D31103)

CONDUCTION :

UNIT-I

Introduction of three modes of heat transfer, steady, unsteady state heat transfer process, governing equations and boundary conditions

Two dimensional steady state conduction, semi-infinite and finite flat plate; temperature field in infinite and finite cylinders.

UNIT-II

Conduction through spherical shells, numerical methods, relaxation method and finite difference methods - simple problems.

UNIT-III

Heating and cooling of bodies with negligible internal resistance, sudden changes in the surface temperature of infinite plates, cylinders and semi-infinite bodies-simple problems.

RADIATION :

UNIT-IV

Review of the thermal radiation - gas radiation, mean beam length exchange between gas volume and black enclosure, heat exchange between gas volume and gray enclosure, problems.

UNIT-V

Radiation network for an absorbing and transmitting medium, radiation exchange with specular surfaces, radiation exchange with transmissivity and reflecting absorbing medium. Formulation for numerical solution.

Solar radiation: Radiation properties of environment, effect of radiation on temperature measurement, the radiation heat transfer coefficient, problems.

REFERENCE BOOKS :

1) Heat Transfer	-Gibhart - Mc. Graw Hill.
2) Conduction Heat Transfer-	-Schneder Addition Wieslthy
3) Conduction of Heat in Solids	-Carslaw & Jaeger.
4) Heat transfer	-J.P. Holman, International student edition
5) Fundamentals of heat and mass transfer	-R.C. Sachdev New Age International
6). Heat Transfer by	- R. K. Rajput Lakshmi Publishers

I- SEMESTER

L P C 4 - 4

INTERNAL COMBUSTION ENGINEERING (15D33101)

UNIT –I

Basic characteristics of engines : Compression ratio – energy supply to an engine – power developed by engine – specific weight and specific volume – cylinder pressures – IMEP determination – torque characteristics – cylinder arrangement and their relative merits. Engine cooling systems: types of cooling – cooling of critical engine components – recooling the coolant – comparison of air cooled and liquid cooled engines.

UNIT –II

Fuel delivery in SI engines: Classification of fuel delivery systems – fuel transfer pumps – fixed jet carburetor – computer controlled carburetor – gasoline injection systems. Ignition systems in SI engines: Battery ignition system – requirements for satisfactory operation of the ignition system – ignition timing and advancing mechanisms – magneto ignition system – electronic ignition system.

UNIT – III

Combustion and combustion systems in CI engines: Air motion in CI engines – delay period in CI engines – types of diesel combustion systems. Scavenging and super charging in CI engines : types of scavenging systems in two stroke SI engines – improved and modified scavenging systems – super charging and engine performance – methods of super charging.

UNIT – IV

Engine emissions, control systems and engine developments: SI engine pollutants – exhaust gas analyzer – SI engine emission control systems – particulate emissions – diesel pollution control methods – low heat rejection engines.

$\mathbf{UNIT} - \mathbf{V}$

Conventional and alternate fuels for IC engines: desirable characteristics of gasoline – desirable characteristics of diesel fuel – alternative fuels for SI engines and CI engines.

TEXT BOOKS:

- 1. Internal combustion engines fundamentals by by JohnB. Heywood. McGraw Hill international editions.
- 2. Internal combustion engines by V. Ganesan, Tata McGraw Hill book cop. 1995
- 3. Internal combustion engines and air pollutions by Edward F. Obert, Intext education publishers.
- 4. Introduction to internal combustion engines by Richard stone 3rd edition, society of automotive engineers.

- 1. A course Internal combustion engines by V.M.A. Domkundwar, Dhanapat Rai publications.
- 2. A course internal combustion engines by M.L.Mathur and R.P.Sharma, Dhanapat Rai publications.
- 3. Internal combustion engines by K.k Ramalingam, Scitech Publications (India) Pvt.Ltd, 2000
- 4. A Text Book of Internal combustion engines by R.K. Rajput, Laxmi Pub, Pvt., 2006

I- SEMESTER

L P C 4 - 4

ALTERNATIVE FUELS FOR I.C. ENGINES (15D33102)

UNIT-I

Introduction: solid fuels, gases fuels, liquid fuels, chemical structure of petroleum, petroleum refining process, important requisite qualities of engine fuels, SAE rating of fuels.

UNIT-II

FUELS: Availability and Suitability to Piston Engines, Concept of conventional fuels, potential alternative fuels - Ethanol, Methanol, DEE/DME - Hydrogen, LPG, Natural gas, Producer gas, Bio gas and Vegetable oils - Use in I.C.Engines-Merits and Demerits of various fuels.

UNIT-III

ALCOHOL FUELS: Properties as engine fuels - Performance in S.I.Engines - Alcohol & Gasoline blends - Flexible Fuel Vehicle -Reformed alcohols.

Alcohols in C.I. Engines - Emulsions - Dual fuel systems -Spark assisted diesel engines - Surface ignition engines - Ignition accelerators - Manufacture of alcohol fuels.

UNIT-IV

GASEOUS FUELS: Hydrogen - Properties - Use in C.I Engines - Use in S.I Engines - Storage methods - Safety precautions -Production methods.

Production of Producer gas and bio gas - Raw materials - Gasification - Properties - Cleaning up the gas -Use in S.I. and fuel engines, LPG & Natural gas - Properties - Use in S.I. and C.I. Engines.

UNIT-V

VEGETABLE OILS: Properties - Esterification - Performance in Engines.

FUEL QUALITY: Fuel quality standards for Automotive Engines - Lead free gasolines, low and ultra -low sulphur diesels, LPG, CNG, and Biodiesels.

TEXT BOOKS:

- 1. Internal combustion engines by V. Ganesan, Tata McGraw Hill book cop. 2007
- 2. Richard L.Bechtold, Automotive Fuels Guide Book, SAE Publications, 1997.

- 1. Osamu Hirao and Richard K.Pefley, Present and Future Automotive Fuels, John Wiley and sons, 1988.
- 2. Keith Owen and Trevor Eoley, Automotive Fuels Handbook, SAE Publications, 1990.

I-SEMESTER

L P C 4 - 4

AUTOMOTIVE AIR CONDITIONING SYSTEMS (Elective –I) (15D33103)

UNIT I FUNDAMENTALS

Terminology, design factors and concepts related to air conditioning system - Construction and Working principles of Thermostatic Expansion valve and Orifice tube based system- Heating system types -detailed study of HVAC components like compressor, evaporator, condenser, TXV, orifice tube, Receiver-drier, heater core etc. Location of air conditioning components in a vehicle.

UNIT II REFRIGERANTS & AIR MANAGEMENT SYSTEMS

Refrigerants: Temperature and pressure relation, Properties of R-12 and R134a- refrigerant oil. Simple problems - Containers - Handling refrigerants - Tapping into the refrigerant container - Ozone Layer Depletion.

Air management system: Air routing for manual, semi and automatic system- cases and ducts- Air distribution, control head and doors- Defrost system

UNIT III AUTOMATIC CLIMATE CONTROL SYSTEM

Block diagram - types of Sensors and Actuators, - Control Logic Electrical wiring diagram of manual and automatic system - multiplexing between BCM and PCM- control of compressor clutch, blower motor etc.- diagnostics tools and features.

UNIT IV DESIGN OF AIR-CONDITIONING COMPONENTS

Modeling of Fixed and variable Displacement type compressor, evaporator modeling - heat transfer correlations for the fluids inside the evaporator, analysis of evaporator frosting- condenser modeling - improvement of refrigerant flow control method.

UNIT V AIR CONDITIONING DIAGNOSIS AND SERVICES

AC system diagnosis based on temperature and pressure measurements, sight glass, sound etc. - refrigerant leak detection- Trouble shooting and Servicing of compressor, evaporator, condenser, heater core etc. – HVAC equipment, recovery and charging. Air routing system service.

TEXTBOOK:

2) Tom Birch, "Automotive Heating and Air Conditioning" Pearson Education Inc., 2003.3) Boyce H. Dwiggins, Jack Erjavec., "Automotive Heating and Air-Conditioning", Delmer publisher.,2001.

4) William H Crouse and Donald L Anglin, "Automotive air conditioning", McGraw - Hill Inc., 1990

REFERENCES

1) Goings. L.F., "Automotive air conditioning", American Technical services, 1974

2) Paul Weiser, "Automotive air conditioning", Reston Publishing Co Inc., 1990.

3) MacDonald, K.L., "Automotive air conditioning", Theodore Audel series, 1978.

4) James D. Halderman, "Automotive Heating, Ventilation, and Air Conditioning Systems", Pearson Education Inc., 2004.

5) SAE paper No: 931121,900084, 850040,931137,870029 etc.

6) Vehicle service manuals.

I- SEMESTER

L P C 4 - 4

ALTERNATIVE FUELS AND PROPULSION SYSTEMS (Elective –I) (15D33104)

UNIT I ALCOHOLS AS FUELS

Alternative fuels. Availability of different alternative fuels for engines. Alcohols – Properties, Production methods and usage in engines. Blending, dual fuel operation, surface ignition, spark ignition and oxygenated additives. Performance, combustion and emission Characteristics in engines. Issues & limitation in alcohols

UNIT II VEGETABLE OILS AS FUELS

Vegetable oils and their important properties. Methods of using vegetable oils – Blending, preheating, Transesterification and emulsification – Performance, combustion and emission Characteristics in diesel engines. Issues & limitation in Vegetable Oils

UNIT III HYDROGEN AS ENGINE FUEL

Hydrogen – Properties, problems, Production methods, storage and safety aspects. Issues & limitation in Hydrogen. Methods of using hydrogen in engines. Performance, combustion and emission Characteristics in engines.

UNIT IV BIOGAS, NATURAL GAS AND LPG AS FUELS

Biogas, Natural gas and LPG – Properties and production methods. CO₂ and H₂S scrubbing in Biogas, Modifications required for use in Engines- Performance, combustion and emission Characteristics in engines. Issues & limitation in Gaseous fuels.

UNIT V HYBRID AND ELECTRIC VEHICLES

Hybrid and Electric vehicle – Layout, Merits, demerits and components, Electronic control system – Different configurations of Hybrid vehicles. Power split device. Energy regeneration. High energy and power density batteries – Introduction to PEM Fuel cell.

REFERENCES

1. Ayhan Demirbas, '**Biodiesel A Realistic Fuel Alternative for Diesel Engines**', Springer-Verlag London Limited 2008,ISBN-13: 9781846289941

2. Gerhard Knothe, Jon Van Gerpen, Jargon Krahl, **The Biodiesel Handbook,** AOCS Press Champaign, Illinois 2005.

3. Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers, 1997 ISBN 0-76-80-0052-1.

4. Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.).

5. Science direct Journals (Biomass & Bio energy, Fuels, Energy, Energy conversion

Management, Hydrogen Energy, etc.) on biofuels.

I- SEMESTER

TURBO MACHINES (Elective –I) (15D33105)

Unit – I:

Fundamentals of Turbo machines: Classification, Applications Thermodynamic analysis; Isentropic flow, Energy transfer; Efficiencies; static and Stagnation conditions; continuity equation; Euler's flow through variable cross sectional area; unsteady flow in turbo machines.

Unit –II:

Steam Nozzles: Effect of back – pressure on the analysis; Design of nozzles.

Steam Turbines of C & C – D nozzles :Impulse Turbines: work done and velocity triangles; Efficiencies; Constant Reaction Blading; Design of blade passages, angles and height; Secondary flow; leakage losses; Thermodynamic analysis of steam turbines.

Unit – III:

Gas Dynamics: Fundamentals thermodynamic concepts; Isentropic conditions; Mach number and Area – Velocity relation; Dynamic pressure; normal shock relations for perfect gas; supersonic flow, oblique shock waves ; normal shock recovery ; detached shocks ; Aerofoil theory.

Centrifugal Compressor: Types; Velocity triangles and efficiencies; Blade passage design; Diffuser and pressure recovery; slip factor; stanitz and stodolas formulae; Effect of inlet mach number; Prewirl; performance.

Unit – IV:

Axial Flow Compressors: Flow analysis, work and velocity triangles ; Efficiencies; Thermodynamic analysis; stage pressure rise ; Degree of reaction ; stage loading ; general design, effect of velocity incidence ; performance.

Cascade Analysis: Geometry and Terminology; Blade forces, Efficiency; losses; free and forced vortex blades.

Unit – V:

Axial Flow Gas Turbines: Work done; velocity triangles and efficiencies; thermodynamic flow analysis; degree of reaction; Zweifels relation; Design cascade analysis – Soderberg – Hawthrone – ainley-correlations; secondary flow; Free-vortex blades; Blade angles for variable degree of reaction; Actuator disc theory; stresses in blades; Blade assembling; materials and cooling of blades; performance; Matching of compressor and turbine; off-design performance.

R15 2015-16

С

4

L

4

Р

- 1) Fundamentals of Turbo machines Shephard
- 2) Practise on Turbomachines G. Gopalakrishnan & D. Prithviraj, SciTech Publishers, Chennai.
- 3) Theory and practice of steam turbines Kearton
- 4) Gas Turbines Theory and practice Zucrow
- 5) Elements of Gas Dynamics Liepman and Roshkow
- 6) Elements of Gas Dynamics Yahya
- 7) Turbines, Pumps, Compressors Yahya
- 8) Axial Flow Compressors Horlock.
- 9) Gas Turbines- Cohen, Roger & Sarvanamuttu

I- SEMESTER

L P C 4 - 4

R15

THEORY OF FUELS AND LUBRICANTS (Elective –I) (15D33106)

UNIT I MANUFACTURE OF FUELS AND LUBRICANTS

Structure of petroleum, refining process, fuels, thermal cracking, catalytic cracking, polymerization, alkylation, isomerisation, blending, products of refining process. Manufacture of lubricating oil base stocks, manufacture of finished automotive lubricants.

UNIT II THEORY OF LUBRICATION

Engine friction: introduction, total engine friction, effect of engine variables on friction, hydrodynamic lubrication, elasto hydrodynamic lubrication, boundary lubrication, bearing lubrication, functions of the lubrication system, introduction to design of a lubricating system.

UNIT III PROPERTIES AND TESTING OF LUBRICANTS

Specific requirements for automotive lubricants, oxidation deterioration and degradation of lubricants, synthetic lubricants, classification of lubricating oils, properties of lubricating oils, tests on lubricants. Grease, classification, properties, test used in grease.

UNIT IV PROPERTIES AND TESTING OF FUELS

Thermo-chemistry of fuels, properties and testing of fuels, relative density, calorific value, flash point, fire point, distillation, vapour pressure, spontaneous ignition temperature, viscosity, pour point, flammability, ignitability, diesel index, API gravity, aniline point, carbon residue, copper strip corrosion etc.

UNIT V ADDITIVES FOR LUBRICANTS AND FUELS

Additive - mechanism, requirements of additive, petrol fuel additives, diesel fuel additives – Additives and additive mechanism, for lubricants. Introduction to Nano fluids

TEXT BOOKS:

1. Ganesan.V., "Internal Combustion Engineering", Tata McGraw-Hill Publishing Co., New Delhi, 2003.

2. M.L. Mathur, R.P.Sharma "A course in internal combustion engines", Dhanpatrai publication, 2003.

3. Obert.E.F "Internal Combustion Engineering and Air Pollution", International book Co., 1988. **REFERENCES**

1. Brame, J.S.S. and King, J.G. - Fuels - Solids, Liquids, Gaseous.

2. Francis, W - Fuels and Fuel Technology, Vol. I & II

3. Hobson, G.D. & Pohl.W- Modern Petroleum Technology

4. A.R.Lansdown – Lubrication – A practical guide to lubricant selection – Pergamon press – 1982.

5. Raymond.C.Gunther – Lubrication – Chilton Book Co., - 1971.

AUTOMOBILE AIR POLLUTION AND ENVIRONMENT (Electiv (15D33107)

UNIT-I

Introduction: Vehicle population assessment in metropolitan cities and contribution to pollution, effects on human health and environment, global warming, types of emission, transient operational effects on pollution.

UNIT-II

Pollutant Formation in SI Engines: Pollutant formation in SI Engines, mechanism of HC and CO formation in four stroke and two stroke SI engines, NOx formation in SI engines, effects of design and operating variables on emission formation, control of evaporative emission. Two stroke engine pollution.

UNIT-III

Pollutant Formation in CI Engines: Pollutant formation in CI engines, smoke and particulate emissions in CI engines, effects of design and operating variables on CI engine emissions. Nox formation an.d control.-Noise pollution from automobiles, measurement and standards.

UN1T-IV

Control of Emissions from SI and CI Engines: Design of engine, optimum selection of operating variables for control of emissions, EGR, Thermal reactors, secondary air injection, catalytic converters, catalysts, fuel modifications, fiiel cells, Two stroke engine pollution control.

