Jawaharlal Nehru Technological University Anantapur College Of Engineering Anantapur (Autonomous) Course Structure for Master of Technology (Artificial Intelligence) (w.e.f 2015-16)

I Year I Se	mester			
Code	Subject	L	T/P/D	С
15D53101	Advances in Artificial Intelligence	4	0	4
15D53102	Problem Solving Methods	4	0	4
15D53103	Knowledge Representation and Reasoning	4	0	4
15D53104	Machine Learning	4	0	4
	Elective- I	4	0	4
15D53105	1. Digital Image Processing			
15D53106	2. Pattern Recognition			
15D53107	3. Robotics & Automation			
	Elective –II	4	0	4
15D53108	1. Logic Programming using Prolog & Lisp			
15D53109	2. Expert Systems			
15D53110	3. Intelligent systems			
15D53111	Artificial Intelligence & Functional Programming	0	4	2
	Lab			
	Total	24	4	26

I Vear II Semester

		-		
Code	Subject	L	T/P/D	С
15D53201	Artificial Neural Networks	4	0	4
15D53202	Speech Processing	4	0	4
15D51202	Natural Language Processing	4	0	4
15D53203	Genetic Algorithms & Applications	4	0	4
	Elective –III	4	0	4
15D53204	1. Advanced Data Mining			
15D51208	2. Big Data Analytics			
15D53205	3. Computational Intelligence			
	Elective –IV	4	0	4
15D53206	1. Text Processing			
15D53207	2. Geographical Information System & Spatial			
	Decision Support System			
15D53208	3. Logic and Engineering			
15D54201	Research Methodology (Audit Course)			
15D53209	Natural Language Processing & Genetic	0	4	2
	Algorithms Lab			
	Total	24	4	26

III & IV Semester

Code	Subject		L	Р	С
15D53301	III Semester	Seminar - I	0	4	2
15D53401	IV Semester	Seminar - II	0	4	2
15D53302	III & IV Semester	Project Work			44
		Total	0	8	48

Note: All End Examinations (Theory and Practical) are of three hours duration.

T- Tutorial L- Theory P- Practical/Drawing C - Credits

JNTUA College of Engineering (Autonomous) :: Ananthapuramu

Department of Computer Science & Engineering

M.Tech. I– I Sem (AI)

Т	Р	С
4	0	4

15D53101: Advances in Artificial Intelligence

Objectives:

- To learn the difference between optimal reasoning Vs human like reasoning
- To understand the notions of state space representation, exhaustive search, heuristic search along with the time and space complexities
- To learn different knowledge representation techniques
- To understand the applications of AI: namely Game Playing, Theorem Proving, Expert Systems, Machine Learning and Natural Language Processing

UNIT-I

Introduction: What is AI? Foundations of AI, History of AI, Agents and environments, The nature of the Environment, Problem solving Agents, Problem Formulation, Search Strategies

UNIT-II

Knowledge and Reasoning: Knowledge-based Agents, Representation, Reasoning and Logic, Prepositional logic, First-order logic, Using First-order logic, Inference in First-order logic, forward and Backward Chaining

UNIT-III

Learning: Learning from observations, Forms of Learning, Inductive Learning, Learning decision trees, why learning works, Learning in Neural and Belief networks

UNIT-IV

(w.e.f 2015-2016)

Practical Natural Language Processing: Practical applications, Efficient parsing, Scaling up the lexicon, Scaling up the Grammar, Ambiguity, Perception, Image formation, Image processing operations for Early vision, Speech recognition and Speech Synthesis

UNIT-V

Robotics: Introduction, Tasks, parts, effectors, Sensors, Architectures, Configuration spaces, Navigation and motion planning, Introduction to AI based programming Tools

TEXT BOOKS

1. Stuart Russell, Peter Norvig: "Artificial Intelligence: A Modern Approach",2nd Edition, Pearson Education, 2007

REFERENCES

- 1. Artificial Neural Networks B. Yagna Narayana, PHI
- 2. Artificial Intelligence, 2nd Edition, E.Rich and K.Knight (TMH).
- 3. Artificial Intelligence and Expert Systems Patterson PHI.
- 4. Expert Systems: Principles and Programming- Fourth Edn, Giarrantana/ Riley, Thomson.

5. PROLOG Programming for Artificial Intelligence. Ivan Bratka- Third Edition – Pearson Education.

6. Neural Networks Simon Haykin PHI

JNTUA College of Engineering (*Autonomous*) :: Ananthapuramu Department of Computer Science & Engineering - I Sem (AI) T P

M.Tech. I– I Sem (AI)

15D53102: Problem Solving Methods

С

4

4

0

Objectives:

- To explain problem solving and reasoning strategies in AI systems
- To enable students to analyze a problem so that appropriate problem solving techniques may be applied
- To recognize the importance of dealing with the cause of a problem, rather than just dealing with the effect of a problem
- To learn how to generate alternative solutions, using creative thinking and brainstorming
- To learn the different stages of the decision making process and understand the importance of each stage in ensuring effective decisions are made
- To enable students to apply problem solving and decision making models to the workplace.

UNIT I

General introduction of AI: What is AI?, The foundations of AI, The history of AI, The state of the art.

Intelligent agents: Agents and environments, Good behavior: The concept of reality, The nature of environments, The structure of agents, AI applications.

UNIT II

Solving problems by searching: Problem-solving agents, Example problems, Searching for solutions, Uninformed search strategies, Avoiding repeated states, Searching with partial information.

Informed search and exploration: Informed search strategies, Heuristic functions, Local search algorithms and optimization problems, Local search in continuous spaces, Online search agents and unknown environments.

UNIT III

Constraint satisfaction problems: Backtracking search for CSPs, Local search for constraint satisfaction problems, The structure of problems.

Adversarial search: Games, Optimal decisions in games, Alpha-beta pruning, Imperfect realtime decisions, Games that include an element of chance, State-of-the-art game programs.

UNIT IV

Formalized symbolic logics: Introduction, Syntax and semantics for propositional logic, Syntax and semantics for first order propositional logic, Properties of WFFS, Connection to clausal

form, Inference rules, The resolution principle, Non-deductive inference methods, Representations using rules.

Resolution refutation systems: Production systems for resolution refutations, Control strategies for resolution methods, Simplification strategies, Extracting answers from resolution refutations.

UNIT V

The Planning problem: Planning with state-space search, Partial-order planning, Planning graphs, Planning with propositional logic, Analysis of planning approaches.

Planning and acting in the real world: Time, schedules, and resources, Hierarchical task network planning, planning and acting in nondeterministic domains, Conditional planning, Execution monitoring and replanning, Continuous planning, Multi-agent planning. AI system architectures, Knowledge acquisition, Representational formalisms.

Text Books:

1. D. W. Patterson: Introduction to AI & Expert System, PHI.

2. S. Russell and P. Norvig. AI: A Modern Approach, 2nd Edn., McGraw-Hill, 2003.

Reference Books:

- 1. J. Siekmann, R. Goebel, and W. Wahlster: Problem Solving Methods, Springer, 2000 edition
- 2. N.J.Nilsson: Principles of Artificial Intelligence, Narosa Publications.

JNTUA College of Engineering (*Autonomous*) :: Ananthapuramu Department of Computer Science & Engineering M.Tech. I– I Sem (AI) TPC 404

15D53103: Knowledge Representations and Reasoning

Objectives:

- To investigate the key concepts of knowledge representation (KR) techniques and different notations.
- To integrate the KR view as a knowledge engineering approach to model organizational knowledge.
- To introduce the study of ontologies as a KR paradigm and applications of ontologies.
- To understand various KR techniques.
- To understand process, knowledge acquisition and sharing of ontology.