UNIT-V

Measurement Techniques Emission Standards and Test Procedure:

Orsat Apparatus, NDIR, FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards, driving cycles - USA, Japan, Euro and India. Test procedures - ECE, FTP Tests. SHED Test - chassis dynamometers, dilution tunnels.

- 1. Paul Degobert, Automobiles and Pollution, SAE International ISBN-1-56091-563-3, 1991.
- 2. Ganesan, V- Internal Combustion Engines- Tata McGraw-Hill Co 2003.
- 3. SAE Transactions-Vehicle Emission 1982 (3 volumes).
- 4. Obert. E.F.- Internal Combustion Engines, 1988.
- 5. Marco Nute- Emissions from two stroke engines, SAE Publication-1998.

I- SEMESTER

L P C 4 - 4

JET PROPULSION & ROCKET ENGINEERING (Elective-II) (15D33108)

UNIT-I

Turbo Jet Propulsion System:

Gas turbine cycle analysis – layout of turbo jet engine. Turbo machinery- compressors and turbines, combustor, blade aerodynamics, engine off design performance analysis.

Flight Performance:

Forces acting on vehicle – Basic relations of motion – multi stage vehicles.

UNIT-II

Principles of Jet Propulsion and Rocketry:

Fundamentals of jet propulsion, Rockets and air breathing jet engines – Classification – turbo jet , turbo fan, turbo prop, rocket (Solid and Liquid propellant rockets) and Ramjet engines.

Nozzle Theory and Characteristics Parameters:

Theory of one dimensional convergent – divergent nozzles – aerodynamic choking of nozzles and mass flow through a nozzle – nozzle exhaust velocity – thrust, thrust coefficient, A_c / A_t of a nozzle, Supersonic nozzle shape, non-adapted nozzles, summer field criteria, departure from simple analysis – characteristic parameters – 1) characteristic velocity, 2) specific impulse 3) total impulse 4) relationship between the characteristic parameters 5) nozzle efficiency, combustion efficiency and overall efficiency.

UNIT-III

Aero Thermo Chemistry of the Combustion Products:

Review of properties of mixture of gases – Gibbs – Dalton laws – Equivalent ratio, enthalpy changes in reactions, heat of reaction and heat of formation – calculation of adiabatic flame temperature and specific impulse – frozen and equilibrium flows.

Solid Propulsion System:

Solid propellants – classification, homogeneous and heterogeneous propellants, double base propellant compositions and manufacturing methods. Composite propellant oxidizers and binders. Effect of binder on propellant properties. Burning rate and burning rate laws, factors influencing the burning rate, methods of determining burning rates.

UNIT-IV

Solid propellant rocket engine – internal ballistics, equilibrium motor operation and equilibrium pressure to various parameters. Transient and pseudo equilibrium operation, end

R15

2015-16 burning and burning grains, grain design. Rocket motor hard ware design. Heat transfer considerations in solid rocket motor design. Ignition system, simple pyro devices.

Liquid Rocket Propulsion System:

Liquid propellants – classification, Mono and Bi propellants, Cryogenic and storage propellants, ignition delay of hypergolic propellants, physical and chemical characteristics of liquid propellant. Liquid propellant rocket engine – system layout, pump and pressure feed systems, feed system components. Design of combustion chamber, characteristic length, constructional features, and chamber wall stresses. Heat transfer and cooling aspects. Uncooled engines, injectors – various types, injection patterns, injector characteristics, and atomization and drop size distribution, propellant tank design.

UNIT-V

Ramjet and Integral Rocket Ramjet Propulsion System:

Fuel rich solid propellants, gross thrust, gross thrust coefficient, combustion efficiency of ramjet engine, air intakes and their classification – critical, super critical and sub-critical operation of air intakes, engine intake matching, classification and comparison of IIRR propulsion systems.

TEXT BOOKS:

- 1. Mechanics and Dynamics of Propulsion Hill and Peterson
- 2. Rocket propulsion elements Sutton

REFERENCES BOOKS:

- 1. Gas Turbines Ganesan (TMH)
- 2. Gas Turbines & Propulsive Systems Khajuria & Dubey (Dhanpatrai)
- 3. Rocket propulsion Bevere
- 4. Jet propulsion Nicholas Cumpsty

M.Tech - ADVANCED I.C. ENGINES

I-SEMESTER

L P C 4 - 4

ELECTRIC AND HYBRID VEHICLES (Elective-II) (15D33109)

UNIT I NEED FOR ALTERNATIVE SYSTEM

Need of electric vehicles hybrid vehicles – comparative study of diesel, petrol, pure electric and hybrid vehicles. Limitations of electric vehicles. Specification of some electric and hybrid vehicles

UNIT II ENERGY SOURCES : BATTERIES AND FUEL CELLS

Battery Parameters-Power requirement of electric vehicles- Different types of batteries - Lead acid-Nickel based-Sodium based-Lithium based- Metal Air based. Battery charging- Charger design-Quick charging devices- Battery Modeling. Different type of energy storage – Solar, wind, compressed fluid.

Fuel Cell- Fuel cell characteristics- Fuel cell types-Hydrogen fuel cell- Connecting cell in serieswater management in the PEM fuel cell- Thermal Management of the PEM fuel cell

UNIT III PROPULSION MOTORS AND CONTROLLERS

Characteristic of permanent magnet and separately exited DC motors. AC single phase and 3-phase motor – inverters – DC and AC motor speed controllers.

UNIT IV VEHICLE DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES

Aerodynamic-Rolling resistance- Transmission efficiency- Vehicle mass- Electric vehicle chassis and Body design considerations- Heating and cooling systems- Controllers- Power steering- Tyre choice-Wing Mirror, Aerials and Luggage racks

UNIT V HYBRID VEHICLES

Types of Hybrid- Series, parallel, split – parallel, series - parallel - Advantages and Disadvantages. Power split device – Energy Management System - Design consideration - Economy of hybrid vehicles

TEXT BOOKS:

1. James Larminie and John Lowry, "Electric Vehicle Technology Explained " John Wiley & Sons,2003

2. Iqbal Husain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press, 2003

3. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles", CRC Press, 2005

REFERENCES:

1. Ron HodKinson, "light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication, 2005

2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications, 2005

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech - ADVANCED I.C. ENGINES

I-SEMESTER

Р С 4 4

L

PRODUCTION OF AUTOMOBILE COMPONENTS (Elective-II) (15D33110)

UNIT I CASTING

Sand casting of cylinder block and liners - Centrifugal casting of flywheel, piston rings, bearing bushes, and liners, permanent mould casting of piston, pressure die casting of carburetor and other small auto parts. Melting practice of alloys

UNIT II MACHINING

Special consideration of machining of various components such as flywheel, piston rings, bearing bushes, and liners. Machining of connecting rods - crank shaft - cam shaft - piston - piston pin - valve - front and rear axle housing - fly wheel - Honing of cylinder bores - Copy turning and profile grinding machines.

UNIT III FORMING PROCESS

Forging materials - process flow chart, forging of valves, connecting rod, crank shaft, cam shaft, propeller shaft, transmission gear blanks, steering column. Extrusions: Basic process steps, extrusion of transmission shaft, housing spindle, steering worm blanks, piston pin and valve tappets. Hydro forming - Process, hydro forming of manifold and comparison with conventional methods- Hydro forming of tail lamp housing – forming of wheel disc and rims. Stretch forming - Process, stretch forming of auto body panels –Super plastic alloys for auto body panels.

UNIT IV POWDER METALLURGY AND PROCESSING OF PLASTICS

Powder metallurgy process, process variables, Manufacture of friction lining materials for clutches and brakes - plastics-raw material -automobile components - molding - injection, compression and blow – PU foam molding - Machining of plastics.

UNIT V RECENT TRENDS IN MANUFACTURING OF AUTO COMPONENTS

Powder injection molding - Production of aluminum MMC liners for engine blocks - Plasma spray coated engine blocks and valves - Recent developments in auto body panel forming -Squeeze Casting of pistons - aluminum composite brake rotors. Sinter diffusion bonded idler sprocket – gas injection molding of window channel – cast con process for auto parts.

TEXT BOOK

1. Heldt.P.M., "High Speed Combustion Engines", Oxford Publishing Co., New York, 1990.

REFERENCES

1. Haslehurst.S.E., "Manufacturing Technology", ELBS, London, 1990.

2. Rusinoff, "Forging and Forming of metals", D.B. Taraporevala Son & Co. Pvt Ltd., Mumbai, 1995.

3. Sabroff.A.M. & Others, "Forging Materials & Processes", Reinhold Book Corporation, New York, 1988.

4. Upton, "Pressure Die Casting", Pergamon Press, 1985.

5. High Velocity "Forming of Metals", ASTME, prentice Hall of India (P) Ltd., New Delhi, 1990

6. HMT handbook

I- SEMESTER

L P C 0 4 2

"Performance Testing of Internal Combustion Engines" Lab (15D33111)

- 1. Heat balance sheet on comet engine
- 2. Performance test on NIYO engine.
- 3. Retardation test on Black stone engine
- 4. Optimum cooling water rate on Texvel engine.
- 5. Morse test on 4-stroke multi cylinder Ambassador Engine.
- 6. Performance test on the Tata-sumo engine.
- 7. Measurements of octane number.
- 8. Measurement of exhaust emission by using five Exhaust gas analyzers.

EFFECTIVE FROM THE YEAR 2015-16

M.Tech - ADVANCED I.C. ENGINES

II - SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D33201	Combustion in I.C. Engines	4	_	4
15D31202	Convective Heat & Mass Transfer	4	-	4
15D31204	Advanced Fluid Mechanics	4	-	4
15D33202	Engine Emissions and Control	4	-	4
	ELECTIVE-III	4	-	4
15D33203	Super Charging & Scavenging.	-		
15D33204	Vehicle Maintenance			
15D33205	Engine Management Systems			
15D33206	Instrumentation and Experimental			
	Techniques			
	ELECTIVE-IV	4	-	4
15D33207	Automotive Aerodynamics			
15D33208	Vehicle Control Systems			
15D33209	Manufacturing and Testing of I.C. Engines			
	and Components			
15D33210	Automotive Safety			
15D54201	Research Methodology (Audit Course)			
15D33211	"Testing of Combustion & Emissions of	0	4	2
	Internal Combustion Engines" Lab			
TOTAL	1	24	4	26

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

L P C 4 - 4

COMBUSTION IN I.C. ENGINES

(15D33201)

UNIT-I

Combustion Principles: Thermodynamics, concepts of combustion - Combustion equations, heat of combustion Theoretical flame temperature, chemical equilibrium and dissociation. Chemical Kinetics: Theories of Combustion, Pre-flame reactions, Reaction rates, Laminar and Turbulent Flame Propagation in engines.

UNIT-II

Measurement of Thermo- Physical properties, instruments for measuring temperature, pressure and flow, use of intelligent instruments for physical variables.

UNIT-III

Combustion in S.I. Engines: Initiation of combustion, flame velocities, normal and abnormal combustion, knocking combustion, pre-ignition, knock and engine variables.

Features and design consideration of combustion chambers in S.I. Engines, stratified charge combustion, concepts of lean burn engines, heat release correlations.

UNIT-IV

Combustion in C.I. Engines: Various stages of combustion, vaporization of fuel droplets and spray formation, air motion, swirl, squish, tumble flow, velocities, swirl measurement, and delay period correlations. Diesel knocks and engine variables in C.I. Engines, features and design considerations of combustion chambers, heat release correlations.

UNIT-V

Combustion in Gas Turbine Flame stability, re-circulation zone and requirements. Combustion chamber configuration, materials.

TEXT BOOKS:

- 1. Ramalingam, K.K., Internal Combustion Engines, Scitech Publications (India) Pvt.Ltd, 2000
- 3. Internal combustion engines by V. Ganesan, Tata McGraw Hill book cop. 2007
- 4. Mathur M.L., and Sharma, R.P., A course in Internal Combustion Engines, Dhanpat Rai Publications Pvt.

- 1. John B.Heywood, Internal Combustion Engine Fundamentals, McGraw Hill Book, 1998. New Delhi -2,1993.
- 2. Obert, E.F.,Internal Combustion Engine and Air Pollution, International Text Books: Publishers, 1983.
- 3. Cohen, H,Rogers,G,E.C. and Saravanamutto, H.I.H., Gas Turbine Theory, Longman Group Ltd., 1980.
- 4. Khajuria & Dubey Gas Turbines and jet Propulsive system, Dhanpat Rai Publications Pvt.Ltd., New Delhi 2.
- 5. Doeblin, measurements system application and design, McGraw Hill, 1978.

II- SEMESTER

L P C 4 - 4

CONVECTIVE HEAT &MASS TRANSFER (Common to R&A/C & Advanced I.C. Engines) (15D31202)

CONVECTIVE HEAT TRANSFER: UNIT-I

Introduction to convection, review of conservation equations - Forced convection in laminar flow - Exact and approximate solutions of Boundary layer energy equation for plane isothermal plate in longitudinal flow - problems.

UNIT-II

Forced convection heat transfer in laminar tube flow - forced convection in turbulent flow – Internal Flows-Correlations-Problems. Approximate analysis of laminar free convective heat transfer on a vertical plate-external flows-correlations-problems.

UNIT-III

Boiling and condensation: Analysis of film condensation on a vertical surface – pool boiling - forced convection boiling inside tubes - problems.

MASS TRANSFER:

UNIT-IV

Definitions of concentration and velocities relevant to mass transfer, Fick's law, species conservation equation in different forms. Steady state diffusion in dilute solutions in stationary media, transient diffusion in dilute solutions in stationary media, one dimensional non dilute diffusion in gases with one component stationary.

UNIT-V

Convective mass transfer - governing equations-forced diffusion from flat plate- Dimension less correlation's for mass transfer. Simultaneous heat and mass transfer - analogy between heat, mass and momentum transfer.

REFERENCES BOOKS:

- 1. Heat transfer J. P. Holman.
- 2. Heat and Mass transfer- R.C. Sachdeva
- 3. Convective Heat and Mass transfer-Kays.
- 4. Heat and Mass transfer V.Gupta and I.Srinivasan Tata Mc.Graw Hill

II- SEMESTER

L P C 4 - 4

ADVANCED FLUID MECHANICS (Common to R&A/C & Advanced I.C. Engines) (15D31204)

UNIT - I

Basic concepts: Continuum hypothesis – Eulerian and Lagrangian descriptions. Derivation of general differential equations – continuity momentum and energy of incompressible flow-Navier Stokes equation for Viscous Fluids (Rectangular Co-Ordinate Systems)-Euler's equations for ideal fluids-Bernoulli's equations (one dimensional) – applications

UNIT - II

Laminar Flow Viscous Incompressible Fluids: Flow similarity – Reynolds number, flow between parallel flat plates, couette-flow, plane poiseuille flow, Hagen – poiseuille flow. Laminar boundary layer: Boundary layer concept, Prandtl's approximations, Blassius solution for a flat plate without pressure gradient – momentum integral equation – Von-Kerman integral relation – Pohlhausen method of obtaining approximate solutions. Displacement thickness, momentum thickness and energy thickness. Boundary layer separation and control, Kerman's integral equation.

UNIT - III

Introduction to turbulence: Origin of turbulence, nature of turbulent flow – Reynolds equations and Reynolds stresses, velocity profile.

Compressible Fluid Flow Basics: Mach number, Flow pattern in compressible flow, classification of compressible flow, isentropic flow, stagnation properties.

UNIT - IV

Gas Dynamics: Compressible flow through ducts and nozzles – area velocity relations. Flow through convergent and convergent divergent nozzles. Real nozzles flow at design conditions. Introduction to normal compression shock – normal shock relations. Introduction to Fanno Raleigh equations.

UNIT - V

Flow in ducts with friction: Fanno line, adiabatic constant area- Flow of perfect gas, chocking due to friction in constant area flow- Introduction to constant area flow with heat transfer (Raleigh line)

- 1. Yuan S.W. "Foundations of Fluid Mechanics", Prentice Hall Eastern economy edition 1983
- 2. Zucrwo M.J. and Hoffman J.D. "Gas Dynamics", Vol-I & Vol-II, John Wiley and Sons Inc. 1977
- 3. Yahya S.M. "Fundamentals of Compressible Flow", Wiley Eastern
- 4. Young, Munsen and Okiisyi, "A Brief Introduction to Fluid Mechanics" 2nd Edition, John Wiley 2000.
- Frank.M.White, "Fluid Mechanics 5th Edn McGraw Hill 2005.

II- SEMESTER

L P C 4 - 4

ENGINE EMISSIONS AND CONTROL (15D33202)

UNIT-I

Pollution - Engines and Turbines: Atmospheric pollution from piston engines and gas turbines, global warming. Pollutant Formation: Formation of oxides of nitrogen, carbon monoxide, hydrocarbon, aldehydes and Smoke Particulate emission, effects of pollutions on environment.

UNIT-II

Pollution Measurements: Non dispersive infrared gas analyzer, gas chromatography, chemiluminescent analyzer and flame ionization detector, smoke measurement, noise pollution, measurement and control.

UNIT-III

Control of Engine Pollution: Engine component, fuel modification, evaporative emission control, EGR, air injection thermal reactors, in cylinder control of pollution, catalytic converters, application of microprocessor in emission control.

UNIT-IV

Driving Cycles and Emission Standards: Use of driving cycles for emission measurement, chassis dynamometer, CVS system, National and International emission standards. Steady state and test cycle - Transient test cycle.

UNIT-V

Effect of High Pressure Injection on Soot Formation Process: High Pressure Injection - Experimental apparatus and measuring principles - Measurement of Non-Evaporating spray – Measurement of Evaporating sprays and flame. Diesel Soot Suppression: Soot Suppression by kind and content of fuel additives - Under various operating conditions - Effect of combustion chamber type and swirl ratio. Simultaneous Reduction of Soot and NO_x

TEXT BOOKS:

- 1. Ernest, S., Starkman, Combustion Generated Air Pollutions, Plenum Press, 1980.
- 2. Crouse William, Automotive Emission Control, Gregg Division10/e, (SIE) 2006.
- 3. A Text Book of Air Pollution by M.N. Rao Tata McGraw Hill book cop.

REFERENCES:

- 1. Obert, E.F., Internal Combustion Engines and air Pollution, in text Educational Publishers, 1980.
- 2. George, Springer and Donald J.Patterson, Engine emissions, Pollutant Formation and Measurement, Plenum Press, 1972.
- 3. Satora, Yasuhiro Iton Gutaka Higuchi and Tateo Nagai, SAE 901608.
- 4. SW Cootes and G.G.Lassanska, SAE 901597.
- 5. G.Greeves and CHT Wang, SAE 810260.

R15 2015-16

II- SEMESTER

L P C 4 - 4

SUPER CHARGING & SCAVENGING (Elective-III) (15D33203)

UNIT – I SUPERCHARGING

Objectives-Effects on engine performance-engine modification required-Thermo dynamics of Mechanical supercharging and Turbocharging-Turbocharging methods Engine exhaust manifolds arrangements.

UNIT-II

SUPERCHARGERS

Types of compressors – Positive displacement blowers – Centrifugal compressors – Performance characteristic curves – Suitability for engine application – Surging Matching of supercharger compressor and Engine Matching of compressor, Turbine Engine

UNIT-III

SCAVENGING OF TWO STROKE ENGINES

Peculiarties of two stroke cycle engines – Classification of scavenging systems-Mixture control through Reed value induction – Charging Processes in two stroke cycle engine Terminologies-Shankey diagram-Relation between scavenging terms-scavenging terms scavenging modeling-perfect displacement, Perfect mixing-Complex scavenging models.

UNIT-IV

PORTS AND MUFFLER DESIGN

Porting – Design considerations-Design of intake and Exhaust Systems-Tuning.

UNIT-V

EXPERIMENTAL METHODS

Experimental techniques for evaluating scavenging-Firing engine tests-Non firing engine tests – Port flow characteristics-Kadenacy systems-Orbital engine combustion system, Sonic system.

- 1. Orbet, E.F., Internal Combustion Engines and Air Pollution, Intext Education Publishers, 1980.
- 2. Richard Stone, Internal Combustion Engines, SAE, 1992.
- 3. Vincent, E.T., Supercharging the I.C.Engine, McGraw-Hill
- 4. Waston, N. and Jonota, M.S., Turbocharging the I.C. Engine, MacMillan Co., 1982.
- 5. Schweitzer, P.H., Scavenging of Two Stroke Cycle Diesel Engine, MacMillan Co.,
- 6. John B.Heywood, Two Stroke Cycle Engine, SAE Publications, 1997.

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

VEHICLE MAINTENANCE (Elective-III) (15D33204)

UNIT I MAINTENANCE TOOL, SHOP, SCHEDULE, RECORDS

Standard tool set, torque wrenches, compression and vacuum gauges, engine analyzer and scanner, computerized wheel alignment and balancing, gauges for engine tune up and pollution measurement, spark plug cleaner, cylinder re boring machine, fuel injection calibration machine. Importance of maintenance. Schedule and unscheduled maintenance. Scope of maintenance. Equipment downtime. Vehicle inspection. Reports. Log books. Trip sheet. Lay out and requirements of maintenance shop.

UNIT II POWER PLANT REPAIR AND OVERHAULING

Dismantling of power plant and its components. Cleaning methods. Inspection and checking. Repair and reconditioning methods for all engine components. Maintenance of ignition system, fuel injection system, cooling system,- lubrication system. Power plant trouble shooting chart.

UNIT III MAINTENANCE, REPAIR AND OVERHAULING OF THE CHASSIS

Maintenance, servicing and repair of clutch, fluid coupling, gearbox, torque converter, propeller shaft. Maintenance of front axle, rear axle, brakes, steering systems.

UNIT IV MAINTENANCE AND REPAIR OF VEHICLE BODY

Body panel tools for repairing. Tinkering and painting. Use of soldering, metalloid paste. Tyre maintenance, metallic, plastics

UNIT V MAINTENANCE AND REPAIR OF ELECTRICAL SYSTEMS 7

Care, maintenance, testing and trouble shooting of battery, starter motor, dynamo, alternator and regulator. Transistorized regulator problems.

TEXTBOOK:

1. A.W.Judge, Motor Vehicle Servicing, 3rd Edition, Pitman Paperpack, London, 1969.

2. W.Crouse, Everyday Automobile repair, Intl.student edition, TMH, New Delhi, 1986.

3. Ernest Venk., Edward spicer, Automotive maintenance and trouble shooting, D.B. Taraporevala Sons, Bombay, 1963

REFERENCES:

1. Stator Abbey, Automotive steering, braking and suspension overhaul, pitman publishing, London, 1971.

2. Frazee, fledell, Spicer,-Automobile collision Work, American technical publications, Chicago, 1953.

3. John Dolce, Fleet maintenance, Mcgraw Hill, Newyork, 1984

4. A,W.Judge, Maintenance of high speed diesel engines, Chapman Hall Ltd., London, 1956.

- 5. V.L.Maleev, Diesel Engine operation and maintenance, McGraw Hill Book CO., Newyork, 1995.
- 6. Vehicle servicing manuals.

7. Ernest Venk., Edward spicer, Automotive maintenance and trouble shooting, D.B. Taraporevala

С

4

Р

L 4

II- SEMESTER

L P C 4 - 4

ENGINE MANAGEMENT SYSTEMS (Elective-III) (15D33205)

UNIT I FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Components for electronic engine management system, open and closed loop control strategies, PID control, Look up tables, introduction to modern control strategies like Fuzzy logic and adaptive control.

Switches, active resistors, Transistors, Current mirrors/amplifiers, Voltage and current references, Comparator, Multiplier. Amplifier, filters, A/D and D/A converters.

UNIT II SENSORS AND ACTUATORS

Inductive, Hall Effect, thermistor, piezo electric, piezoresistive, based sensors. Throttle position, mass air flow, crank shaft position, cam position, engine speed sensor, exhaust oxygen level (two step, linear lambda and wideband), knock, manifold temperature and pressure sensors. Solenoid, relay(four and five pin), stepper motor.

UNIT III SI ENGINE MANAGEMENT

Layout and working of SI engine management systems. Group and sequential injection techniques. Advantages of electronic ignition systems. Types of solid state ignition systems and their principle of operation, Contactless (BREAKERLESS) electronic ignition system, Electronic spark timing control.

UNIT IV CI ENGINE MANAGEMENT

Fuel injection system parameters affecting combustion, noise and emissions in CI engines. Electronically controlled Unit Injection system. Common rail fuel injection system. Working of components like fuel injector, fuel pump, rail pressure limiter, flow limiter, EGR valve.

UNIT V DIGITAL ENGINE CONTROL SYSTEM

Cold start and warm up phases, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop and closed loop control – Integrated engine control system, Electromagnetic compatibility – EMI Suppression techniques – Electronic dash board instruments – Onboard diagnosis system.

TEXT BOOKS:

- 1. Understanding Automotive Electronics William B Ribbens, SAE 1998
- 2. Automobile Electronics by Eric Chowanietz SAE

- 1. Diesel Engine Management by Robert Bosch, SAE Publications, 3rd Edition, 2004.
- 2. Gasoline Engine Management by Robert Bosch, SAE Publications, 2nd Edition, 2004.

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

```
L P C
4 - 4
```

INSTRUMENTATION AND EXPERIMENTAL TECHNIQUES (Elective-III)

(15D33206)

UNIT I MEASUREMENT SYSTEMS

Static and Dynamic Measurement systems-importance of measurement system – methods of measurement -applications - characteristics of measuring system-static and dynamic characteristics of measuring system – Analysis of experimental detail, Error analysis-types of errors-limiting errors

UNIT II TRANSDUCERS, MODIFIERS AND TERMINATING DEVICES

Transducers for Automotive Applications – Amplifiers-Classifications and application in automobile – filters -types – Data Acquisition system - analog and digital type DAS- Indicators, Printers and display device –Signal Analyzing with example of automobile applications.

UNIT III MECHANICAL MEASUREMENT

Instrumentation for Measuring Weight, Force, torque, pressure, power, temperature, fluid flow and special methods, vibration piezo electric effect, rotational speed. Measuring Velocity, acceleration and angular motion with respect to automobile applications

UNIT IV ENGINE EXPERIMENTAL TECHNIQUES

I.S Code for Engine testing – Instrumentation for performance testing of engine, Instrumentation for Research and development, Instrumentation for noise, vibration, in cylinder gas flow, flame temperature Dynamic Cylinder pressure measurements.

UNIT V VEHICLE EXPERIMENTAL TECHNIQUES

Laboratory tests- test tracks - Endurance Tests- crash tests- wind tunnel tests- Dynamic cornering fatigue, dynamic radial fatigue tests – procedure, bending moment and radial load calculations. Impact test – road hazard impact test for wheel and tyre assemblies, test procedures, failure criteria and performance criteria. Bumpers - types of tests, pendulum test, fixed collision barrier test, procedure, performance criteria. Air and hydraulic brake test, air brake actuator, valves test, performance requirements.

TEXTBOOK:

1. J.G. Giles, 'Engine and Vehicle Testing', Illiffe books Ltd., London, 1968.

2. T.G. Beckwith and Buck, 'Mechanical Measurements', Oxford and IBH Publishing House, New Delhi, 1995

REFERENCES

1. A.W. Judge, 'Engineering Precision Measurement', Chapman and Hall Ltd, Essex Street W.C., 1951,

2. D.Patambis, 'Principle of Industrial Instrumentation', Tata McGraw Hill Publishing Co, New Delhi, 1990.

3. Rangan, Sharma and Mani, 'Instrumentation Devices and systems', Tata McGraw Hill Publishing Co., Ltd., 1990

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

L P C 4 - 4

AUTOMOTIVE AERODYNAMICS (Elective-IV) (15D33207)

UNIT I INTRODUCTION

Scope – historical development trends – Fundamentals of fluid mechanics – Flow phenomenon related to vehicles – External & Internal flow problems – Resistance to vehicle motion – Fuel consumption and performance – Significance of vehicle aerodynamics.

UNIT II AERODYNAMIC DRAG OF CABS

Car as a bluff body – Flow field around car – drag force – types of drag force – analysis of aerodynamic drag – drag coefficient of cars – strategies for aerodynamic development – low drag profiles.

UNIT III SHAPE OPTIMIZATION OF CABS

Front end modification – front and rear wind shield angle – Boat tailing – Hatch back, fast back and square back – Dust flow patterns at the rear – Effect of gap configuration – effect of fasteners

UNIT IV VEHICLE HANDLING

Force and moments – Origin, calculation, effects and characteristics. Side wind problems – vehicle dynamic under side winds – Dirt accumulation on the vehicle – wind noise – drag reduction in commercial vehicles.

UNIT V WIND TUNNELS FOR AUTOMOTIVE AERODYNAMICS

Principles of wind tunnel technology – Types, Stress with scale models – full scale wind tunnels – measurement techniques – Equipment and transducers – road testing methods. Introduction to CFD.

TEXTBOOK:

1. Hucho, W.H., Aerodynamics of Road vehicles, Butterworths Co. Ltd., 4th Edition, SAE 1998.

REFERENCES:

1. Pope, A, Wind Tunnel Testing, John Wiley & Sons, 2nd Edn., New York, 1994.

- 2. Automotive Aerodynamics: Update SP-706, SAE, 1987.
- 3. Vehicle Aerodynamics, SP-1145, SAE, 1996.

II- SEMESTER

L P C 4 - 4

VEHICLE CONTROL SYSTEMS (Elective-IV) (15D33208)

UNIT I INTRODUCTION

Components of chassis management system – role of various sensors and actuators pertaining to chassis system – construction – working principle of wheel speed sensor, steering position, tyre pressure, brake pressure, steering torque, fuel level, Engine and vehicle design data.

UNIT II

DRIVELINE CONTROL SYSTEM

Speed control – cylinder cut - off technology, Gear shifting control – Traction / braking control, brake by wire – Adaptive cruise control, throttle by wire. Steering - power steering, collapsible and tilt table steering column – steer by wire.

UNIT III

SAFETY AND SECURITY SYSTEM

Airbags, seat belt tightening system, collision warning systems, child Lock, anti lock braking systems, Vision enhancement, road recognition system, Anti theft technologies, smart card system, number plate coding, central locking system.

UNIT IV

COMFORT SYSTEM

Active suspension systems, requirement and characteristics, different types, Vehicle Handling and Ride characteristics of road vehicle, pitch, yaw, bounce control, power windows, thermal management system, adaptive noise control.

UNIT V

INTELLIGENT TRANSPORTATION SYSTEM

Traffic routing system - Automated highway systems - Lane warning system – Driver Information System, driver assistance systems - Data communication within the car, Driver conditioning warning -Route Guidance and Navigation Systems – vision enhancement system - In-Vehicle Computing – Vehicle Diagnostics system – Hybrid / Electric and Future Cars – Case studies.

TEXT BOOKS:

 U. Kiencke, and L. Nielsen, Automotive Control Systems, SAE and Springer-Verlag, 2000.
 Ljubo Vlacic, Michel Parent, Fumio Harashima, "Intelligent Vehicle Technologies", Butterworth-Heinemann publications, Oxford, 2001.

REFERENCES:

1. Crouse, W.H. & Anglin, D.L., "Automotive Mechanics", Intl. Student edition, 9th edition, TMH, New Delhi, 2002.

2. William B.Ribbens -Understanding Automotive Electronics, 5th edition, Butter worth Heinemann Woburn, 1998.

3. Bosch, "Automotive HandBook", 6th edition, SAE, 2004.

4. Internet References

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

L P C 4 - 4

MANUFACTURING AND TESTING OF I.C. ENGINES AND COMPONENTS (Elective-IV) (15D33209)

UNIT-I

CYLINDER BLOCK AND CYLINDER HEAD

Casting practice and special requirements, materials, machining, methods of testing.

UNIT-II

PISTON ASSEMBLY

Types, requirement, casting, forging, squeeze casting, materials, maching, testing, manufacture and testing of fuel and ignition system, bimetallic pistons, articulated pistons.

UNIT-III

CONNECTING ROD, CRANKSHAFT AND CAMSHAFT

Requirements, materials, forging practice, machining, balancing of crankshaft, testing, Manufacturing of fuel system parts such as carburetor, gasoline injection system and diesel injection parts.

Unit-IV

COMPUTER INTEGRATED MANUFACTURING

Integration of CAD, CAM and Business function CIM – Networking, CNC Programming for machining of I.C. Engines Components.

Unit-V

QUALITY AND TESTING

Introduction to ISO 9000, ISO 14000, QS9000. its importance, BIS codes for testing various types of engines, equipments, required, instrumentation, computer aided engine testing, metrology for manufacturing I.C. Engine Components

- 1. Grover, M.P., CAD/CAM, Prentice Hall of India Ltd., 1985.
- 2. Heldt, P.M.High speed internal combustion engines, Oxford & IBH Publishing Co., 1960.
- 3. Judge, A.W. Testing of High speed internal combustion engines, chapman & Hall., 1960.
- 4. Richard, W., Heine Carl R.Loper Jr.and Philip, C., Rosenthal, Principles of Metal Casting, McGraw Hill Book Co., 1980.