Course Outcomes:

- Analyze and design knowledge based systems intended for computer implementation.
- Acquire theoretical knowledge about principles for logic-based representation and reasoning.
- Ability to understand *knowledge*-engineering process
- Ability to implement production systems, frames, inheritance systems and approaches to handle uncertain or incomplete knowledge.

UNIT I:

The Key Concepts: Knowledge, Representation, Reasoning, Why knowledge representation and reasoning, Role of logic

Logic: Historical background, Representing knowledge in logic, Varieties of logic, Name, Type, Measures, Unity Amidst diversity

UNIT II:

Ontology: Ontological categories, Philosophical background, Top-level categories, Describing physical entities, Defining abstractions, Sets, Collections, Types and Categories, Space and Time

UNIT III:

Knowledge Representations: Knowledge Engineering, Representing structure in frames, Rules and data, Object-oriented systems, Natural language Semantics, Levels of representation

UNIT IV:

Processes: Times, Events and Situations, Classification of processes, Procedures, Processes and Histories, Concurrent processes, Computation, Constraint satisfaction, Change

Contexts: Syntax of contexts, Semantics of contexts, First-order reasoning in contexts, Modal reasoning in contexts, Encapsulating objects in contexts.

UNIT V:

Knowledge Soup: Vagueness, Uncertainty, Randomness and Ignorance, Limitations of logic, Fuzzy logic, Nonmonotonic Logic, Theories, Models and the world, Semiotics

Knowledge Acquisition and Sharing: Sharing Ontologies, Conceptual schema, Accommodating multiple paradigms, Relating different knowledge representations, Language patterns, Tools for knowledge acquisition

Text Books:

- 1. Knowledge Representation *logical, Philosophical, and Computational Foundations* by John F. Sowa, Thomson Learning.
- 2. Knowledge Representation and Reasoning by Ronald J. Brachman, Hector J. Levesque, Elsevier.

JNTUA College of Engineering (<i>Autonomous</i>) :: Ananthapuramu				
Department of Computer Science & Engineering				
M.Tech. I– I Sem (AI)	Т	Р	С	
	4	0	4	

15D53104: Machine Learning

Objectives:

- To understand the basic theory underlying machine learning.
- To be able to formulate machine learning problems corresponding to different applications.
- To understand a range of machine learning algorithms along with their strengths and weaknesses.
- To be able to apply machine learning algorithms to solve problems of moderate complexity.

Course Outcomes:

- Ability to understand what is learning and why it is essential to the design of intelligent machines.
- Ability to design and implement various machine learning algorithms in a wide range of real-world applications.
- Acquire knowledge deep learning and be able to implement deep learning models for language, vision, speech, decision making, and more

UNIT I INTRODUCTION

Learning Problems – Perspectives and Issues – Concept Learning – Version Spaces and Candidate Eliminations – Inductive bias – Decision Tree learning – Representation – Algorithm – Heuristic Space Search.

UNIT II NEURAL NETWORKS AND GENETIC ALGORITHMS

Neural Network Representation – Problems – Perceptrons – Multilayer Networks and Back Propagation Algorithms – Advanced Topics – Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evalution and Learning.

UNIT III BAYESIAN AND COMPUTATIONAL LEARNING

Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier – Bayesian Belief Network – EM Algorithm – Probability Learning – Sample Complexity – Finite and Infinite Hypothesis Spaces – Mistake Bound Model.

UNIT IV INSTANT BASED LEARNING

K- Nearest Neighbour Learning – Locally weighted Regression – Radial Bases Functions – Case Based Learning.

UNIT V ADVANCED LEARNING

Learning Sets of Rules – Sequential Covering Algorithm – Learning Rule Set – First Order Rules – Sets of First Order Rules – Induction on Inverted Deduction – Inverting Resolution – Analytical Learning – Perfect Domain Theories – Explanation Base Learning – FOCL Algorithm – Reinforcement Learning – Task – Q-Learning – Temporal Difference Learning

TEXT BOOKS:

1. Machine Learning - Tom M. Mitchell, - MGH

REFERENCE BOOKS

1. Machine Learning: An Algorithmic Perspective, Stephen Marsland, Taylor & Francis

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– I Sem (AI)

15D53105: DIGITAL IMAGE PROCESSING

Т

4

Р

0

С

4

Elective-I

Objectives:

- Develop an overview of the field of image processing.
- Understand the Image segmentation, enhancement, compression etc., approaches and how to implement them.
- Prepare to read the current image processing research literature.
- Gain experience in applying image processing algorithms to real problems
- Analyze general terminology of digital image processing.

Unit - I :

Digital Image Fundamentals: What is Digital Image Processing, examples of fields that use digital image processing, fundamental Steps in Digital Image Processing, Components of an Image processing system, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.

Unit – II:

Image Enhancement: Image Enhancement in the spatial domain: some basic gray level transformations, histogram processing, enhancement using arithmetic and logic operations, basics of spatial filters, smoothening and sharpening spatial filters, combining spatial enhancement methods.

Unit – III :

Segmentation: Thresholding, Edge Based Segmentation: Edge Image Thresholding, Region Based Segmentation, Matching, **Representation and Description**: Representation, Boundary Descriptors, Regional Descriptors.

Unit – IV :

Image Compression: Fundamentals, image compression models, elements of information theory, error-free compression, lossy compression, Image Compression Stanadrds.

Unit – V :

Morphological Image Processing: Preliminaries, dilation, erosion, open and closing, hit transformation, basic morphologic algorithms.

Color Image Processing: Color fundamentals, Color Models and basics of full-color image processing

Text Books :

- 1. "Digital Image Processing", Rafael C.Gonzalez and Richard E. Woods, Third Edition, Pearson Education, 2007
- 2. Digital Image Processing", S.Sridhar, Oxford University Press

Reference Books :

- 1. "Fundamentals of Digital Image Processing", S. Annadurai, Pearson Edun, 2001.
- 2. "Digital Image Processing and Analysis", B. Chanda and D. Dutta Majumdar, PHI, 2003.
- 3. "Image Processing", Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac and Roger Boyle, 2nd Edition, Thomson Learning, 2001.
- 4. "Digital Image Processing" Vipula Singh, Elsevier

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– I Sem (AI)

15D53106: PATTERN RECOGNITION Elective-I

Т

4

Р

0

С

4

Objectives:

- Understand the fundamental pattern recognition and machine learning theories
- Able to design and implement certain important pattern recognition techniques
- Capable of applying the pattern recognition theories to applications of interest.

Unit - I :

Introduction to Pattern Recognition: Data Sets for Pattern Recognition, Different Paradigms for Pattern Recognition,

Pattern Representation: Data Structures for Pattern Representation, Representation of Clusters, Proximity Measures, Size of Patterns, Abstractions of the Data Set, Feature, Feature Selection, Evaluation of Classifiers, Evaluation of Clustering

Unit – II:

Nearest Neighbour Based Classifiers: Nearest Neighbour Algorithm, Variants of the NN Algorithm, Use of the Nearest Neighbour Algorithm for Transaction Databases, Efficient Algorithms, Data Reduction, Prototype Selection,

Bayes Classifier: Bayes Theorem, Minimum error rate classifier, Estimation of Probabilities, Comparison with the NNC, Naive Bayes Classifier, Bayesian Belief Network.