- 5. IS: 1602 1960 Code for testing of variable speed internal combustion engines for Automobile Purposes, 1966.
- 6. SAE Handbook, 1994.
- 7. P.Radhakrishnan and S.Subramaniayn, CAD/CAM/CIM, New Age International(P) Limited Publishers, 1977.
- 8. Mikett P.Groover, Automation, production systems and Computer-integrated Manufacturing Printice Hall of India Private Limited, 1999.

С

4

L

4

Р

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

AUTOMOTIVE SAFETY (Elective-IV) (15D33210)

UNIT I INTRODUCTION

Automotive safety – Introduction, Types. Active safety: driving safety, conditional safety, perceptibility safety, operating safety- Passive safety: exterior safety, interior safety-Advantages

UNIT II PASSIVE SAFETY CONCEPTS

Design of body for safety, engine location, deceleration of vehicle, passenger compartment, deceleration on impact with stationary and movable obstacles. Deformation behavior of vehicle body. Concept of crumble zone, Safety Cage.

UNIT III PASSIVE SAFETY EQUIPMENTS

Regulations, Seat belt, automatic seat belt tightener system and importance, collapsible steering column, tiltable steering column with advantages, air bags, Designing aspects of automotive bumpers and materials for bumpers.

UNIT IV ACTIVE SAFETY AND CONVENIENCE SYSTEM

Antiskid braking system, Secondary braking system. Stability Control. Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system, manual and automated wiper system, Driver alertness detection system.

UNIT V VEHICLE INTEGRATION AND NAVIGATION SYSTEM

Intelligent vision system, Adaptive cruise control, Warning systems, Collision Avoidance systems Vehicle Network system. Global Positioning System. Road Network, Navigation System. Telematics.

TEXT BOOK:

1. Bosch, "Automotive HandBook", 6th edition, SAE, 2004.

REFERENCES:

 J.Powloski - "Vehicle Body Engineering" - Business books limited, London - 1969.
 Ronald.K.Jurgen - "Automotive Electronics Handbook" - Second edition- McGraw-Hill Inc., -1999.

3. ARAI Safety standards

M.Tech - ADVANCED I.C. ENGINES

II- SEMESTER

L	Р	С
0	4	2

"Testing of Combustion & Emission of Internal Combustion Engines" Lab (15D33211)

- 1. Performance test on computer controlled single cylinder 4 stroke Diesel engine test rig.
- 2. Performance test on P- θ Diagram on computer controlled single cylinder 4- stroke Diesel Engine.
- 3. Heat balance sheet on Computerized controlled stroke diesel Engine.
- 4. P-V Diagram on computerized controlled single cylinder 4 stroke Engine.
- 5. Performance test on 2 stroke reciprocating Air compressor.
- 6. Engine performance characteristics on Anil engine.
- 7. Performance test on Black stone Engine.
- 8. Valve timing Diagram on 2-stroke C.I. Engine.

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED INTERNAL COMBUSTION ENGINES

I SEMESTER

S.No.	Course	Subject Name	Cate	-	urs I Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D31102	Advanced Thermodynamics	PC	3	0	0	3
2	21D33101	Advanced Heat & Mass Transfer	PC	3	0	0	3
3	Profession	al Elective – I					
	21D33102	Combustion and Emission in Engines					
	21D33103	Engine Auxiliary Systems	PE	3	0	0	3
	21D33104	Electronic Engine Management System					
4	Profession	al Elective – II					
	21D33105	Alternative Fuels for I.C. Engines					
	21D33106	Theory of Fuels & Lubricants	PE	3	0	0	3
	21D33107	Advanced Fluid Mechanics					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies					
7	21D33108	Performance Testing of Internal Combustion Engine Lab	PC	0	0	4	2
8	21D33109	Advanced Heat Transfer Lab	PC	0	0	4	2
	1	Total		16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED INTERNAL COMBUSTION ENGINES

II SEMESTER

S.No.	Course Code	Subject Name	Cate	-	urs] Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D33201	Internal Combustion Engine Design.	PC	3	0	0	3
2	21D33202	Engine Pollution and Control	PC	3	0	0	3
3	Profession	al Elective – III					
	21D33203	Hybrid and Electric Vehicles					
	21D33204	Autotronics and Vehicle Intelligence	PE	3	0	0	3
	21D33205	Automotive Electrical and Electronics					
4	Profession	al Elective – IV		l	l	1	
	21D33206	Computational Fluid Dynamics for Thermal Systems				0	
	21D33207	Automotive Safety	PE	3	0		3
	21D33208	Supercharging and Scavenging	-				
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga					
7	21D33209	Testing of Combustion & Emission of IC Engines Laboratory	PC	0	0	4	2
8	21D33210	Engine Design Laboratory	PC	0	0	4	2
		Total		14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED INTERNAL COMBUSTION ENGINES

I SEMESTER

S.No.	Course	Subject Name	Cate	Week (Credits		
	Code		Gory	L	Т	Ρ		
1	21D31103	Conduction and Radiation Heat Transfer	PC	3	0	0	3	
2	21D32101	Renewable Energy Sources	PC	3	0	0	3	
3	Profession	al Elective – I		•	•	•		
	21D32102	Energy Management	PE					
	21D32103	Direct Energy Conversion Systems		PE	3	0	0	3
	21D32104	Applied Solar Energy Engineering						
4	Profession	al Elective – II						
	21D32105	Reliability & Safety Engineering						
	21D32106	Data Acquisition and Processing System	PE	PE	3	0	0	3
	21D32107	Design of Heat Transfer Equipment	-					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2	
6	21D11110	English for Research Paper Writing						
	21D11111	Value Education	AC	2	0	0	0	
	21D11112	Pedagogy Studies						
7	21D32108	Energy Utilization Lab	PC	0	0	4	2	
8	21D32109	Thermal Energy Lab	PC	0	0	4	2	
	I	Total	I	16	00	08	18	

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED INTERNAL COMBUSTION ENGINES

II SEMESTER

S.No.	Course Code	Subject Name	Cate	-	urs] Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D32201	Energy Conservation and Audit	PC	3	0	0	3
2	21D32202	Energy Efficient Electrical Systems	PC	3	0	0	3
3	Profession	al Elective – III				L	
	21D32203	Waste Heat Recovery Systems					
	21D32204	Total Quality Management	PE	3	0	0	3
	21D32205	Solar Refrigeration & Air Conditioning					
4	Profession	al Elective – IV					1
	21D32206	Design of Wind Energy Systems					
	21D32207	Energy Resources	PE	3	0	0	3
	21D32208	Optimization of Engineering Design					
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga					
7	21D32209	Energy Operations Lab	PC	0	0	4	2
8	21D32210	Renewable Energy Systems Laboratory	PC	0	0	4	2
	1	Total	1	14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED INTERNAL COMBUSTION ENGINES

III SEMESTER

S.No.	Course Code	Subject Name	Cate		urs Weel		Credits
	Code		Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D33301	Fuel cell technology					
	21D33302	Specialty Engines	PE	3	0	0	3
	21D33303	Environmental Engineering and		Ũ	Ũ	Ŭ	Ū
		Pollution control					
2	Open Elect	tive				1	
	21D30301	Mechatronics	OE	3	0	0	3
3	21D33304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
		Total	•	06	00	20	18

IV SEMESTER

S.No.	Course Code	Subject Name	Cate Gory		urs I Weel		Credits
	Coue		Gory	L	Т	Р	
1	21D33401	Dissertation Phase – II	PR	0	0	16	
	Total					32	16

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D31102	ADVANCED	L	Т	P	C
Semester	Ι	THERMODYNAMICS(21D31102)	3	0	0	3
Course Object						
5		course is to prepare students to effectively solv				
		es problems that are directly applicable to si	tuatio	ons f	aced	in
	and industry.					
-	-	s placed on the integration of recent therm	-			
		onal resources in order to foster critical analysis	of cu	rrent	worl	k as
	to fundamental					
	1 /	ent will be able to				
		hermodynamic properties.				
		tical and classical thermodynamics to chemically	/ reac	tive s	syste	ms,
	and combustion				1 /	
		les to solve problems regarding gas turbi	nes,	com	DUST	ion,
UNIT – I	tion, and solar e	NAMIC PROPERTYRELATIONS AND	Lac	ture	TIma	.0
UNII - I		ITY ANALYSIS	Lec	ture	nrs	:9
Thormodynam		Differential relation for U,H,G&F-Maxwell relation	tions	Gon	orali	zad
•		tions for internal energy and enthalpy-the varie				
-		enthalpy and internal energy- pressure ratio-volu			-	
	-	w of thermodynamics.	ne ra	10-01	lang	0
EXERGY:		w of thermodynamics.				
	ailability of hea	t –availability of a closed system-availability fun	ction	of th	e clo	osed
	•	by system- availability function of open system.			• •10	
IRREVERSIB	• •					
		closed and open system-steady flow process eff	fectiv	eness	s-sec	ond
law analysis of						
UNIT – II	<u> </u>	IVE GAS MIXTURES	Lec	ture	Hrs	:9
Introduction-ba	sic definitions	for gas mixtures-PVT relations ship for mixtur	es of	idea	l ga	ses-
properties of m	ixtures of ideal	gases-entropy change due to mixing – mixtures	of pe	rfect	gase	s at
different initial	pressure and ter	nperatures.	_		-	
UNIT – III	CHEMICAL	THERMODYNAMICS AND	Lec	ture	Hrs	:9
	EQUILIBRIU					
		lysisofreactingsystems-Adiabaticflametemperatur				
		w analysis of reacting systems- Criterion for rea	ction	equi	libri	um.
_	stantforgaseous	mixtures-evaluationofequilibriumcomposition.				
UNIT – IV	ANALYSIS	OF VAPOUR POWER & VAPOUR	Lec	ture	Hrs	:9
		ON REFRIGERATION CYCLES				
		cle-rankine cycle-effects of operation condition of				
		mal efficiency- method of increasing thermal effi	cienc	cy. St	iper ·	_
critical and ultra	1	•		a		
		on Systems, Analysis of vapour refrigeration syst	ems,	Com	mon	ly
used refrigerant	S.					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

UNIT – V ANALYSIS OF GAS POWER CYCLES

Lecture Hrs:9

IC Engines : Air standard Otto, Diesel and Dual cycle

Gas turbines: Air standard Brayton cycle, Effect of reheat, inter cooling and regeneration, Combined gas and vapour power cycles.

Textbooks:

- 1. Kenneth Wark Jt. m, Advanced Thermodynamics for Engineers, McGrew Hill Inc., 1995.
- $2. \ Bejan, A., Advanced Engineering Thermodynamics, John Wiley and Cons, 1988.$
- 3. Holman, J.P., Thermodynamics, Fourth Edition, McGraw-HillInc., 1988.
- 4. Fundamentals of Engineering Thermodynamics by V.Babu

Reference Books:

- 1. Smith, J.M. and VanNess., H.C., Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw–HillInc., 1987.
- 2. Sonntag, R.E., and Van Wylen, G, Introduction to Thermodynamics, Classical andStatistical Thermodynamics, ThirdEdition, JohnWileyandSons, 1991.
- 3. Sears, F.W. and Salinger G.I., Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Third Edition, Narosa Publishing House, New Delhi, 1993.
- 4. DeHotf, R.T., Thermodynamics in Materials Science, McGraw Hill Inc., 1993. Rao, Y.V.C.Postulational and Statistical Thermodynamics, Allied Publisher Limited, NewDelhi, 1999

Online Learning Resources:

1. https://nptel.ac.in/courses/103/103/103103162/

2. https://onlinecourses.nptel.ac.in/noc20_ch03/preview

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ADVANCED INTERNAL COMBUSTION ENGINES)

Course Code	21D33101	ADVANCED HEAT AND MASS TRANSFER	L	Т	P	С
Semester	Ι	(21D33101)	3	0	0	3
						•
Course Object	tives:					
• To deve	elop the ability	y to use the heat transfer concepts for various application	ntion	s lik	e fin	ned
systems	s, turbulence f	lows, high speed flows.				
		al analysis and sizing of heat exchangers and to learn thet exchanges.	n the	heat	t tran	sfer
	-	tanding of the basic concepts of phase change proces	sses	and	mass	5
transfer		······································				-
Course Outco	mes (CO): St	udent will be able to				
	, ,	etion of this course the student will be able to apply t	he la	aw o	f	
	dynamics to e					
UNIT – I		<u> </u>	Le	ctur	e Hı	·s:9
	f three modes	of heat transfer, steady, unsteady state heat transf				
equations and b			r		, 2	
1	•	ate conduction, Heating and cooling of bodies with	ith r	negli	gible	internal
		in the surface temperature of infinite plates, cylind				
	-					
boules -simple	problems.					
UNIT – II	problems.		Le	ctur	e Hı	rs:9
UNIT – II		eview of conservation equations	Le	ctur	e Hı	rs:9
UNIT – II Introduction to	convection, r	eview of conservation equations sfer in laminar tube flow - forced convection in tur	1			
UNIT – II Introduction to Forced convec	convection, r tion heat tran		bule	nt fl	ow -	- Internal
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e	convection, r tion heat tran ions-Problem	sfer in laminar tube flow - forced convection in tur	bule ve h	nt fl eat	ow – trans	- Internal fer on a
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III	convection, r tion heat tran ions-Problem xternal flows-	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convective correlations-problems.	bule ve h	nt fl eat ctur	ow – trans e H 1	- Internal afer on a
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III	convection, r tion heat tran ions-Problem xternal flows- ndensation: A	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems.	bule ve h	nt fl eat ctur	ow – trans e H 1	- Internal afer on a
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi	convection, r tion heat tran ions-Problem xternal flows- ndensation: A	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems.	bule ve h Le	nt fl leat ctur ol bo	ow – trans e H 1	- Internal afer on a r s:9 g - forced
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boil	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convective correlations-problems.	bule ve h Le	nt fl leat ctur ol bo	ow – trans e Hi iling e Hi	- Internal afer on a rs:9 g - forced rs:9
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boil UNIT – IV Review of the t	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convective correlations-problems. Analysis of film condensation on a vertical surface - bes - problems.	bule ve h Le poo	nt fl leat ctur ol bo	ow – trans e Hi iling e Hi	- Internal afer on a rs:9 g - forced rs:9
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the to black enclosure	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem	bule ve h Le poo Le veen	nt fl leat of tur of bo	ow – trans e Hr iling e Hr volu	- Internal afer on a rs:9 g - forced rs:9 me and
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boil UNIT – IV Review of the to black enclosure Solar radiation	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convective correlations-problems. Analysis of film condensation on a vertical surface - bes - problems.	bule ve h Le poo Le veen	nt fl leat of tur of bo	ow – trans e Hr iling e Hr volu	- Internal afer on a rs:9 g - forced rs:9 me and
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the black enclosure Solar radiation	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp	bule ve h Le poo Le veen s perat	nt fl eat ctur ol bo ctur gas	ow – trans e Hr iling e Hr volu	- Internal afer on a rs:9 g - forced rs:9 me and surement,
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the t black enclosure Solar radiation the radiation he UNIT – V	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p eat transfer co	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp	bule ve h Le - poo	nt fl eat ctur bl bo ctur gas ure	ow – trans e Hn illing e Hn volu meas e Hn	- Internal afer on a rs:9 g - forced rs:9 me and surement, rs:9
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the to black enclosure Solar radiation the radiation he UNIT – V Definitions of	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan n: Radiation p eat transfer co concentration	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp efficient, problems.	bule ve h Lee veen s oerat Lee , spe	nt fl eat ctur bl bo ctur gas ure f	ow - trans e Hn iling e Hn volu meas e Hn con	- Internal afer on a s:9 g - forced rs:9 me and surement, s:9 servation
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the t black enclosure Solar radiation the radiation he UNIT – V Definitions of equation in diff	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p eat transfer co concentration fferent forms.	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp efficient, problems. and velocities relevant to mass transfer, Fick's law	bule ve h Le - poor veen s perat Le , spe	nt fl eat ctur bl bo ctur gas ure p ctur ecies 7 me	ow - trans e Hn iling e Hn volu meas e Hn con	- Internal afer on a rs:9 g - forced rs:9 me and surement, rs:9 servation transient
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the t black enclosure Solar radiation the radiation he UNIT – V Definitions of equation in diff	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p eat transfer co concentration fferent forms.	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp efficient, problems. and velocities relevant to mass transfer, Fick's law Steady state diffusion in dilute solutions in static	bule ve h Le - poor veen s perat Le , spe	nt fl eat ctur bl bo ctur gas ure p ctur ecies 7 me	ow - trans e Hn iling e Hn volu meas e Hn con	- Internal afer on a rs:9 g - forced rs:9 me and surement, rs:9 servation transient
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the t black enclosure Solar radiation the radiation he UNIT – V Definitions of equation in dif	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p eat transfer co concentration fferent forms.	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp efficient, problems. and velocities relevant to mass transfer, Fick's law Steady state diffusion in dilute solutions in static	bule ve h Le - poor veen s perat Le , spe	nt fl eat ctur bl bo ctur gas ure p ctur ecies 7 me	ow - trans e Hn iling e Hn volu meas e Hn con	- Internal afer on a rs:9 g - forced rs:9 me and surement, rs:9 servation transient
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the t black enclosure Solar radiation the radiation he UNIT – V Definitions of equation in dif diffusion in di one component Textbooks:	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p eat transfer co concentration fferent forms. lute solutions	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp efficient, problems. and velocities relevant to mass transfer, Fick's law Steady state diffusion in dilute solutions in static	bule ve h Le - poor veen s perat Le , spe mary iffus	nt fl eat ctur bl bo ctur gas ure p ctur ecies 7 me ion	ow - trans e Hn iling e Hn volu meas e Hn con cdia, in ga	- Internal afer on a rs:9 g - forced rs:9 me and surement, rs:9 servation transient ases with
UNIT – II Introduction to Forced convec Flows-Correlat vertical plate-e UNIT – III Boiling and co convection boi UNIT – IV Review of the t black enclosure Solar radiation the radiation he UNIT – V Definitions of equation in dif one component Textbooks: 1. YunusA.Cer 2007.	convection, r tion heat tran ions-Problem xternal flows- ndensation: A ling inside tub thermal radiat e, heat exchan a: Radiation p eat transfer co concentration fferent forms. lute solutions t stationary.	sfer in laminar tube flow - forced convection in tur s. Approximate analysis of laminar free convection correlations-problems. Analysis of film condensation on a vertical surface - bes - problems. ion - gas radiation, mean beam length exchange betw ge between gas volume and gray enclosure, problem roperties of environment, effect of radiation on temp efficient, problems. and velocities relevant to mass transfer, Fick's law Steady state diffusion in dilute solutions in static in stationary media, one dimensional non dilute d	bule ve h Le - poor veen s perat Le , spe mary iffus	nt fl eat ctur bl bo ctur gas ure p ctur ecies 7 me ion	ow - trans e Hn iling e Hn volu meas e Hn con cdia, in ga	- Internal afer on a rs:9 g - forced rs:9 me and surement, rs:9 servation transient ases with