Unit – III :

Hidden Markov Models: Markov Models for Classification, Hidden Markov Models, Classification Using HMMs, Classification of Test Patterns.

Decision Trees: Introduction, Decision Trees for Pattern Classification, Construction of Decision Trees, Splitting at the Nodes, Over fitting and Pruning, Example of Decision Tree Induction.

Unit – IV :

Support Vector Machines: Introduction, Linear Discriminant Functions, Learning the Linear Discriminant Function, Neural Networks, SVM for Classification, Linearly Separable Case, Non-linearly Separable Case.

Combination of Classifiers: Introduction, Methods for Constructing Ensembles of Classifiers, Methods for Combining Classifiers, Evaluation of Classifiers, Evaluation of Clustering

Unit – V :

Clustering: Clustering and its Importance, Hierarchical Algorithms, Partitional Clustering, Clustering Large Data Sets, An Application to Handwritten Digit Recognition: Description of the Digit Data, Pre-processing of Data, Classification Algorithms, Selection of Representative Patterns.

Text Books :

- 1. Pattern Recognition an Introduction, V. Susheela Devi M. Narasimha Murty, University Press.
- 2. Pattern Recognition, Segrios Theodoridis,Konstantinos Koutroumbas, Fourth Edition, Elsevier

Reference Books :

- 1. Pattern Recognition and Image Analysis, Earl Gose, Richard John Baugh, Steve Jost, PHI 2004.
- 2. C. M. Bishop, 'Neural Networks for Pattern Recognition', Oxford University Press, Indian Edition, 2003.
- 3. Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, Johy Wiley, 2002

JNTUA College of Engineering (Autonomous) :: Ananthapuramu

Department of Computer Science & Engineering

M.Tech. I– I Sem (AI)

T P C 4 0 4

15D53107: Robotics & Automation

(Elective - I)

Course Outcomes:

- Acquire basic Knowledge on Robots
- Ability to process end effectors and robotic controls.
- Analyze Robot Transformations and Sensors
- Able to understand Robot cell design and applications

UNIT I-Introduction

Robot anatomy-Definition, law of robotics, History and Terminology of Robotics-Accuracy and repeatability of Robotics-Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems

UNIT II- End Effectors And Robot Controls

Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot-Control system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDT-Motion Interpolations-Adaptive control.

UNIT III-Robot Transformations and Sensors

Robot kinematics-Types- 2D, 3D Transformation-Scaling, Rotation, Translation- Homogeneous coordinates, multiple transformation-Simple problems. Sensors in robot – Touch sensors-Tactile

sensor – Proximity and range sensors – Robotic vision sensor-Force sensor-Light sensors, Pressure sensors.

UNIT IV-Robot Cell Design And Applications

Robot work cell design and control-Sequence control, Operator interface, Safety monitoring devices in Robot-Mobile robot working principle, actuation using MATLAB, NXT Software Introductions-Robot applicationsMaterial handling, Machine loading and unloading, assembly, Inspection, Welding, Spray painting and undersea robot.

UNIT V-Micro/Nano Robotics System

Micro/Nanorobotics system overview-Scaling effect-Top down and bottom up approach-Actuators of Micro/Nano robotics system-Nanorobot communication techniques-Fabrication of micro/nano grippers-Wall climbing micro robot working principles-Biomimetic robot-Swarm robot-Nanorobot in targeted drug delivery system

Textbooks:

- 1. S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education., 2009
- 2. Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012.

References:

- 1. Carl D. Crane and Joseph Duffy, Kinematic Analysis of Robot manipulators, Cambridge University press, 2008.
- 2. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987
- 3. Craig. J. J. "Introduction to Robotics mechanics and control", Addison-Wesley, 1999.
- 4. Ray Asfahl. C., "Robots and Manufacturing Automation", John Wiley & Sons Inc., 1985.

JNTUA College of Engineering (*Autonomous*) :: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I-I Sem (AI)

P C 0 4

Т

4

15D53108: Logic Programming using Prolog & Lisp (Elective -II)

Objectives:

Students will become familiar with:

- the basic syntax of Prolog language.
- giving a declarative and procedural reading of a Prolog program.
- pursuing any course that makes use of predicate calculus or Prolog.
- how to better utilize recursion through functional programming
- how to write common Lisp programs as groups of functions and definitions
- how to use the common Lisp programming environment including the debugger
- what symbolic computing is and some common AI problems and Lisp-based solutions
- Programming concepts like variable binding, memory allocation and deallocation, scope, the run-time stack. etc.

UNIT I

Prolog Representation: Introduction, Logic-Based Representation, Prolog Syntax, Creating, Changing, and Tracing a Prolog Computation, Lists and Recursion in Prolog.

Structured Representation and Inheritance Search: Abstract Data Types and Search, Using cut, Control Search in prolog, Abstract Data Types (ADTs) in Prolog.

UNIT II

Depth-First, Breadth-First and Best-First Search: Production System Search, Designing Alternative Search Strategies.

Meta-Linguistic Abstraction, Types and Meta-Interpreters: Meta-Interpreters, Types, and Unification, Types in prolog, Unification, Variable Binding, and Evaluation.

UNIT III

Machine Learning Algorithms in Prolog: Machine Learning: Version Space Search, Explanation Based Learning in Prolog.

Programming in Lisp: S-Expressions, Syntax of LISP, Lists and Recursive Search, Variables, Datatypes, High Order Functions, Logic Programming in LISP, Lisp-Shell.

UNIT IV

Semantic Networks, Inheritance and Machine Learning: Sematic Nets, Inheritance, Object-

Oriented Lisp, Learning ID3 Algorithm, Implementing ID3 Algorithm.

UNIT V

Java, Representation and Object-Oriented Programming, Problem Spaces and Search, A Logic-Based Reasoning System, An Expert System Shell

TEXT BOOKS

1. George F. Luger, William A. Stubblefield, Pearson Publishers, AI Algorithms, Data Structures, and Idioms in Prolog, Lisp and Java 6th Edition

REFERENCES

- 1. Logic, Programming and Prolog by Ulf Nilsson, Jan Maluszynski.Wiley; 2 edition (August 1995)
- 2. The Art of Prolog: Advanced Programming Techniques (Mit Press Series in Logic Programming) by Leon Sterling and Ehud Shapiro (Oct 1986)
- 3. Prolog Programming for Artificial Intelligence (4th Edition) (International Computer Science Series) by Ivan Bratko (Aug 31, 2011)
- 4. Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp by Peter Norvig (Oct 15, 1991)
- 5. Common LISP: The Language by Guy L. Steele (Mar 16, 1984)
- 6. Lisp 3rd Edition, Bertbold Klaus Paul Horn, Patrick Henry Winston
- 7. Artificial Intelligence Common LISP 1st Edition (Hardcover) by Noyes, James S. Noyer, James L. Noyes

JNTUA College of Engineering (Autonomous) :: Ananthapuramu

Department of Computer Science & Engineering

M.Tech. I-I Sem (AI)

Т	Р	С
4	0	4

15D53109: Expert Systems

(Elective - II)

Course Outcomes:

- Acquire knowledge on fundamentals of knowledge representation
- Analyze Probabilistic Reasoning for knowledge
- Able to understand expert systems architecture

UNIT I

Overview of Artificial Intelligence: Definition & Importance of AI.

Knowledge: General Concepts: Introduction, Definition and Importance of Knowledge, Knowledge-Based Systems, And Representation of Knowledge, Knowledge Organization, Knowledge Manipulation, And Acquisition of Knowledge.