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Reference Books:

- 1. Ozisik. M.N., Heat Transfer A Basic Approach, McGraw-Hill Co., 1985
- 2. Incropera F.P. and DeWitt. D.P., Fundamentals of Heat & Mass Transfer, John Wiley &Sons,2002.
- 3. Nag.P.K, Heat Transfer, Tata McGraw-Hill, 2002
- 4. Ghoshdastidar. P.S., Heat Transfer, Oxford University Press, 2004 Yadav, R.,
- 5. Heat and Mass Transfer, Central Publishing House, 1995.

Online Learning Resources:

https://nptel.ac.in/courses/112/101/112101097/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33102	COMBUSTIONANDEMISSIONINENGINES (21D33102)	L	Τ	Р	С
Semester	I	(21D35102) PE – I	3	0	0	3
Semester	L		5	U	U	3
Course Obj	ectives:					
v		stion insparkignition and compression ignition engines.				
		eandextentoftheproblemofpollutantformationandcontrol	ininternal	com	busti	one
ngine		1 1				
Course Out	comes (CO):	Student will be able to				
• Unde	rstandthe con	cept of the combustion in engines.				
UNIT - I		TION PRINCIPLES	Lecture			
Combustion	-Combustio	on equations, heatof combustion-chemical equilibri	um and	Diss	socia	tion-
		n - Flammability Limits - Reaction rates - La		nd 7	Furb	ulent
		nes.Introductiontosprayformationandcharacterization				
		TION IN S.I.ENGINES	Lecture			
-		a land a b normal combustion, knocking, variables affecting k	nock,Fea	tures	andd	lesig
nconsideratio						
		nestructureandspeed,Cyclicvariations,Leanburncombust	ion,Strati	fiedc	harge	eco
		asecorrelations.				
		TION IN C.I.ENGINES	Lecture			
		urisationoffueldropletsandsprayformation,airmotion,swi				
		sanddesignconsiderationsof combustion chambers, del				
	correlations,	Influence of the injection system oncombustion,Dire	ectand in	arrec	tinje	ction
systems.	COMBUST	TION IN GASTURBINES	Lectu	ro U	[r c.0	
		rulation zone and requirements - Combustion ch				
Cooling,Mat		utation zone and requirements - combustion er		John	guiai	.10115,
UNIT – V	EMISSI	ONS	Lecture	Hrs	0	
		Irnt Hydrocarbons, Oxides of Nitrogen, Particulate M				
		measures for SI and CI engines. Effect of emission				
andhumanbe					/////0	110
Textbooks:	8					
	undirEngine C	CombustionandEmission, Narosa Publishing House, 2011	•			
		E.C, and Saravanamuttoo, H.I.H., Gas Turbine Theory, Long		upLte	d.,19	8
0.				•		
3. Domk	undwarV,AC	ourseinInternal CombustionEngines, DhanpatRai&Co.(l	P)Ltd,200	2.		
4. Ganes	an, V, Interna	l CombustionEngines, Tata McGrawHillBookCo., 2003	•			
Reference B						
	•	ternal CombustionEngineFundamentals,McGrawHill Be				
	ır,M.L.,andSh Delhi-2,1993.	arma,R.P.,ACourseinInternalCombustionEngines,Dhan	patRaiPul	olicat	tions	Pvt.
		CombustionEngineandAirPollution,InternationalTextBoo	hPublich	ore 1	083	
		CombustionEngines,LaxmiPublications (P)Ltd,2006.		U 13,1	105.	
		InternalCombustionEngines,SciTechPublications(India)	Pvt I td 🤈	004		
J. Kanta		internareoniousuonizingines, ser reenr auneauons(muta).	· • · . L · u . , 2			

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

6. WillardW.Pulkrabek,EngineeringFundamentalsoftheInternalCombustionEngines,SecondEdition,P earson PrenticeHall,2007,

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_me69/preview

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33103	ENGINE AUXILIARY SYSTEMS	L	Т	P	С
Semester	Ι	(21D33103)	3	0	0	3
		PE - I				
Course Object						
		ept of carburation.				
		ept of gasoline injection and ignition systems.				
	and diesel fue	5				
 Underst 	and the desig	n and construction of various intake systems and	its	com	ponei	ıts.
		ous types and the concepts of lubrication and coo	ling	syst	em.	
Course Outco	mes (CO): St	udent will be able to				
Underst	and the conce	ept of air fuel mixture and the various component	ts in	the	carbu	iretor
 Underst 	and the types	of gasoline fuel injection , and the mechanism o	f igr	nition	n sys	tem.
• Know a	bout the varie	bus techniques involved in diesel fuel injection.				
 Underst 	and the vario	us design constraints and the types of intake and	exh	aust	mani	folds.
 Underst 	and the conce	ept and various types of lubrication and cooling s	yste	m		
UNIT – I	CARBURE				e Hr	
Properties of a	ir-petrol mixt	ures, Mixture requirements for steady state and	tran	sien	t ope	ration,
		f volatile fuels, Design of elementary carburetor,				
		buretor for 2-stroke and 4-stroke engines, Carl	bure	tor s	system	ms for
emission contro			1			
UNIT – II		E INJECTION AND IGNITION SYSTEMS			e Hr	
•		and Electronic Fuel Injection Systems type		-		•
		on Systems, Breaker mechanism and Spark plug				
		gnition system, Factors affecting spark plug of	pera	tion,	Elec	stronic
Ignition System			T	4		
UNIT – III		JEL INJECTION			<u>e Hr</u>	
	0 1	ay atomization, Penetration and Dispersion of di				•
and their prope	rties, Rate and	d duration of injection, Fuel line hydraulics, Fuel	pur	np, I	nject	ors.
UNIT – IV	MANIFOL	DS AND MIXTURE DISTRIBUTION	Le	ctur	e Hr	s:9
Intake system	components,	Discharge coefficient, Pressure drop, Air filte	er, In	ntake	e ma	nifold,
Connecting pi	pe, Exhaust	system components, Exhaust manifold and ex	xhau	ist p	oipe,	Spark
arresters, Waste	e heat recover	ry, Exhaust mufflers, Type of mufflers, exhaust n	nani	fold	expa	nsion.
UNIT – V		FION AND COOLING SYSTEMS			e Hr	
		tems, Lubrication of piston rings, Bearings, Oi			-	
U		ficients, liquid and air cooled engines, Coola	nts,	Ad	ditive	es and
	vers, Concept	of adiabatic engines.				
Textbooks:						
1. Ramalii Pvt.Ltd	0	ternal Combustion Engine, Scitech Publication ()	India	a)		
2. Domku 1999.	ndwar, V.M,	A Course in Internal Combustion Engines, Dhan	patR	lai a	nd Co	э.,
	M.L., and Sh	arma, R.P., A Course in Internal Combustion Eng	gines	5.		
		, , ,		/		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

DhanpatRaiPublications (P) Ltd., 1998.

4. Ganesan, V., Internal Combustion Engines, Tata McGraw-Hill Book Co., 1995.

Reference Books:

- 1. Duffy Smith, Auto Fuel Systems, The Good Heart Willcox Company Inc., Publishers, 1987.
- 2. Edward F, Obert, Internal Combustion Engines and Air Pollution, Intext Education Publishers, 1980.

Online Learning Resources

https://nptel.ac.in/courses/112/103/112103262/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D33104	ELECTRONIC ENGINEMANAGEMENT	L	Т	Р	C
Code		SYSTEMS		-		
Semester	Ι	(21D33104)	3	0	0	3
		PE - I				<u> </u>
Course Obje	otivos					
		nowledge of various sensors used in enginemanagement				
		of different types of fuelinjection and ignition systems				
		chnological advancementsin vehicle power plant				
		Student will be able to				
		ectronicEngineManagementSystems				
UNIT – I			Leo	tur	e Hr	·s·9
Semiconductors, Transistors, Amplifiers, Integrated circuits — Analog Gates,Microcontrollers,AnalogtoDigitalandDigitaltoAnalogConverters, UNIT – II SENSORS						
						.0
					e Hr	s:9
Sensors-	BLIBORD		LU	Jul	• •	5.2
	sure.Tempera	ture,Speed,ExhaustgasOxygen,KnockCamshaftandPositi	ion.l	Prine	ciple	0
		lcharacteristics.			orpro	Ŭ
UNIT – III			Leo	etur	e Hr	s:9
		lid state ignition systems, High energy ignition syst	ems	. E	lectr	onic
		l. Combined ignition and fuel management syster				
calculation, I						Ū
UNIT – IV	GASOLINI	E INJECTION SYSTEMS	Leo	ctur	e Hr	s:9
Open loop a	nd closed loo	op systems, Mono-point, Multi-point, Direct injection s	syste	ems	and	Air
assistedsyste	msPrinciples	andFeatures,Idlespeed,lambda,knockandsparktimingcc	ontro	ol		
UNIT – V	DIESEL IN	JECTION SYSTEMS	Leo	ctur	e Hr	s:9
		njection,Inlineinjectionpump,RotaryPumpandInjector-Co				
		Electronic control, Common rail, unit injector sys	stem	is a	nd	unit
<u> </u>	s–Constructio	nandprincipleofoperation.				
Textbooks:						
		tructionBooklets.				
		gement,Fourth Edition,Robert Bosch,NewnessPublication				
	,	uelSystems,TheGoodHeart-WilcoxCompanyInc.,Publishe	ers,1	1992	2.	
		tomobileElectronics,SAEPublications, 1995.				
Reference B						
		anagement, ThirdEdition, RobertBosch, BentleyPublication				
		omotiveComputersandDigitalInstrumentation,PrenticeHa				
	enton,Automo	otiveElectricalandElectronicSystems,4 th Edition,Tayloran	dFra	anci	sGro	up,
2004.		Independence Austernative Electron des Olesth Edition El	т		002	
		UnderstandingAutomotiveElectronics,SixthEdition,Elsev	iern	1C,2	002.	
Online Lear	0		7	lt		
1. <u>https:</u>	//nptel.ac.in/c	content/storage2/courses/112104033/pdf_lecture/lecture2	/.pc	<u>11</u>		

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33105	ALTERNATIVE FUELS FOR I.C. ENGINES (21D33105)	L	Т	Р	С
Semester	Ι	PE - II	3	0	0	3
	·					
Course Obje	ctives:					
Togive	anin-depthkn	owledge of various fuels and alternative fuels used in	IC	Engi	nes	
Course Outc	omes (CO): S	Student will be able to				
Under	standabout t	he usage of alternative fuels in IC Engines an	nd	its e	effect	on
enviro	onment					
UNIT – I	Introductio		-		e Hr	
solid fuels, ga	ases fuels, liqu	uid fuels, chemical structure of petroleum, petroleum	n ref	ining	g pro	cess,
important req	uisite qualitie	s of engine fuels, SAE rating of fuels.				
UNIT – II	FUELS		Le	ctur	e Hr	s:9
	•	v to Piston Engines, Concept of conventional fuels, po				
		DEE/DME - Hydrogen, LPG, Natural gas, Producer	gas	s, Bio	o gas	and
-		Engines-Merits and Demerits of various fuels.				
UNIT – III	ALCOHOI				e Hr	
		- Performance in S.I.Engines - Alcohol & Gasoline	ble	nds -	Fle	xible
Fuel Vehicle						
		Emulsions - Dual fuel systems -Spark assisted diesel	eng	ines	- Su	face
		accelerators - Manufacture of alcohol fuels.				
UNIT – IV	GASEOUS		-		e Hr	
• •	-	Jse in C.I Engines - Use in S.I Engines - Storage	met	hods	- Sa	afety
precautions -I						
		s and bio gas - Raw materials - Gasification - Proper				
-	in S.I. and f	fuel engines, LPG & Natural gas - Properties - Us	e in	S.I.	and	C.I.
Engines.	VECETAD		τ.	- 4		0
UNIT – V	VEGETAB		Le	ctur	e Hr	s:9
		Performance in Engines.		inco	low	and
		ality standards for Automotive Engines - Lead free g LPG, CNG, and Biodiesels.	aso	mes	, 10w	anu
Textbooks:	pilui uleseis, i	LFO, CNO, and Diodiesels.				
	al combustion	n engines by V.Ganesan, Tata McGraw Hill book cop	- 20	07		
		l, Automotive Fuels Guide Book, SAE Publications, 1	-			
Reference Bo	ooks:					
1. Osam	u Hirao and l	Richard K.Pefley, Present and Future Automotive F	Fuels	s, Jo	hn W	/iley
	ons, 1988.					
		evor Eoley, Automotive Fuels Handbook, SAE Publi	catio	ons,	1990	•
Online Learn	ning Resourc	es:				

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33106	THEORY OF FUELS AND LUBRICANTS	L	Т	Р	C
Semester	Ι	(21D33106)	3	0	0	3
		PE – II				
Course Object						
-	-	vledge of various fuels and Lubricants used in I.C.E.	ngine	s.		
		ifferenttypes of properties of Lubricants				
	· · /	ident will be able to				
• <u>U</u> nderstar		facturing and testing of fuels and Lubricants.				
UNIT – I		TURE OF FUELS AND LUBRICANTS	-		Hrs:	-
Structure of pet	roleum, refini	ng process, fuels, thermal cracking, catalytic cracki	ng, p	olym	erizat	ion,
alkylation, ison	nerisation, ble	ending, products of refining process. Manufacture	e of	lubri	cating	g oil
		inished automotive lubricants.				
		OF LUBRICATION	-		Hrs	-
		on, total engine friction, effect of engine var				
	,	elasto hydrodynamic lubrication, boundary lu		,		ring
		ubrication system, introduction to design of a lubric				
UNIT – III		IES AND TESTING OF LUBRICANTS			Hrs:	-
1 1		automotive lubricants, oxidation deterioration a		<u> </u>		
		ts, classification of lubricating oils, properties of lu	ibrica	ting	oils, 1	tests
		cation, properties, test used in grease.				
UNIT – IV		IES AND TESTING OF FUELS			Hrs	
	•	properties and testing of fuels, relative density, ca				
		, vapour pressure, spontaneous ignition temperati				
-		lity, diesel index, API gravity, aniline point, carb	on r	esidu	e, coj	pper
strip corrosion e			-			
UNIT – V		S FOR LUBRICANTS AND FUELS			Hrs	
		irements of additive, petrol fuel additives, dies	el fu	el ac	ditive	es –
	dditive mecha	nism, for lubricants. Introduction to Nano fluids				
Textbooks:			9		-	11 .
1. Ganesan.V, 2003.	"Internal Cor	nbustion Engineering", Tata McGraw-Hill Publishi	ng C	o., N	ew D	elhı,
2. M.L. Mathu 2003.	ır, R.P.Sharm	a "A course in internal combustion engines", Dha	npatr	ai pu	blicat	ion,
	Internal Comb	oustion Engineering and Air Pollution", Internationa	ıl boc	k Co	., 198	38.
Reference Boo						
		J.G. – Fuels – Solids, Liquids, Gaseous.				
	0	Fuel Technology, Vol. I & II				
		- Modern Petroleum Technology				
4. A.R.Lanso	lown–Lubrica	tion-A practical guide to lubricant selection - Perg	amor	pres	s – 19	982.
5. Raymond.	C.Gunther – I	Lubrication – Chilton Book Co., - 1971.				
6. GasolineE	ngineManage	ment, ThirdEdition, RobertBosch, BentleyPublication	<u>ns, 2</u> 0	04.		
Online Learnin	ng Resources					
1 latter av //re	ntal a in /a an	rses/103/102/103102022/				