UNIT II

Knowledge Representation: Introduction, Syntax and Semantics for Propositional logic, Syntax and Semantics for FOPL, Properties of Wffs, Conversion to Clausal Form, Inference Rules, The Resolution Principle, No deductive Inference Methods, Representations Using Rules.

UNIT III

Dealing with Inconsistencies and Uncertainties: Introduction, Truth Maintenance Systems, Default Reasoning and the Closed World Assumption, Predicate Completion and Circumscription, Modal and Temporal Logics.

Probabilistic Reasoning: Introduction, Bayesian Probabilistic Inference, Possible World Representations, Dumpster-Shafer Theory, Ad-Hoc Methods.

UNIT IV

Structured Knowledge: Graphs, Frames and Related Structures: Introduction, Associative Networks, Frame Structures, Conceptual Dependencies and Scripts.

Object-Oriented Representations: Introduction, Overview of Objects, Classes, Messages and Methods, Simulation Example using an OOS Program.

UNIT V

Knowledge Organization and Management: Introduction, Indexing and Retrieval Techniques, Integrating Knowledge in Memory, Memory Organization Systems.

Expert Systems Architectures: Introduction, Rule Based System Architecture, Non-Production System Architecture, Dealing with uncertainty, Knowledge Acquisition and Validation, Knowledge System Building Tools.

Text Book:

1. Dan W. Patterson - Introduction to Artificial Intelligence and Expert Systems, PHI, New Delhi, 2006.

Reference Books:

- 1. E. Rich & K. Knight Artificial Intelligence, 2/e, TMH, New Delhi, 2005.
- 2. P.H. Winston Artificial Intelligence, 3/e, Pearson Edition, New Delhi, 2006.
- 3. D.W. Rolston,- Principles of AI & Expert System Development, TMH, New Delhi.

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– I Sem (AI)

T P C 4 0 4

15D53110: Intelligent Systems (Elective - II)

Objectives:

- One of the major challenges of Intelligent Systems is to make the computer systems on which we rely so much more "intelligent". There are two ways in which a system can be taken to act intelligently.
- Artificial intelligence covers a whole range of methods, from logical, symbol manipulation methods with attached semantics to statistical and heuristic techniques.
- Knowledge is mainly statistical: the aim is not to understand the fine structure or deeper origin of knowledge, but to generate intelligent behavior on the basis of statistical evidence.

UNIT I: Knowledge Representation:

Data and knowledge: Data representation and data items in traditional databases, Data representation and data items in relational databases. Rules: Logical operations, Syntax and semantics of rules, Data log rule sets, The dependence graph of data log rule sets, Objects ,Frames ,Semantic nets, Solving problems by reasoning: The structure of the knowledge base, The reasoning algorithm, Conflict resolution, Explanation of the reasoning.

Unit II: Rule Based Systems:

Forward reasoning: The method of forward reasoning, A simple case study of forward reasoning. Backward reasoning: Solving problems by reduction, The method of backward reasoning, A simple case study of backward reasoning, Bidirectional reasoning. Search Methods: Depth-first search, Breadth-first search, Hill climbing search, A* search. Contradiction freeness: The notion of contradiction freeness, Testing contradiction freeness, The search problem of contradiction freeness. Completeness: The notion of completeness, Testing completeness, The search problem of completeness .Decomposition of knowledge bases: Strict decomposition, Heuristic decomposition

UNIT III: Tools For Representation And Reasoning:

The Lisp programming language: The fundamental data types in Lisp, Expressions and their evaluation, Some useful Lisp primitives, Some simple examples in Lisp, The Prolog programming language: The elements of Prolog programs, The execution of Prolog programs, Built-in predicates, and Some simple examples in Prolog. Expert system shells: Components of an expert system shell, Basic functions and services in an expert system shell.

UNIT IV: Real-Time Expert Systems:

The architecture of real-time expert systems: The real-time subsystem, The intelligent subsystem Synchronization and communication between real-time and intelligent subsystems: Synchronization and communication primitives, Priority handling and time-out. Data exchange between the real-time and the intelligent subsystems: Loose data exchange, The blackboard architecture. Software engineering of real-time expert systems: The software lifecycle of realtime expert systems, Special steps and tool, An Example of A Real-Time expert System.

UNIT V: Qualitative Reasoning and Petri Nets:

Sign and interval calculus, Qualitative simulation: Constraint type qualitative differential equations, The solution of QDEs: the qualitative simulation algorithm: Initial data for the simulation, Steps of the simulation algorithm, Simulation results. Qualitative physics, Signed directed graph (SDG) models, The Notion of Petri nets, The firing of transitions, Special cases and extensions, The state-space of Petri nets The use of Petri nets for intelligent control, The analysis of Petri nets: Analysis Problems for Petri Nets, Analysis techniques.

TEXT BOOKS:

1. Intelligent Control Systems-An Introduction with Examples by Katalin M. Hangos, Rozália Lakner, Miklós Gerzson, **Kluwer Academic Publishers.**

REFERENCES BOOKS:

- Intelligent Systems and Control: Principles and Applications Paperback 12 Nov 2009 by <u>Laxmidhar Behera, Indrani Kar</u> by OXFORD.
- 2. Intelligent Systems and Technologies Methods and Applications by Springer publications.
- 3. *Intelligent Systems Modeling, Optimization and Control,* by Yung C. Shin and Chengying Xu, CRC Press, Taylor & Francis Group, 2009

JNTUA College Of Engineering (Autonomous):: Anantapuram Department of Computer Science & Engineering

M.Tech I Sem. (AI)

T P C 0 3 2

15D53111:Artificial Intelligence and Functional Programming Lab Course Objective

- 1. To provide students with a theoretical and practical base in Artificial Intelligence.
- 2. Students will be able purse their study in advanced functional programming.
- 3. Students will able to Design, Implement, and Analyze simple problem solving technique.
- 4. Students will able to identify, formulate, and solve problems.

Course Outcomes:

- 1. Able to understanding of the major areas and challenges of AI
- 2. Ability to apply basic AI algorithms to solve problems
- 3. Able to describe search strategies and solve problems by applying a suitable search method.
- 4. Able to describe and apply knowledge representation.

List of Experiments:

Week 1

- 1. Write a program to implementation of DFS
- 2. Write a program to implementation of BFS

Week 2

1. Write a Program to find the solution for traveling salesman Problem

Week 3

- 1. Write a program to implement Simulated Annealing Algorithm
- 2. Write a program to find the solution for wampus world problem

Week 4

1. Write a program to implement 8 puzzle problem

Week 5

1. Write a program to implement Tower of Hanoi problem

Week 6

1. Write a program to implement A* Algorithm

Week 7

1. Write a program to implement Hill Climbing Algorithm

Week 8

1. To Study JESS expert system

Week 9

1. To Study RVD expert system

Week 10

- 1. Write a Program to Perform Fibonacci Series
- 2. Write a Program to Check Sides of a Triangle

Week 11

- 1. Write a Program to Perform Length of List
- 2. Write a Program to Perform Reverse in List.

Week 12

- 1. Write a Prolog program to perform Arithmetic Mean.
- 2. Write a Program to Check Vowels or Not.

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (AI)	Т	Р	С
	4	0	4

15D53201: Artificial Neural Networks

Objectives:

- To Survey of attractive applications of Artificial Neural Networks.
- To practical approach for using Artificial Neural Networks in various technical, organizational and economic applications

UNIT I: INTRODUCTION: History Of Neural Networks, Structure And Functions Of Biological And Artificial Neuron, Neural Network Architectures, Characteristics Of ANN, Basic Learning Laws and Methods.

UNIT II: SUPERVISED LEARNING: Single Layer Neural Network and architecture, McCulloch-Pitts Neuron Model, Learning Rules, Perceptron Model, Perceptron Convergence Theorem, Delta learning rule, ADALINE, Multi-Layer Neural Network and architecture, MADALINE, Back Propagation learning, Back Propagation Algorithm.

UNIT III: UNSUPERVISED LEARNING-1: Outstar Learning, Kohenen Self Organization Networks, Hamming Network And MAXNET, Learning Vector Quantization, Mexican hat.

UNIT IV: UNSUPERVISED LEARNING-2: Counter Propagation Network -Full Counter Propagation network, Forward Only Counter Propagation Network, Adaptive Resonance Theory (ART) -Architecture, Algorithms.

UNIT V : ASSOCIATIVE MEMORY NETWORKS : Introduction, Auto Associative Memory ,Hetero Associative Memory, Bidirectional Associative Memory(BAM) -Theory And Architecture, BAM Training Algorithm, Hopfield Network: Introduction, Architecture Of Hopfield Network.

TEXT BOOKS:

- 1. B.Yegnanarayana" Artificial neural networks" PHI, NewDelhi.
- 2. S.N.Sivanandam ,S.N.Deepa, "Introduction to Neural Networks using MATLAB 6.0", TATA MCGraw- Hill publications.
- 3. J.M. Zurada, "Introduction to Artificial neural systems" -Jaico publishing.

REFERENCE BOOKS:

- 1. S.Rajasekaran and G.A.Vijayalakshmi pai "Neural Networks.Fuzzy Logic and genetic Algorithms".
- 3. James A Freeman and Davis Skapura" Neural Networks Algorithm, applications and programming Techniques ", Pearson Education, 2002.
- 4. Simon Hakins "Neural Networks " Pearson Education.

JNTUA College of Engineering (*Autonomous*) :: Ananthapuramu Department of Computer Science & Engineering M.Tech. I– II Sem (AI) TPC 404 15D53202: Speech Processing

Objectives:

- To analyze a speech signal in terms of its frequency content.
- To understand the basics of human speech production mechanism.
- To understand which speech coding methods are used for what reasons.
- To implement LPC Analysis.

UNIT I

FUNDAMENTALS OF DIGITAL SPEECH PROCESSING: Anatomy & physiology of speech organs, The process of speech production, The acoustic theory of speech production, Digital models for speech signals.

UNIT II

TIME DOMAIN MODELS FOR SPEECH PROCESSING: Introduction- Window considerations, Short time energy and average magnitude short time average zero crossing rate, Speech Vs Silence discrimination using Average energy and zero crossing, Pitch period estimation using parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT III

LINEAR PREDICTIVE CODING (LPC) ANALYSIS: Basic principles of linear predictive analysis: The Autocorrelation method, The covariance method, solution of LPC equations: Cholesky Decomposition, solution for covariance method, Durbin's recursive solution for the Autocorrelation equations, Comparison between the methods of solution of the LPC parameters, Formant analysis using LPC parameters.

HOMOMORPHIC SPEECH PROCESSING: Introduction, Homomorphic systems for convolution: Properties of the complex cepstrum, computational considerations, The complex cepstrum of speech, pitch detection, Formant estimation, The homomorphic vocoder.

SPEECH SYNTHESIS

Formant Speech Synthesis – Concatenative Speech Synthesis – Prosodic Modification of Speech– Source Filter Models For Prosody Modification

UNIT IV

AUTOMATIC SPEECH RECOGNITION: Basic pattern recognition approaches, parametric representation of speech, Evaluating the similarity of speech patterns, isolated digit recognition system, continuous digit recognition system.

HIDDEN MARKOV MODEL (HMM) FOR SPEECH: Hidden markov model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS, Adapting to variability in speech, Language models.

UNIT V

SPEAKER RECOGNITION: Recognition techniques, Features that distinguish speakers, speaker recognition systems: speaker verification system, Speaker identification system.

SPEECH ENHANCEMENT: Nature of interfering sounds, speech enhancement techniques, spectral subtraction, Enhancement by re-synthesis.

TEXT BOOKS:

- 1. L.R.Rabiner and S.W.Schafer. Digital processing of speech signals, Pearson.
- 2. Douglas. O. Shaughnessy, speech communication, second edition Oxford university press,2000.
- 3. Fundamentals of speech recognition- L.R. Rabinar and B.H.Juang

REFERENCES:

- 1. Discrete Time Speech Signal Processing-Thomas F. Quateri1/e,Pearson.
- 2. Speech & Audio signal processing- Ben Gold & Nelson Morgan, 1/e, Wiley.

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (AI)	Т	Р	С
	4	0	4

15D51202: Natural Language Processing

Objectives:

- able to explain and apply fundamental algorithms and techniques in the area of natural language processing (NLP)
- Understand approaches to syntax and semantics in NLP.
- Understand current methods for statistical approaches to machine translation.
- Understand language modeling.
- Understand machine learning techniques used in NLP.

UNIT I:

Introduction to Natural language

The Study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different Levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background: An outline of English Syntax.

Unit II: Grammars and Parsing

Grammars and Parsing- Top- Down and Bottom-Up Parsers, Transition Network Grammars, Feature Systems and Augmented Grammars, Morphological Analysis and the Lexicon, Parsing with Features, Augmented Transition Networks.

UNIT III: Grammars for Natural Language

Grammars for Natural Language, Movement Phenomenon in Language, Handling questions in Context Free Grammars, Hold Mechanisms in ATNs, Gap Threading, Human Preferences in Parsing, Shift Reduce Parsers, Deterministic Parsers.

UNIT IV:

Semantic Interpretation

Semantic & Logical form, Word senses & ambiguity, The basic logical form language, Encoding ambiguity in the logical Form, Verbs & States in logical form, Thematic roles, Speech acts & embedded sentences, Defining semantics structure model theory.

Language Modeling

Introduction, n-Gram Models, Language model Evaluation, Parameter Estimation, Language Model Adaption, Types of Language Models, Language-Specific Modeling Problems, Multilingual and Crosslingual Language Modeling.

UNIT V:

Machine Translation

Survey: Introduction, Problems of Machine Translation, Is Machine Translation Possible, Brief History, Possible Approaches, Current Status.

Anusaraka or Language Accessor: Background, Cutting the Gordian Knot, The Problem,

Structure of Anusaraka System, User Interface, Linguistic Area, Giving up Agreement in Anusarsaka Output, Language Bridges.

Multilingual Information Retrieval

Introduction, Document Preprocessing, Monolingual Information Retrieval, CLIR, MLIR, Evaluation in Information Retrieval, Tools, Software and Resources.

Multilingual Automatic Summarization

Introduction, Approaches to Summarization, Evaluation, How to Build a Summarizer, Competitions and Datasets.

TEXT BOOKS:

1. James Allen, Natural Language Understanding, 2nd Edition, 2003, Pearson Education.

2.Multilingual Natural Language Processing Applications : From Theory To Practice-Daniel M.Bikel and Imed Zitouni, Pearson Publications.

3.Natural Language Processing, A paninian perspective, Akshar Bharathi, Vineet chaitanya, Prentice – Hall of India.

REFERENCES BOOKS:

1. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.