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33107	ADVANCED FLUID MECHANICS	L	Т	Р	С
Semester	Ι	(21D33107)	3	0	0	3
		PE – II				
Course Object	ives:					
• Establis	h an understa	nding of the fundamental concepts of fluid mech	nanic	cs.		
• Understa	and and apply	the potential flow equations to basic flows.				
• Understa	and and apply	y the differential equations of fluid mechanics i	nclu	ding	the	ability
to apply	and understar	nd the impact of assumptions made in the analys	is.			
 Understand 	and the bound	lary layer concepts with respect to fluid flow				
• Understa	and and apply	the compressible flow equations.				
Course Outcom	nes (CO): St	udent will be able to				
Apply k	nowledge of	mathematics, science and engineering.				
• Derive	the governin	ng equations of fluid flow and applying the	em t	o si	mple	flow
problem					-	
• Emphas	izing the mat	hematical formulation of various flow problems.				
 Apply the second second	ne boundary l	ayer concept to the fluid flow problems.				
UNIT – I		· · · · ·				
Basic concepts:	Continuum	hypothesis - Eulerian and Lagrangian description	tions	. De	rivat	ion of
general differen	ntial equation	ns - continuity momentum and energy of in	com	pres	sible	flow-
		or Viscous Fluids (Rectangular Co-Ordinat				
equations for id	eal fluids-Ber	rnoulli's equations (one dimensional) – applicati	ons			
UNIT – II						
		compressible Fluids: Flow similarity - Reyn				flow
		couette-flow, plane poiseuille flow, Hagen - pois				
		oundary layer concept, Prandtl's approximation				
-	-	ure gradient – momentum integral equation – V				-
		method of obtaining approximate solution			1	ement
	entum thickne	ess and energy thickness. Boundary layer separat	tion	and o	contr	ol.
UNIT – III						
	: Reynolds e	xperiment, Frictional Loss in pipe flow, Resist	ance	of s	moo	th and
rough pipes.						
-		number, Propagation of pressure waves				ces in
	iid, Velocity	of sound or pressure wave in a fluid, Stagnation	prop	ertie	s,	
UNIT – IV		1 (1 ,1 1 1 , 1 1 1 1	<u> </u>	1	•	T-1
•	-	le flow through ducts and nozzles – area velo	•			
		vergent divergent nozzles. Real nozzles flow a				
		pression shock – normal shock relations. Int	rodu	ctior	1 to	ranno
Raleigh equatio	115.		1			
UNIT – V	with frinting	Eanna lina adiabatia constant and Elan C		4 ~ -	1.	
		Fanno line, adiabatic constant area- Flow of pe				
	in constant	area flow- Introduction to constant area flow	W1	in ne	at ti	anster
(Raleigh line)						
Textbooks:						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

- 1. Yuan S.W. "Foundations of Fluid Mechanics", Prentice Hall Eastern economy edition 1983
- Zucrwo M.J. and Hoffman J.D. "Gas Dynamics", Vol-I & Vol-II, John Wiley and Sons Inc. 1977
- 3. Yahya S.M. "Fundamentals of Compressible Flow", Wiley Eastern
- 4. Young, Munsen and Okiisyi, " A Brief Introduction to Fluid Mechanics" 2nd Edition, John Wiley 2000.
- 5. Frank.M.White, "Fluid Mechanics 5th Edn McGraw Hill 2005.

Reference Books:

- 1. Yuan S.W. "Foundations of Fluid Mechanics", Prentice Hall Eastern economy edition 1983
- 2. Zucrwo M.J. and Hoffman J.D. "Gas Dynamics", Vol-I & Vol-II, John Wiley and Sons Inc. 1977
- 3. Yahya S.M. "Fundamentals of Compressible Flow", Wiley Eastern
- 4. Young, Munsen and Okiisyi, " A Brief Introduction to Fluid Mechanics" 2nd Edition, John Wiley 2000.
- 5. Frank.M.White, "Fluid Mechanics 5th Edn McGraw Hill 2005.
- Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Course	21D33108	PERFORMANCE TESTING OF INTERNAL	L	Т	Р	С
Code		COMBUSTION ENGINES LABORATORY				
Semester	Ι	(21D33108)	0	0	4	2

Course Objectives:

• Tounderstandthe behaviorofIC Enginesatdifferentoperatingconditions

Course Outcomes (CO):

• Onsuccessful completion of this course the student will be able to have hands on experience in Operation, testing of engines.

List of Experiments:

- 1. Heat balance sheet on comet engine
- 2. Performance test on NIYO engine.
- 3. Retardation test on Black stone engine
- 4. Optimum cooling water rate on Texvel engine.
- 5. Morse test on 4-stroke multi cylinder Ambassador Engine.
- 6. Performance test on the Tata-sumo engine.
- 7. Measurements of octane number.
- 8. Measurement of exhaust emission by using five Exhaust gas analyzers.

Online learning resources/Virtual labs:

https://nptel.ac.in/content/storage2/courses/112104033/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D33109	ADVANCED HEAT TRANSFER	L	Т	Р	С
Code		LABORATORY				
Semester	Ι	(21D33109)	0	0	4	2

0 0	•
Course O	
	erstand the various forms of heat transfer and their applications in real life problems.
	yze different methods to calculate the heat transfer coefficient in various heat
	fer problems.
	yze the theoretical knowledge and apply it in conducting experiments in the forms of
	transfer.
	utcomes (CO):
	orm steady state conduction experiments to estimate thermal conductivity of different rials for plane, cylindrical and spherical geometries
	orm the transient heat conduction experiment and obtain variation of temperature g the length of the pin fin.
	hate heat transfer coefficients in forced convection, free convection and determine tiveness of heat exchangers
Perfo	rm radiation experiments: determine surface emissivity of a test plane and Stefan-
	mann's constant and compare with theoretical values
• Estin	nate heat transfer coefficients in condensation, boiling and effectiveness of heat pipe
List of Ex	periments:
1.	Determine heat transfer in shell and tube heat exchanger(Parallel and Counter).
2.	Thermal conductivity of insulating material through lagged pipe apparatus
3.	To phenomenon of critical radius of insulation
4.	Thermal Conductivity of metal rod (conductor).
5.	Determine effectiveness of finned tube heat exchanger by LMTD Method
6.	Experiment on Transient Heat Conduction
7.	Heat transfer coefficient in forced convection.
8.	Heat transfer coefficient in natural convection
9.	Experiment on Parallel and counter flow heat exchanger.
	Emissivity of a gray body through Emissivity apparatus.
	Experiment on Stefan Boltzman Apparatus.
	Heat transfer in drop and film wise condensation.
	Pin Fin apparatus (Forced convection)
14.	Study of heat pipe and its demonstration.
15.	Study of Two – Phase flow.

Ananthapuramu – 515 002, Andhra Pradesh, India

CourseCo de	21D33201	INTERNALCOMBU	JSTIONENGINED N	DESIG	L	Т	Р	С
Semester	II	(21)	D33201)		3	0	0	3
Carron	• 4 •							
CourseOb	2	a anoundingonthanista	nanainadaaiannhila	anhr				
		c groundingonthepisto Student willbeableto	nenginedesignphilos	sopny.				
			1 4 1 41	1.		• ,		• 1
ign	philosophy as	havegainedaninsight/u a prelude to higher lev	vel design activities		ieda	pplic	catio	ns.
UNIT-I	GENERAL 1	DESIGN PRINCIPLI	ES		Le	ctur	e Hr	s:9
-		oiceofmaterial,Stress,F	atigueandNoise,				Vil	oration
	essconsiderati							
UNIT-II	DESIGNSPH	ECIFICSOFTWO-			L	ectu	re H	rs:9
		GINESYSTEMS						
	-	tandsizingofports,pisto	nassembly,intakean	dexhau	stsy	stem	i,app	licatio
	tivegasolineen	· · · · · · · · · · · · · · · · · · ·						
		MAJOR COMPONE					ıre H	
Pistonsyst	em,Powercyli	ndersystem,Connectin	grodassembly,Cranl	cshafts	yste	m,Va	alveC	Bearin
g,Stressan								
UNIT-IV	DESIGNOF	OTHERCOMPONEN	NTS/SUBSYSTEM	S	Lec	ture	Hrs	:9
Inlet and e	exhaust manif	folds, cylinder block,	cylinder-head, crar	nkcase.	De	sign	aspe	ects of
enginemou	ntings,gaskets	s, bearings. Basics	ofignition, lubricatio	nandco	olir	ngsys	stemo	lesign
		talytic converters, part		R syste	ms.			
UNIT-V	DESIGN OF	FUEL FLOW SYST	EMS		Ι	lectu	ire H	lrs:9
Design of i	njectors syste	ms, carburettors and fu	el supply systems ir	n CI En	gine	es		
Textbooks	•							
	Introductionto A,2009.	EngineTestingandDev	elopment,RichardD.	Atkids	,SA	EInte	ernat	ional,
2. Des	sign	andS	imulation				of	Four-
Stro	okeEngines,G	ordonP.Blair,Societyof	AutomotiveEnginee	ers,Inc.,	US	A,19	99.	
3. Die	sel Engine F	Reference Book, Seco	ond Edition, Rodica	aBaran	escu	and	d Be	rnard
Cha	allen(Editors),	SocietyofAutomotiveE	Engineers, Inc., USA,	1999.				
<u>ر</u>	gineering De I.Grote,Spring	•	pproach,G.Pahl, W	V.Beltz	J.Fi	eldhı	usen	and
	, I C	chnologyfromAtoZ,Ri	chardVanBasshuvse	enandF	reds	Schaf	fer S	4 E In
	•	ndSiemensVDO,Germ	•	manar	louc	, ciiui	,01	
		Wien, Austria, 2006.	ully,2007.					
1	0 0,	Design,KevinL.Hoag,S	AEInternational US	SA/				
Reference	0							
		amentalsoftheInternal	CombustionEngine V	Willard	WF	ulkr	ahek	Seco
		ce-HallofIndiaPvt.Ltd.		, 111ai u		GINI	uoun	,500
2. Inte	ernalCombusti	onEngineDesign,A.Ko		v,MIRF	Publ	isher	s,Mo	osco
	984.				_			
3. Inte	ernalCombust	tionEngineFundament	als,JohnB.Heywoo	od,McC	irav	/—		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

HillBookCompany,1988.

- 4. InternalCombustionEngineHand book:Basics,Components,Systemsand Perspectives,RichardVanBasshuysenandFredSchafer(Editors)SAEInternationalUSAa ndSiemes VDOAutomotive,Germany,2002.
- 5. IntroductiontoEngineValvetrains,YushuWang, SAE International,USA,2007.
- 6. Introduction to Internal Combustion Engines, Richard Stone, Fourth Edition SAEInternational, USA and Macmillan Press, 2012.

OnlineLearningResources:

1.https://nptel.ac.in/courses/112/104/112104033/

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Course Code	21D33202	ENGINE POLLUTION AND CONTROL (21D33202)	L	Т	Р	С
Semester	II	(21D33202)	3	0	0	3

Course Objectives:

- Understandeffectofvehiclepopulationandemittedpollutantsonhumanhealthandenvironmentandv arioustypesofemissions.
- $\bullet \quad Understand the formation mechanism of various types of pollutants from SI and CI engines.$
- Conceivethesignificanceofemissioncontrolmethods.
- Understandtheconstructionandworkingofemissionmeasuringinstruments.
- Befamiliar with emission standards and test procedures.

Course Outcomes (CO): Student will be able to

- Analysetheimpact of vehiclepopulationonpollutionandtheeffectsHC,CO,CO2,NOX,smoke,particulates,leadand aldehydesonhealthandenvironment.
- Describe the effects of transient operation of vehicle one missions and types of emissions. Describe the formation mechanism of HC, CO, CO2, NOX, smoke, particulates and ald ehydes in SI and CI engines.
- Comprehendthefactorsthatleadtoglobalwarmingandtheissues. Analyse the design and operatin gparameters on emissions. Describe about noise pollution, measurement and control.
- AwareofUS,Euro,JapanandIndianemissionnorms,standardsCVSsamplingandtestprocedur es.Analysein-

cylinderemissioncontrolmethodssuchasEGR, airinjection, fuelmodifications, waterinjection, ignitionandinjectiontiming.

Describeengine-

outemissioncontrolmethodsuchasthermalreactorsandcatalyticconverters.Describetheconstruct ionandworkingofemissionmeasuringinstrumentssuchasNDIR,FID,smokemetersChemiluminescent

analyserandgaschromatograph.Differentiatebetweentwostrokeandfourstrokeenginepollution s.

UNIT – I	POLLUTANT FORMATION-ENGINES AND TURBINES	Lecture Hrs:9					
Atmospheric pollution from piston engines and gasturbines, Global warming. For mation of oxides of nitrogen, Carbon monoxide, Hydrocarbon, aldehydes and Smoke, Particulate emission, Effects of pollutions on environment.							
UNIT – II	POLLUTIONMEASUREMENT	Lecture Hrs:9					
Nondispersi	veinfraredgasanalyzer,Gaschromatography,Chemi-						
luminescent ementandco	analyzerandflameionizationdetector,Smokemeasurement,Noisepontrol.	ollution,Measur					
UNIT – III	POLLUTIONCONTROL-INCYLINDERMETHODS	Lecture Hrs:9					
Enginecomp	onent,Fuelmodification,Evaporativeemissioncontrol,EGR,Airinject	ion,WaterInjecti					
on,Applicat	ionofmicroprocessorinemissioncontrol.	-					
UNIT – IV	POLLUTIONCONTROLAFTERTREATMENT	Lecture Hrs:9					
Thermalread	ctors,Catalyticconverters,&ParticulateTraps	•					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

UNIT – V CYCLESANDEMISSIONSTANDARDS

Lecture Hrs:9

Useofdrivingcyclesforemissionmeasurement, Chassisdynamometer, CVSsystem, Nationaland Internationalemissionstandards.

Textbooks:

1. CrouseWilliam, AutomotiveEmissionControl, GreggDivision/McGraw-Hill, 1980 2. Ernest, S., Starkman, CombustionGeneratedAirPollutions, PlenumPress, 1980.

Reference Books:

- 1. George, SpringerandDonaldJ.Patterson, Engineemissions, PollutantFormation and Measu rement, Plenumpress, 1972.
- Obert, E.F. InternalCombustionEnginesandAirPollution,IntextEducationalPublishers,198
 0.