2. Jurafsky, Dan and Martin, James, Speech and Language Processing, 2nd Edition, Prentice Hall, 2008.

3. Manning, Christopher and Henrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.

JNTUA College of Engineering (*Autonomous*) :: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– II Sem (AI)	Т	Р	С
	4	0	4
15D53203: Genetic Algorithms & Applic	ations		

Objectives:

- To understand the search methods in the genetic algorithms
- To implement the reproduction concepts.
- To design the techniques of dominance in genetic algorithms.

Course Outcomes:

- An ability to understand and the fundamental concepts of Genetic algorithms
- Understand the consequence of applying various genetic operators
- Ability to analyze GA operators and implement them to solve different types of GA problems
- Creating and understanding about the way the GA is used and the domain of application

UNIT- I INTRODUCTION TO GENETIC ALGORITHM

Introduction to Genetic Algorithm – Robustness of Traditional Optimization and Search methods – Goals of optimization-GA versus Traditional methods – Simple GA – GA at work – Similarity templates (Schemata) – Learning the lingo - **Mathematical foundations:** The fundamental theorem - Schema processing at work. – The 2-armed & k-armed Bandit problem. – The building Block Hypothesis. – Minimal deceptive problem.

UNIT – II GA OPERATORS

Data structures – Reproduction- Roulette-wheel Selection – Boltzman Selection – Tournament Selection-Rank Selection – Steady –state selection –Crossover mutation – A time to reproduce, a time to cross. – Get with the Main program. – How well does it work. – Mapping objective functions to fitness forum. – Fitness scaling. Coding – A Multi parameter, Mapped, Fixed – point coding – Discretization – constraints

UNIT – III APPLICATIONS OF GA

The rise of GA – GA application of Historical Interaction. – Dejung & Function optimization – Current applications of GA **-Advanced operators & techniques in genetic search :**Dominance, Diploidy & abeyance – Inversion & other reordering operators. – other mine-operators – Niche & Speciation – Multi objective optimization – Knowledge-Based Techniques. – GA & parallel processes – Real life problem

UNIT – IV INTRODUCTION TO GENETICS-BASED MACHINE LEARNING

Genetics – Based Machine learning – Classifier system – Rule & Message system – Apportionment of credit: The bucket brigade – Genetic Algorithm – A simple classifier system in Pascal. – Results using the simple classifier system.

UNIT -V APPLICATIONS OF GENETICS-BASED MACHINE LEARNING

The Rise of GBMC – Development of CS-1, the first classifier system. – Smitch's Poker player. – Other Early GBMC efforts. –Current Applications.

TEXT BOOKS

1. David E. Gold Berg, "Genetic Algorithms in Search, Optimization & Machine Learning", Pearson Education, 2001

2. S.Rajasekaran, G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms ", PHI, 2003 (Chapters 8 and 9)

REFERENCE BOOK

1. Kalyanmoy Deb, "Optimization for Engineering Design, algorithms and examples", PHI 1995

2. An Introduction to Genetic Algorithm by Melanie Mitchell

3. The Simple Genetic Algorithm Foundation & Theores by Michael P. Vosk

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (AI)

Т	Р	С
4	0	4

15D53204: Advanced Data Mining (Elective-III)

Objectives:

- To develop the abilities of critical analysis to data mining systems and applications.
- To implement practical and theoretical understanding of the technologies for data mining
- To understand the strengths and limitations of various data mining models.

UNIT-I

Introduction about data mining, Need of data mining, Business data mining, data mining tools, Data Mining Process: CRISP Data Mining, Business Understanding, data understanding and data preparation, modeling, evaluation and deployment, SEMMAS Process, Data mining applications, comparison of CRISP & SEMMA.

UNIT-II

Memory-Based Reasoning Methods, Matching ,Weighted Matching, Distance Minimization Data Mining Methods As Tools X Contents, Association Rules in Knowledge Discovery, Market-Basket Analysis, Market Basket Analysis Benefits Demonstration on Small Set of Data, Real Market Basket Data The Counting Method Without Software.

UNIT-III

Fuzzy Sets in Data Mining, Fuzzy Sets and Decision Trees, Fuzzy Sets and Ordinal Classification, Fuzzy Association Rules, Demonstration Model, Computational Results, Testing Inferences.

Rough Sets :Theory of Rough Sets , Information System, Decision Table, Applications of Rough Sets, Rough Sets Software Tools, The Process of Conducting Rough Sets Analysis, Data Pre-Processing, Data Partitioning, Discretization, Reduct Generation, Rule Generation and Rule Filtering, Apply the Discretization Cuts to Test Dataset, Score the Test Dataset on Generated Rule set , Deploying the Rules in a Production System.

UNIT-IV

Support Vector Machines, Formal Explanation of SVM, Primal Form, Dual Form, Soft Margin, Non-linear Classification, Regression, implementation, Kernel Trick.

Use of SVM–A Process-Based Approach, Support Vector Machines versus Artificial Neural Networks, Disadvantages of Support Vector Machines, Genetic Algorithm Support to Data Mining, Demonstration of Genetic Algorithm, Application of Genetic Algorithms in Data Mining

UNIT-V

Performance Evaluation for Predictive Modeling, Performance Metrics for Predictive Modeling , Estimation Methodology for Classification Models, Simple Split, The *k*-Fold Cross Validation Bootstrapping and Jackknifing, Area Under the ROC Curve.

Applications: Applications of Methods Memory-Based Application, Association Rule Application Fuzzy Data Mining, Rough Set Models, Support Vector Machine Application, Genetic Algorithm Applications-Product Quality Testing Design, Customer Targeting .

Text Book:

[1] Advanced Data Mining Techniques Authors: David L. Olson (Author), Dursun Delen.

References :

- [1] Advances in data mining and modeling by Wai-Ki ChingMichael Kwok-Po Ng
- [2] Advanced Techniques in Knowledge Discovery and Data Mining edited by Nikhil R. Pal, Lakhmi C Jain.
- [3] Dynamic and Advanced Data Mining for Progressing Technological Development: Innovations and Systemic ApproachesA B M Shawkat Ali (Central Queensland University, Australia) and Yang Xiang (Central Queensland University, Australia)

JNTUA College of Engineering (Autonomous): Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (AI)	Т	Р	С
	4	0	4
15D51208: Big Data A	Analytics		
(Elective III))		
Course Objectives:			

> To understand Big Data Analytics for different systems like Hadoop.

- > To learn the design of Hadoop File System.
- > To learn how to analyze Big Data using different tools.
- > To understand the importance of Big Data in comparison with traditional databases.

Course Outcomes:

- > To gain knowledge about working of Hadoop File System.
- > Ability to analyze Big Data using different tools.

UNIT- I

Introduction to Big Data. What is Big Data? Why Big Data is Important. Meet Hadoop Data, Data Storage and Analysis, Comparison with other systems, Grid Computing. A brief history of Hadoop. Apache hadoop and the Hadoop Ecosystem. Linux refresher, VMWare Installation of Hadoop.

UNIT-II

The design of HDFS. HDFS concepts. Command line interface to HDFS.Hadoop File systems. Interfaces. Java Interface to Hadoop. Anatomy of a file read. Anatomy of a file writes. Replica placement and Coherency Model. Parallel copying with distcp, keeping an HDFS cluster balanced.

UNIT-III

Introduction. Analyzing data with unix tools. Analyzing data with hadoop. Java MapReduce classes (new API). Data flow, combiner functions, Running a distributed MapReduce Job. Configuration API. Setting up the development environment. Managing configuration. Writing a unit test with MRUnit. Running a job in local job runner. Running on a cluster, Launching a job. The MapReduce WebUl.