Online Learning Resources:

1. https://nptel.ac.in/courses/112/104/112104033/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33203	HYBRID AND ELECTRICVEHICLES	L	Т	P	С
Semester	II	(21D33203)	3	0	0	3
		PE – III				
Course Objecti	ves:					
Understa	und working o	of Electric Vehicles and recent trends.				
Know-he	ow & aptitude	e towards future trends in Hybrid Electric Vehic	eles.			
Course Outcon	nes (CO): Stu	adent will be able to				
Familiar	ize on concep	ots of electric vehicle & performance of electric	vehi	cles		
Gain kno	owledge on E	lectric Propulsion Systems & Generators				
Acquire	the knowledg	ge on hybrid electric drive train systems				
Gain kno	owledge on m	notor controllers and control systems & energy s	stora	ges		
Attain th	ne knowledge	e on Energy Storages -Fuel Cells & Solar Car	s an	d Co	ontro	1
systems.	-					
UNIT – I EL	ECTRIC V	EHICLES	Le	cture	e Hrs	:9
Layout of an	electric vel	hicle, performance of electric vehicles -	trac	tion	mo	tor
characteristics,	tractive effe	ort, transmission requirements, vehicle perfo	rmai	nce,	ene	rgy
consumption, a	dvantage an	d limitations, specifications, system compor	nents	, ele	ectro	nic
control system.						
UNIT – II EL	ECTRIC PI	ROPULSION SYSTEMS &	Le	cture	e Hrs	:9
GE	ENERATOR	S				
		manent magnet motors, brushless DC and rel				
	regenerative	braking. DC generators, AC generators, voltag	e an	d fre	equer	ncy
regulations.			1			
	YBRID VE				Hrs	
		drive train, types, architecture of series and				
electric drive tra	in, merits and	d demerits, series and parallel hybrid electric dr	ive t	rain	desig	gn
UNIT – IV M	IOTOR CO	NTROLLERS AND CONTROL SYSTEMS	Le	cture	Hrs	:9
		STORAGES				
		speed and torque control - DC motors a	nd 4	AC	mote	ors.
		types of batteries -lead acid batteries, nickel				
		rochemical reactions, thermodynamic voltage,				
		ency, ultra-capacitors.				
UNIT – V FU	EL CELLS	& SOLAR CARS	Le	cture	e Hrs	:9
Fuel cell, const	ruction, wor	king, equations, possible fuel sources, fuel re	eforr	ner,	desi	gn.
Solar carsphotov	voltaic cells,	tracking, efficiency and cost comparison.				-
Textbooks:						
1. MehrdadI	Ehsani, Yimi	nGao, sebastien E. Gay and Ali Emadi, "N	/lode	ern I	Elect	ric,
Hybrid E	lectric and F	Fuel Cell Vehicles: Fundamentals, Theory and	l De	esign	", C	RS
Press, 201	14.					
2. James La	rminie and	John Loury, "Electric Vehicle Technology-E	xpla	ined	", Jo	ohn
Wiley & S	Sons Ltd., 20	13				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Reference Books:

- 1. SandeepDhameja, "Electric Vehicle Battery Systems", Butterworth –Heinemann, 2012.
- 2. Donwhite Consultant Incorporate Handbook of EMI / EMC Vol I 2015
- 3. Ronald K Jurgen, "Electric and Hybrid Electric Vehicles", SAE, 2012
- 4. Ron Hodkinson and John Fenton, "Light Weight Electric/Hybrid Vehicle Design", ButterworthHeinemann, 2012

Online Learning Resources:

1. https://nptel.ac.in/courses/108/103/108103009/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33204	AUTOTRONICS AND VEHICLE INTELLIGENCE	L	Т	Р	С
Semester	II	(21D33204) PE – III	3	0	0	3
Course Ob	v					
		ing of automotivesensors.				
		itude towards future trends in Vehicleintelligence				
	, ,	: Student will be able to				
• Tou	nderstandthea	automotiveelectronics				
• Tou	nderstandthes	sensorsandtheirapplications				
• Tos	tudy about the	eelectronicfuelinjectionandignitioncontrol				
• Toir	ntroducethedi	fferent vehicle systems				
• Tob	roadentheimp	oortanceofvehicleintelligencesystem				
UNIT – I	Automotive	fundamentals	Lee	cture	Hrs:	9
Theengine-	components-o	drivetrain-starting&chargingsystemsoperation-igni	tions	syste	m-	
suspension	systems-brak	es-abs-steering system.				
UNIT – II	Automotiv	ve sensors	Lee	cture	Hrs:	9
Temperatur	esensor-gasse	ensor-knocksensor-pressuresensor-flowsensor-torg	uese	nsor	-crasł	1
sensor-spee	edsensorandac	ccelerationsensor-microsensor-smartsensor-				
operation,ty	ypes,character	ristics, advantages and their applications.				
		c fuel injection and ignition system			Hrs:	
		n components-electronic fuel system-fuel injec				
		on-electronic control fuel injection-operation-di				
		ol-continuousinjectionsystem-highpressuredieselfu		ectic	on-MF	PFI
		nsystem-operation-types-electronicsparktimingcon				
UNIT – IV	Electric ve	ehicles and hybrid vehicles	Lee	cture	Hrs:	9
		cledevelopment-systemlayout-basicsystemcompor				
		-rapidchargingsystem-motordrivesystem-fuelcellel				
		ridvehicle-parallelhybrid vehicle-CNG electrichyb				
UNIT – V	Vehicle in	telligence	Lee	cture	Hrs:	9
		ructure-vision basedautonomous road vehicles				
-	•	- features-applications- a visual control syst			-	-
· ·	•	ory-anapplicationofmobilerobotvisiontoavehiclein			•	em
-		warningandavoidance systemlowtirepressurewarni	ngsy	sten	1.	
Textbooks						
	lium B. Ribb ence 2003	bens,Understanding Automotive Electronics -Six	th ec	litio	n Else	evier
2. Rona	lld K.Jurgen,	Sensors and Transducers - SAE 2003				
3. Jack	Erjavec, Rob	ert Scharff, Automotive Technology - Delmar pub	licati	ons	Inc 19	992
Reference	Books:					
1. Rona	lld K.Jurgen,	Electric and Hybrid-electric vehicles - SAE 2002			-	-
		sion-based Vehicle Guidance - Springer Verlag, No	ewyo	ork 1	992	
		ss Room Manual For Automotive Service And Sys				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

PublicationsInc 1995

- **Online Learning Resources:**
 - 1. https://nptel.ac.in/courses/107/106/107106080/
 - 2. https://www.delorenzoglobal.com/documenti/cataloghi/200117_AUTOTRONICS_2_ ENG.pdf

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33205	AUTOMOTIVE ELECTRICAL AND ELECTRONICS	L	T	P	C
Semester	II	(21D33205) PE – III	3	0	0	3
Course Ol	ojectives:					
• Kn	ow about the	fundamentals of batteries and accessories.				
• Kn	ow about the	mechanics of starting system.				
• Une	derstand the p	procedures for charging system.				
• Une	derstand the s	system of fundamentals of automotive electronics.				
• Kn	ow the system	n of fuel, cooling and lubrication.				
Course Ou	utcomes (CO): Student will be able to				
• Far	niliarize with	lead acid battery and accessories.				
• Acc	quire the know	wledge of starting system.				
• Dev	velop the kno	wledge on charging system.				
	-	on automotive electronics.				
	0	ation about sensors and activators.				
UNIT – I		IES AND ACCESSORIES	Le	cture	e Hrs	3:9
headlight d	lazzling and p	rn system, details of head light and side light, LED preventive methods - Horn, wiper system and trafficate NG SYSTEM	or.	ting cture		
Condition characteris	at starting tics, principle	, behavior of starter during starting, series and construction of starter motor, working of differ ances of starter motor, starter switches.	mote	or a	and	its
	-	ING SYSTEM	Le	cture	e Hrs	s:9
Generation	of direct cu	irrent, shunt generator characteristics, armature react	ion.	thir	d br	ush
		oltage and current regulators, compensated vol				
alternators	principle and	constructional aspects and bridge rectifiers, new deve	lopr	nent	s	
UNIT – IV	/ FUNDAM	MENTALS OF AUTOMOTIVE ELECTRONICS	Le	cture	e Hrs	s:9
interferenc	e suppression	comotive electronic engine management system, n, electromagnetic compatibility, electronic dashboa em, security and warning system.				
UNIT – V		S AND ACTUATORS	Le	cture	e Hrs	s:9
Types of se crankshaft application	ensors: senso position, co . Solenoids, s	r for speed, throttle position, exhaust oxygen level, ma polant temperature, exhaust temperature, air mass f stepper motors, relay.				
Textbooks						
reprint 2. Crouse	t 2010.	fiths. L. "Automotive Electrical Equipment", ELBS & omobile Electrical Equipment", McGraw-Hill Book Coprint 2010.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Reference Books:

1. Kholi.P.L "Automotive Electrical Equipment", Tata McGraw-Hill Co., Ltd., NewDelhi, reprint 2011

2. Robert Bosch, "Automotive Hand Book", SAE (5th Edition), 2010.

Online Learning Resources:

1. https://nptel.ac.in/courses/108/102/108102121/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33206	COMPUTATIONALFLUIDDYNAMICSFOR THERMALSYSTEMS	L	Τ	P	C
Semester	II	(21D33206)	3	0	0	3
		$\mathbf{PE} - \mathbf{IV}$				
0	•					
Course Ol	•		C	1.1	<u>c 1</u>	
		s to introduce numerical modeling and its role in the				
		combustion it will enable the students to understa				
		ethods and solving methodologies and to create con	ride	nce t	o sol	lve
		ns in the field of heat transfer and fluid dynamics.				
		e volume discretized forms of the CFD equations.	ti a	n a b	Nov	
		plicit & implicit algorithms for solving the Euler Equ	iano	ns a	inav	ier
	kes Equation					
): Student will be able to	4	- 6 (4 -
		npletionofthiscoursethestudentwillbeabletoapplycond	cept	OI (CFD	to
		hermal systems	т		11	0
UNIT – I		NG DIFFERENTIAL EQUATIONS AND	Le	cture	e Hrs	:9
Design of		SATION TECHNIQUES	1 ല.		. d 1.	
		er, Fluid flow — Mathematical description of fluid				
		on of mass, momentum, energy and cher				
		al differential equations — Initial and Boundary				
		ues using finite difference methods — Taylor's Se	eries	s - U	nno	rm
		s, Numerical Errors, Grid Independence Test.	T.		Hrs	
	METHOI					
•		al diffusion, Two and three dimensional steady				
-		on of unsteady diffusion problems – Explicit, Impl	licit	and	Crar	ık-
		Stability of schemes				
UNIT – II		CTION –DIFFUSION PROCESSES: FINITE	Le	cture	e Hrs	:9
	VOLUM	E METHOD				
		rection - diffusion problem, Central difference s			upwi	nd
	1	ower law discretization techniques-QUICK sch	eme	e.		
UNIT – IV	FLOW P	ROCESSES: FINITE VOLUME METHOD			e Hrs	:9
Discretisat		incompressible flow equations–Pres	sure	:	bas	sed
algorithms		MPLER&PISO algorithms				
UNIT – V	TURBUL	ENCE AND ITS MODELLING	Le	cture	e Hrs	:9
-		nt flow, free turbulent flows, flat plate boundary	-		-	-
-		s, One equation model, $k - \epsilon \& k - \omega$ models Sta	nda	rd ar	nd H	igh
		nber models.				
Textbooks						
1. Inte	ernal combus	tion engines by V .Ganesan, Tata McGraw Hill book	c op	b. 200	07	
2. Ric	hard L.Becht	old, Automotive Fuels Guide Book, SAE Publication	ns,1	997.		
Reference	Books:					
1. Osa	amu Hirao an	d Richard K.Pefley, Present and Future Automotive	Fue	ls, Jo	hn	
Wi	ley and sor	ns, 1988.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

2. Keith Owen and Trevor Eoley, Automotive Fuels Handbook, SAE Publications, 1990.

Online resources:

1. https://nptel.ac.in/courses/112/105/112105045/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D33207	AUTOMOTIVE SAFETY	L	Т	P	C
Code		(21D33207)				_
Semester	II	PE - IV	3	0	0	3
Course Ob	jectives:					
• Under	rstand the De	sign of the body for safety.				
• Under	rstand the var	ious types of safety concepts.				
• Under	rstand the cor	ncept of scavenging in two stroke engines.				
• Under	rstand the des	ign concept of safety equipment's.				
		perimental methods for comfort and convenience s	yste	m.		
		: Student will be able to				
• Know	about the bas	sics about the vehicle.				
• Under	stand the safe	ety aspects in the vehicle				
• Know	and understa	nd the various safety aspects				
• To ge	t the knowle	dge in sensors provided in the vehicle to avoid	the	cras	h an	dto
	the defects in					
• To kn	ow about the	comfort and convenience system				
UNIT – I	INTRODU	CTION	Le	cture	e Hrs	:9
Design of the	he body for s	afety, Energy equation, Engine location, Deceler	atio	n of	vehi	cle
inside pass	enger compa	rtment, Deceleration on impact with stationar	y ai	nd r	nova	ble
obstacle, Co	oncept of crun	nble zone, Safetysandwich construction.				
UNIT – II	SAFETY C	CONCEPTS	Le	cture	e Hrs	:9
		afety, Conditional safety, Perceptibility safety, C				
		safety, Interior safety, Deformation behaviour of		ehicl	e bo	dy,
		naracteristics of passenger compartment on impac				
UNIT – III		EQUIPMENTS	-	cture		
		utomatic seat belt tightener system, Collapsible s				
	•	Air bags, Electronic system for activating air bags		-		<u> </u>
		aking system, Regenerative Braking System,	Crui	se (Cont	rol,
1	ruise Control		1.			
UNIT – IV		ION WARNING AND AVOIDANCE		cture		
		m, Causes of rear end collision, Frontal objec				
•		system, Object detection system with braking system	em :	inter	actic	ns,
	ess Detection.		T			0
UNIT – V		T AND CONVENIENCE SYSTEM		cture		
-	-	stment, Central locking system, Garage door	-	-	-	
• •	•	stem, Rain sensor system, Environment infor	mat	ion	syste	em,
		Viper System, GPS.				
Textbooks:		(1000			
		tive Handbook" - 5th edition - SAE publication - 2	2000			
Reference I		tale De des Frankrigen (D. 1. 1. 1. 1. 1. 1. 1. 1.	т	. 1.	10	<u> </u>
		ticle Body Engineering" - Business books limited,				
	-	"Automotive Electronics Handbook" - Second ed	111101	1- M	cGra	ıw-
Hill	Inc., 1999.					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Online Learning Resources:

1. https://onlinecourses.nptel.ac.in/noc20_de06/preview

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES

DEPARTMENT OF MECHANICAL ENGINEERING

(ADVANCED INTERNAL COMBUSTION ENGINES)

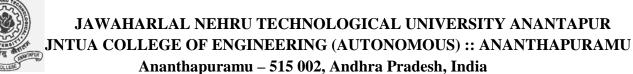
Course Code	21D33208	SUPERCHARGING AND SCAVENGING (21D33208)	L	Т	Р	C				
Semester	II	PE – IV	3	0	0	3				
Course Objectives:										
• Understand the purpose of using supercharging.										
		ous types in supercharger.								
		ept of scavenging in two stroke engines.								
		n concept of ports and mufflers								
		rimental methods for scavenging.								
		: Student will be able to								
		on engine performance and engine modification.								
		types of compressors and blowers								
• Know t engines		ion of scavenging systems and charging process	es in	two	o stro	oke				
• Design	of intake and	exhaust systems.								
Analyze characte		mental techniques for evaluating scavenging	and	po	rt fl	ow				
UNIT – I	SUPERCH	ARGING	Le	cture	Hrs	:9				
Objectives	- Effects	on engine performance - engine modific	atio	n r	equi	red				
Thermodyna	amics of M	echanical Supercharging and Turbocharging - t manifolds arrangements.								
UNIT – II	SUPERCH	ARGERS	Le	cture	Hrs	:9				
Performance	e characterist	- Positive displacement blowers - Centrifugal ic curves - Suitability for engine application - Sur	ging	- M	atch					
		sor and Engine - Matching of compressor, Turbine				0				
UNIT – III		GING OF TWO STROKE ENGINES			Hrs					
control thro Terminologi	ugh Reed va es - Shanke	te cycle engines - Classification of scavenging sy lve induction - Charging Processes in two stroke y diagram - Relation between scavenging term cement, Perfect mixing - Complex scavenging mo	e cyo ns -	cle e scav	ngin	e -				
UNIT – IV	PORTS A	ND MUFFLER DESIGN	Le	cture	Hrs	:9				
Porting - De	sign consider	rations - Design of Intake and Exhaust Systems - T	lunii	ng.						
UNIT – V	EXPERIM	ENTAL METHOD	Le	cture	e Hrs	:9				
-	-	for evaluating scavenging - Firing engine tes characteristics - Kadenacy system - Orbital eng				-				
Textbooks:										
 Vincent,I Watson, Schweitz 	N. and Janota	arging the I.C.Engines, McGraw-Hill. 1943 a, M.S., Turbocharging the I.C.Engine, MacMillan avenging of Two Stroke Cycle Diesel Engine, 1								
1956										

4. John B.Heywood, Two Stroke Cycle Engine, SAE Publications, 1997.

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Reference Books:

1. Obert, E.F., Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1980.


2. Richard Stone, Internal Combustion Engines, SAE, 1992.

Online Learning Resources:

1. https://nptel.ac.in/courses/112/104/112104033/

Course	21D33209	0	Combustion &		L	Т	Р	С
Code		Interi	al Combustion	n Engine		•		•
Semester	II		Laboratory (21D33209)		0	0	4	2
			(21033207)					
Course O	bjectives:							
			nginesatdiffere	ntoperatingcon	ditio	ıs		
	utcomes (CO	/		udantuuill haab	1. 4	- 1	. h.	
	experience int	-		udentwill beab	ne t	onav	e na	inas
	EXPERIME	<u> </u>	•••					
1. Co	mputerized 4	– Stroke Sin	gle Cylinder Va	ariable Compres	ssion	Rati	o En	gine
wit	h Water coole	ed Eddy curre	nt Dynamomet	er Test rig.				
2. Co	mputerized 4	– Stroke Si	ngle Cylinder	Petrol Engine v	with	Wate	er co	oled
Ede	dy current Dy	mamometer T	est rig using Co	ombustion Anal	yzer	with	DAC	2
3. 4-s	troke 4 Cy	linder Diese	l Engine wit	h water coole	ed E	Eddy	Cu	rrent
Dy	namometer te	est rig using C	ombustion Ana	lyzer.				
4. Per	formance tes	st on P-0Diag	gram on compu	ater controlled	sing	le cy	linde	er 4-
stro	oke Diesel En	gine.						
5. P-V	/ Diagram on	computerize	l controlled sin	gle cylinder 4 –	strol	ke Er	ngine	•
6. Em	ission parame	eters on Anil	engine.					
7. Me	asurement of	f Smoke De	nsity using sm	oke meter on	a 4-	Strok	ke D	iesel
Eng	gine.							
8. Me	asurement of	exhaust emis	sion by 5 gas a	nalyzer.				
9. Me	asurement of	octane numb	er for different	blends of gasoli	ne.			
10. Me	asurement of	Cetane numb	er for different	blends of diese	l fuel	•		
	rning resour							
1. http	s://nptel.ac.in	/content/sylla	bus_pdf/11210	4033.pdf				

Course Code	21D33210	ENGI	NE DES	GN LAF	BORATORY	Y I	,	Т	P	С
Semester	II		(2	1D33206)		0		0	4	2
Course Object										
	out the design	U	-	-						
	out the design	•	-	-		-	·			
	out the design	U	1		cting rod and	d its co	mp	one	ents.	
	out the design out the design		-							
	out the design	•		st valve.						
	out the design				he design o	f engi	ne o	cvli	nder	and
cylinder b	-	<u> </u>				8-		-)		
Course Outcon		nsuccessfu	ul compl	etion oftl	nislaboratory	thestu	len	wil	ll be	able
tohave hands one	*									
-	d draw the pis	-	-	-		-				
	d draw the cr				as shank des	sign, de	esig	n o	f big	end
-	olt as per the e					4		41.		
• Design an specificati	nd draw the	cranksn	art and	the balar	icing weigh	it as j	ber	the	e en	gine
-	d draw the fly	v wheel as	ner the e	noine sne	cification					
-	nd draw the I		-			aust as	pe	r th	ie en	gine
specificati							P •			8
-	d draw the car	m, cam sł	naft as pe	r the engi	ne specificat	ion.				
• • Design t	he cylinder an	nd cylinde	r block d	imensions	s as per the e	ngine s	spec	cific	catio	n.
LIST OF EXPE	ERIMENTS									
1. Modeling	g and analysis	of Piston	l							
2. Modeling	g and analysis	of Piston	Pin and	Piston Rir	ngs					
3. Modeling	g and analysis	of Conne	ecting Ro	d						
4. Modeling	g and analysis	of Crank	shaft							
5. Modeling	g and analysis	of Cams	haft							
6. Modeling	g and analysis	of Inlet a	und Exhau	ıst Valves						
7. Modeling	g and analysis	of Engin	e Cylinde	er						
8. Modeling	g and analysis	of flywh	eel.							
Online learning	g resources/V	irtuallab	s:							
1. https://np	otel.ac.in/cont	ent/storag	e2/course	es/112104	033/					

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code		(Program Elective Course –V)	L	Т	P	C			
Semester	III	a. FUEL CELL TECHNOLOGY	3	0		3			
Course Objectiv	es: The	course should enable the students to:	_	-					
To present a problem oriented in depth knowledge of fuel cell technology.									
1 1		ing concepts, methods and application of fuel cell tech	nology	7					
Course Outcome			0,						
• Understan	d vario	us types of Fuel Cells, its construction & working prin	ciples.						
• Understan	d the Fu	al Cells for automotive applications.	_						
Gain knov	vledge a	about the different types of fuels used in Fuel Cells							
		omparativestudyoffuelcellswithothertypesofalternate f	uels.						
	•	cations of all the areas in day to day life.							
UNIT – I		FUELCELLSTYPES	Lectu	re Hrs	s:9				
INTRODUCTIO	ΝΤΟΙ	FUEL CELLS Introduction – working and types o	f fuel	cell -	- lc	ow,			
		rature fuel cell, liquid and methanol types, proton ex							
		rogen fuel cells – thermodynamics and electrochemi							
cells.									
UNIT – II	FUE	LCELLSFORAUTOMOTIVEAPPLICATIONS	Lectu	re Hrs	s:9				
			1						
Fuelcellsforauton	notivear	plications-Technologyadvancesinfuelcellvehiclesyste	ms-						
Onboardhydroger	n storag	e - Liquid hydrogen and compressed hydrogen - M	etal hy	drides	, Fi	uel			
		line fuel cell-Road map to market.	•						
UNIT - III	FUEL	CELLCOMPONENTSANDTHEIRIMPACTON	Lectu	re Hrs	s:9				
		PERFORMANCE							
ohmic resistance components, Fuel	, Kineti	aracteristics - Current/voltage, Voltage efficiency and c performance, Mass transfer effects - Membrane e ck, Bi-polar plate, Humidifiers and cooling plates.	electroc	le ass	eml	oly			
UNIT - IV		FUELING		re Hrs					
		ogy-Pressurecylinders,Liquidhydrogen,Metalhydrides,			5-				
		eam reforming, Partial oxidation, Auto thermal reform	ning - (CO					
	echnolo	gy based on removal like bio-mass.	I -						
UNIT - V		FUELCYCLEANALYSIS	Lectu	re Hr	s:9				
like battery powe vehicle.	•	e analysis - Application to fuel cell and other comp icles, SI engine fueled by natural gas and hydrogen	-		-				
Textbooks:									
• Domkund 1999.	war, V.	, Internal Combustion Engine, Scitech Publication (In M, A Course in Internal Combustion Engines, Dhanpa	atRai ai	nd Co.		0.			
	forautor	rnal Combustion Engines, Tata McGraw-Hill Book Control Republications-professionalengineeringpublishing			605	58			
Reference:									

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

- Eric Chowanietz, Automobile Electronics, SAE International, 1995.
- SAE Inc., Advanced Power Plant Concepts, SP 1325, 1998.
- MichaePlintand Anthony Martyr, Engine testing Theory and Practice (Second Edition) SAE International, 1999.
- SAE Inc, Advancements in Electric and Hybrid Electric Vehicle Technology, SP 1023, 1994.

Online Learning Resources:

1. lecture34.pdf (nptel.ac.in)

Course Code		(Program Elective Course –V)	L	Τ	Р	С		
Semester	III	b. SPECIALTY ENGINES	3	0	0	3		
Course Objecti	ves:The co	urse should enable the students to:						
1. Penetrate deep into engine classification, construction and operation of IC engines with								
	latest technologies							
-	-	I and CI engine application in automobiles						
	-	ance parameters and testing methodologies.						
		y of Ignition system SI engines	aa dha		~ ~ * * * ~	- f		
		ustion process for both SI and CI engin	es, the	conc	epts	01		
	1 1	Fuel Injectors.	alag tha	Suc	nona	ion		
		in power plants in military and combat vehicles are used as						
	-	eavy vehicles, the vehicle operation and con			/emc	les		
and the vehi								
		Student will be able to						
		udents will be able to						
		engine system application in automobiles.						
1	U	ine terminologies						
		el dynamics for SI and CI engines and define	the key t	erms	suc	n		
		hiometric ratio, etc.,						
U		chambers for diesel engines with reference to	o variable	e				
-	sion ratios							
•	•	amics within the combustion chamber and de		the				
-		teristics for both SI and CI engines theoretica	•					
		ng of drive line in combat vehicles and earth						
		mercial vehicles and describe the working of		rains	1n			
	ehicles and a	able to analyse the ride characteristics of trac	1		0			
UNIT - I		INTRODUCTION	Lecture					
-	tures of A	utomotive, Locomotive, Marine, Stationar	y and C	dener	ator-	set		
engines.								
UNIT - II		S.I. ENGINE SYSTEMS	Lecture	Hrs	:9			
Spark ignition	engine sys	tem variants - Stoichiometric, Lean-burn,	port in	jecte	d/dir	ect		
1 0	0.	ssisted fuel injection engines, HEV Engines.	1	5				
•		bital Engine etc. Rotary Piston Engines, I						
•		G, LPG, H2, Alcohols, Stirling cycle.						
UNIT - III		C.I. ENGINE SYSTEMS	Lecture	e Hrs	:9			
Compression ig	gnition eng	ine system variants - Low, Medium and				em		
		ure fuel injection systems, Homogeneous			-			
		dedicated alternate fueled engine systems, C	-	-				
•		eneration system, Total engine systems.	1		•	_		
UNIT - IV		TAL PURPOSE ENGINE SYSTEMS	Lecture	e Hrs	:9			
		ations -Mining Defence, Off-highway - Tr	1			etc.		
		ne systems, Flexible fueled systems.	,					

Ananthapuramu – 515 002, Andhra Pradesh, India

UNIT - V	LIFE CYCL SYSTEM	E ANALYSES	OF	ENGINE	Lecture Hrs:9
Life cycle cost.					
Textbooks:					
Ramalin Pvt.Ltd	ngam,K.K, Internal 2000.	Combustion Engi	ne, Scit	ech Publicat	ion (India)
• Domku 1999.	ndwar, V.M, A Co	urse in Internal Co	mbustio	on Engines, I	DhanpatRai and Co.,
	M.L., and Sharma tRai Publications (Interna	l Combustion	n Engines,
Ganesar	n, V., Internal Com	bustion Engines, 7	Tata Mc	Graw-Hill B	ook Co., 1995.
• Some U UK, 19	Inusual Engines, L 75.	J.K. Setright, Mec	hanical	Engineering	Publication Ltd.,
• The Wa	nkel R C Engine, l	R.F.Ansdale, A.S.E	Barnes&	co.,USA, 1	969.
• Bosch 7	Technical Instruction	on Booklets, Rober	t Bosch	GmbH, Ger	rmany, 1985.
Reference:					
	urnkel Engine, Des 1y, USA,1971.	ign, Development,	Applic	ation,JanP.N	orbye, Chilton Book
	ction to Internal C motive Engineers,		s, Richa	ard Stone, T	hird Edition, Society
	Engine Reference 1 , R - 183, SAE Inte		illen an	d RodicaBar	ranescu (Editors) 2ns
Online Learni					
1. https://	nptel.ac.in/course	s/112/103/1121032	262/		

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D33303	ENVIRONMENTAL ENGINEERING AND POLLUTION CONTROL	L	Т	Р	С
Semester	III	(PE - V)	3	0	0	3
	piectives: Th	e course should enable the students to:				
	•	ledge on the atmosphere and its present condition,	globa	ıl w	armi	ing
	l eco legislati	• • •	0			0
	0	sources of air, water and noise pollution and possib	le so	oluti	ons	for
	igating their	1 I I				
		the technologies available for generating energy from	waste	e		
): Student will be able to				
		ail on the sources of air, water and noise pollution	n an	d p	ossi	ble
		igating their degradation		1		
UNIT - I	INTROD	UCTION	Lect	ure	Hrs	:9
Global atm	nospheric cha	nge – greenhouse effect – Ozone depletion - natural c	ycles	-ma	ass a	ind
		erial balance - environmental chemistry and biolo				
environme	ntal. Legisla	tions. Pollutants - sources and effect - air pollution	onme	teor	olog	sy-
atmospheri	icdispersion-	indoorairquality-controlmethodsandequipments-				
issuesinair	pollutioncont	rol– air sampling and measurement.				
			Lect			
		uipment for particulate matter & gaseous pollutants-				
		ollectors, wet collectors, fabric filters, electrostatic pre-	cipita	tor	(ESI	?).
		n, Scrubbers, Condensation and Combustion.				
			Lect			
		pollutants - characteristics - quality - water treatment				
	ment- treatm	ent, utilization and disposal of sludge- monitoring c	ompl	ianc	e w	ith
standards.						
			Lect			
		tion-Solid waste-Hazardous waste-Characteristics-			on a	ınd
		al – Processing and Energy Recovery – Waste minimized				
			Lect			
-		its impact - oil pollution - pesticides - instr		itatio	on	for
-	-	ollutionfromtanneriesandotherindustriesandtheircontro	ol–			
-	-	ssmentforvariousprojects –case studies.				
Textbooks			•			•
		3):Introduction to Environmental Engineering and S	cienc	ce P	rent	ıce
		t Ltd, NewDelhi.				
	-	.Rowe, G.Tchobanoglous (1985): Environmental Englished	ginee	ring		
		Book Company, NewYork.				
Reference		wans (1991): Manual of Environmental Technology	in I		lon	ina
	U	national Book Company, Absecon Highlands, N.J.	111 1		Joh	шg
	,	and G. A.Sincero, (2002): Environmental Engine	ring	_Δ	Deci	ion
		ice Hall of India Pvt Ltd, New Delhi	-ing	11		511
	arning Reso					

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code		Open Elective	L	Т	Р	C
Semester	III	Mechatronics	3	0	0	3
Course Objecti	ves:					
1. To impart kn	owled	dge on				
2. To impart ki	nowle	edge on about the elements and techniques involved	in N	1ech	atror	nics
systems whic	h are	e very much essential to understand the emerging field o	f au	toma	tion.	,
		CO): Student will be able to				
1. Students can	able t	o understand the concepts, need and importance of mech	natro	nics		
		now the concepts of 8085 microprocessor, 8051 microc				
		nderstand the Programmable peripheral Interface				
		to know the structure, programming and selection of PL	С			
		to know the working principle and design concep		of ac	tuato	ors,
mechatronic sys						,
UNIT – I			Le	cture	Hrs	:
	Mech	natronics – Systems – Concepts of Mechatronics appro	bach	– N	leed	for
		rging areas of Mechatronics – Classification of Mecha				
		tic and dynamic Characteristics of Sensor, Potention				
		– Strain gauges – Eddy current sensor – Hall				
-		– Light sensors.	0110			
UNIT – II		Light bonborb.	Le	cture	Hrs	•
	ROCE	ESSOR AND 8051 MICROCONTROLLER	120	000010		<u> </u>
		tecture of 8085– Pin Configuration – Addressing Mo	des	_Ins	truct	ion
		of 8085 – Concepts of 8051 microcontroller – Block dia			uuu	IOII
UNIT – III		of obos Concepts of oos I microcontroller Dioek die		cture	Hrs	•
	BIF	PERIPHERAL INTERFACE	LU	cture	/1115	•
		tecture of 8255, Keyboard interfacing, LED display –in	nterf	acin	σΔ	
		Temperature Control – Stepper Motor Control –				
interface.	race,	Temperature Control – Stepper Motor Control –	114		COII	101
UNIT – IV			Ie	cture	Hre	•
	BIE	LOGIC CONTROLLER		cture	/1115	•
		structure – Input and output processing – Programmin	σ.	Mne	mon	ice
		internal relays – Data handling – Selection of PLC.	g – .	wine	mon	
UNIT – V		internal relays – Data handling – Selection of The.	Lo	cture	Uro	•
		MECHATRONIC SYSTEM DESIGN	LC	ciuit	1115	•
			٨	onto	~~~	and.
•		d Servo motors – Construction – Working Principle –			-	
-		gn process-stages of design process – Traditional ar ase studies of Mechatronics systems – Pick and place				
			ROU	01 –	Eng	me
	stelli	– Automatic car park barrier.				
Textbooks:	hat	nice" Drintice Hell 2009 2 Demont 9 Cont	<u>ал</u> т:		0.01	0.00
		nics", Printice Hall, 2008 2. Ramesh S Gaonkar, "		-		
	ograi	mming, and Applications with the 8085", 5th Edition	1, PI	rentio	e H	all,
2008.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ADVANCED INTERNAL COMBUSTION ENGINES)

Reference Books:

- 1. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition, 2007.
- 2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 3. Smaili.A and Mrad.F , "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.
- 4. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company,2007.
- 5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India, 2007.
- 6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013

Online Learning Resources:

https://nptel.ac.in > courses > noc21 > SEM1 > noc21-me27