UNIT-IV

Classic Mapreduce. Job submission. Job Initialization. Task Assignment. Task execution .Progress and status updates. Job Completion. Shuffle and sort on Map and reducer side.

Configuration tuning. Map Reduce Types. Input formats. Output cormats. Sorting. Map side and Reduce side joins.

UNIT-V

The Hive Shell. Hive services. Hive clients. The meta store. Comparison with traditional databases. Hive QI. Hbasics. Concepts. Implementation. Java and Map reduce clients. Loading data, web queries.

Text Books:

1. Tom White, Hadoop,"The Definitive Guide", 3rd Edition, O'Reilly Publications, 2012.

2. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch ,"Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data", 1st Edition, TMH,2012.

References:

- 1. Big Data and Health Analytics Hardcover <u>Katherine Marconi</u> (Editor), <u>Harold</u> <u>Lehmann</u> (Editor)
- 2. Analytics in a Big Data World: The Essential Guide to Data Science and its Applications by bart bassens, Wiley publications.

JNTUA College of Engineering (*Autonomous*) :: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– II Sem (AI)	Т	Р	С
	4	0	4
15D53205: Computational Intelliger (ELECTIVE-III)	nce		

Course Objectives:

- Computational Intelligence is the successor to Artificial Intelligence
- Offering special benefits in its applications in certain areas like Classification, Regression, Pattern Matching, Control, Robotics, Data Mining etc.
- To introduce the basic tools and techniques in Computational Intelligence such as Neural Networks and Genetic Algorithms from an application perspective to the students.

UNIT I

Introduction: Background and history of evolutionary computation, Behavioral Motivations for Fuzzy Logic, Myths and Applications areas of Computational Intelligence. Adaption, Self organization and Evolution, Historical Views of Computational Intelligence, Adaption and Self organization for Computational Intelligence, Ability to Generalize, Computational Intelligence and Soft Computing Vs Artificial Intelligence and Hard Computing.

UNIT II

Review of evolutionary computation theory and concepts: History of Evolutionary Computation, Evolution Computation Overview, Genetic algorithms, Evolutionary programming, Evolution strategies, genetic programming, and particle swarm optimization.

UNIT III

Review of basic neural network theory and concepts: Neural Network History, What Neural Networks are and Why they are useful, Neural Networks Components and Terminology, Neural Networks Topology, Neural Network Adaption, Comparing Neural Networks and Other information Processing Methods, Preprocessing and Post Processing.

UNIT IV:

Fuzzy Systems Concepts and Paradigms: Fuzzy sets and Fuzzy Logic, Theory of Fuzzy sets, Approximate Reasoning, Fuzzy Systems Implementations, Fuzzy Rule System Implementation.

UNIT V:

Computational Intelligence Implementations: Implementation Issues, Fuzzy Evolutionary Fuzzy Rule System Implementation, Best tools, Applying Computational Intelligence to Data Mining.

Performance Metrics: General Issues, Percent Correct, Average Sum-squared Error.

Textbooks:

1. Computational Intelligence - Concepts to Implementations by Eberhart & Shi

References:

- Introduction to Genetic Algorithms by Melanie Mitchell
 Handbook of Genetic Algorithms by Davis
- 3. Machine Learning by Tom Mitchell

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (AI)

Т	Р	С
4	0	4

15D53206: Text Processing (Elective IV)

OBJECTIVES:

To understand:

- various static methods of the Character wrapper class
- additional methods of the String class
- the difference between a String object and a String Buffer object
- the use of a String Tokenizer object that extracts tokens from a string
- the processing of delimited values read in from a text file

UNIT-I

The Information Environment- Automatic information processing, Types of information. The Automated Office - The Office Environment, Analyzing Office Systems, File Management Systems, Office Display Systems, Office-Information Retrieval. Text Editing and Formatting-Introduction, Approaches to word Processing, Text Editing & Formatting, Typical processing systems, Automatic typesetting systems.

UNIT-II

Text Compression-Statistical language characteristics, rationale for text compression, Text compression methods. Text Encryption- Basic cryptographic concepts, Conventional cryptographic systems, DES. File Accessing Systems- Basic concepts, Sequential search, single key Indexed searches, Tree searching, Balanced Search Trees, Multiway Search Trees, Hash-Table Access, Indexed Searches for Multikey Access, Bitmap Encoding for Multikey Access.

UNIT-III

Conventional Text-Retrieval Systems- Database Management and Information Retrieval, Text Retrieval Using Inverted Indexing Methods, Typical File Organization, Text-scanning systems, Hardware aids to text searching. Automatic Indexing - Indexing Environment, Indexing Aims, Single – term Indexing Theories, Term Relationships in Indexing, Term-phrase Formation, Thesaurus-Group Generation, A blue print for Automatic indexing.

UNIT-IV

Advanced Information-Retrieval Models- The Vector Space Model, Automatic Document Classification, Probabilistic Retrieval Model, Extended Boolean Retrieval Model, Integrated System for Processing Text and Data, Advanced Interface Systems. Language Analysis and Understanding- The Linguistic Approach, Dictionary Operations, Syntactic Analysis, Knowledge-based Processing, Specialized Language Processing.

UNIT-V

Automatic Text Transformations- Text transformations, Automatic writing Aids, Automatic abstracting systems, Automatic Text Generation, Automatic Translation. Paperless Information Systems- Paperless Processing, Processing Complex Documents, Graphics Processing, Speech Processing, Electronic Mail and Messages, Electronic Information Services, Electronic Publications and the Electronic Library.

Text Books:

1. Gerald Salton, "Automatic Text Processing", Addison-Wesley, 1989.

References:

- 1. Bran Boguraev, Ted Briscoe (Eds), "Computational Lexicography for Natural Language Processing", Longman, 1989.
- 2. A V Aho, Ravi Sethi, J D Ullman, "Compilers: Principles, Techniques and Tools", Addison-Wesley.
- 3. Robert Sedgewick, "Algorithms in C", Addison Wesley, 1990.

JNTUA College of Engineering (Autonomous) :: Ananthapuramu

Department of Computer Science & Engineering

M.Tech. I– II Sem (AI)	Т	Р	С
	4	0	4

15D53207: Geographical Information Systems & Spatial Decision Support Systems

(Elective-IV)

Course Outcomes:

- Analyse the Fundamental mechanism of GIS
- Process spatial and attribute data to prepare thematic maps
- Identify decision support models, methods, and technologies
- Analyse and prepare the DSS for the remote sensing and GIS applications

UNIT 1

Map – mapping concepts, analysis with paper based maps, limitations, Computer Automated Cartography – History and Developments, GIS- Definition, advantages of digital maps.

UNIT 2

Fundamentals of GIS – Information Systems, Modeling Real World Features Data , Data Formats – Spatial and Non-spatial, Components, Data Collection and Input, Data Conversion, Database Management – Database Structures, Files; Standard Data Formats, Compression Techniques, Hardware – Computing, printing and scanning systems; Software – Standard Packages like Arcview, ArcGIS, Autocad Map, Map Info etc.

UNIT 3

Spatial Analysis and Modeling – Proximity Analysis, Overlay Analysis, Buffer Analysis, Network Analysis, Spatial Auto Correlation, Gravity Modeling, DTM/DEM, Integration with Remote Sensing data

UNIT 4

Introduction: Concepts of decision making, systems and modeling, Need for DSS, Expert Systems.

Decision Analysis and Decision Making: Decision environments, Decision making under certainty, risk and uncertainty, Concepts of multicriteria decision making, Value and utility concepts in decision making, overview of methods of multicriteria decision making.

UNIT 5

Overview of DSS: Characteristics and capabilities of DSS, Components of DSS, Data management, model management and user interface subsystems, Classification of DSS, Development of DSS, Approaches to DSS construction, DSS development tools.

Text Books:

- 1. Thanappan Subash., Geographical Information System, Lambert Academic Publishing, 2011.
- 2. Paul Longley., Geographic Information systems and Science, John Wiley & Sons, 2005
- 3. Efraim Turban and Jay E. Aronson, Decision Support Systems and Intelligent Systems, Prentice Hall College Div; 5 edition.,1997.

References:

- 1. Marble, D.F & Calkins, H.W., Basic Readings in Geographic Information System, Spad System Ltd, 1990. ArcGIS 10.1 Manuals, 2013.
- 2. Kang Tsung Chang., Introduction to Geographic Information Systems, Tata Mc Graw Hill Publishing Company Ltd, New Delhi, 2008.
- 3. Burrough, P.A., Principles of GIS for Land Resource Assessment, Oxford Publications, 2005

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (AI)

Т	Р	С
4	0	4

15D53208: Logic and Engineering (Elective IV)

OBJECTIVES:

- To understand fuzzy logic basics and operations,
- To understand fuzzy arithmetic and representations and classical logic.
- Able to understand automated methods for fuzzy systems.
- Able to apply fuzzy logic for engineering problems.

UNIT-I

Introduction: The Case for Imprecision, A Historical Perspective, The Utility of Fuzzy Systems, Limitations of Fuzzy Systems, The Illusion: Ignoring Uncertainty and Accuracy, Uncertainty and Information, The Unknown, Fuzzy Sets and Membership, Chance Versus Fuzziness, Sets as Points in Hypercubes.

Classical Sets and Fuzzy Sets: Classical Sets, Fuzzy Sets

Classical Relations and Fuzzy Relations: Cartesian Product, Crisp Relations, Fuzzy Relations, Tolerance and Equivalence Relations, Fuzzy Tolerance and Equivalence Relations, Value Assignments, Other Forms of the Composition Operation.

Properties of Membership Functions, Fuzzification, and Defuzzification: Features of the Membership Function, Various Forms, Fuzzification, Defuzzification to Crisp Sets, λ -Cuts for Fuzzy Relations, Defuzzification to Scalars.

UNIT-II:

Logic and Fuzzy Systems: Logic, Fuzzy Systems. **Development of Membership Functions**: Membership Value Assignments.

UNIT-III:

Automated Methods for Fuzzy System: Definitions, Batch Least Squares Algorithm, Recursive Least Squares Algorithm, Gradient Method, Clustering Method, Learning From Examples, Modified Learning From Examples,

Decision Making with Fuzzy Information: Fuzzy Synthetic Evaluation, Fuzzy Ordering, Nontransitive Ranking, Preference and Consensus, Multiobjective Decision Making, Fuzzy Bayesian Decision Method, Decision Making Under Fuzzy States and Fuzzy Actions.

UNIT-IV:

Fuzzy Classification: Classification by Equivalence Relations, Cluster Analysis, Cluster Validity, *c*-Means Clustering, Hard *c*-Means (HCM), Fuzzy *c*-Means (FCM), Classification Metric, Hardening the Fuzzy *c*-Partition, Similarity Relations from Clustering.

Fuzzy Pattern Recognition: Feature Analysis, Partitions of the Feature Space, Single-Sample Identification, Multifeature Pattern Recognition, Image Processing.

UNIT-V:

Fuzzy Arithmetic and the Extension Principle: Extension Principle, Fuzzy Arithmetic, Interval Analysis in Arithmetic, Approximate Methods of Extension

Fuzzy Control Systems: Control System Design Problem, Examples of Fuzzy Control System Design, Fuzzy Engineering Process Control, Fuzzy Statistical Process Control, Industrial Applications.

Text Book:

Timothy J. Ross, Fuzzy Logic with Engineering Applications, third edition, Willey, 2010.

Text Books:

2. Gerald Salton, "Automatic Text Processing", Addison-Wesley, 1989.

References:

- 4. Bran Boguraev, Ted Briscoe (Eds), "Computational Lexicography for Natural Language Processing", Longman, 1989.
- 5. A V Aho, Ravi Sethi, J D Ullman, "Compilers: Principles, Techniques and Tools", Addison-Wesley.
- 6. Robert Sedgewick, "Algorithms in C", Addison Wesley, 1990.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) : : ANANTAPUR

Department Of Computer Science & Engineering

M.Tech. I – II Sem.(AI)

15D54201: Research Methodology (Audit Course)

(Audit Course For M.Tech. –II Semester Program from 2015 admitted batches onwards)

<u>UNIT I</u>

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

<u>UNIT II</u>

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation. Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

UNIT III

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

UNIT IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Covariance – Multi-variate Analysis.

UNIT V

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Text books:

1. Research Methodology: Methods and Techniques – C.R.Kothari, 2nd Edition, New Age International Publishers.

- 2. Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf on internet)
- 3. Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1st Edition,Excel Books,New Delhi.

REFERENCES:

- 1. Scientists must Write Robert Barrass (Available as pdf on internet)
- 2. Crafting Your Research Future Charles X. Ling and Quiang Yang (Available as pdf on internet)

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– II Sem (AI)	Т	Р	С
	0	4	2

15D53209: Natural Language Processing & Genetic Algorithms Lab

Objectives:

- able to explain and apply fundamental algorithms and techniques in the area of natural language processing (NLP)
- Understand language modeling.
- To implement the reproduction concepts.
- To design the techniques of dominance in genetic algorithms

Part A: Natural Language Processing

1. Write a program given a piece of text, we want to split the text at all spaces (including new line characters and carriage returns) and punctuation marks.

2. Write a program to remove the first and last characters if they are not letters or numbers from a given sentence.

3. Write a program to split a word into pair's at all possible positions. For example, carried will be split into {c, arried, ca, rried, car, ried, carr, Ied, carri, ed, carri, d}.

4. Write a program to find out the frequencies of distinct words, given a sentence.

5. Write a program to remove digits from a given sentence using Greedy Tokenizer.

Part B: Genetic Algorithms

- 1. Write a program that generates a pseudorandom integer between some specified lower limit and some specified upper limit. Test the program by generating 1000 numbers between 3 and 12.
- 2. Create a procedure that receives two binary strings and a crossing site value, performs simple crossover, and returns two offspring strings. Test the program by crossover the following strings of length 10:1011101011, 0000110100. Try crossing site values of -3, 1, 6 and 20.

- 3. For the function $f(x)=x^2$ on the interval [0,31] coded as a five-bit, unsigned binary integer. Calculate the average fitness values for all 3^5 schemata.
- 4. Improve the efficiency of the selection procedure by implementing a binary search using cumulative selection probability distribution values.
- 5. Implement a coding routine to implement a floating-point code with specified mantissa and exponent.
- 6. Develop a ranking procedure that gives one copy to the population mean, MAX copies to the population best, with linear variation of copies assumed everywhere else (use stochastic remainder selection after ranking and assignment).
- 7. Develop a multiple-point crossover procedure similar to De Jong's with parameter CP (no. of crossover points).

8. Write a program and test the cycle crossover operator for a permutation string representation

- 9. Write a program to test the order crossover operator for permutation coding.
- 10. a) Write a program to demonstrate the genetic operator mutation.
 - b) Write a program to demonstrate the crossover genetic operator.
- 11. Write a program to evolve a word with non-repetitive character (eg 'computer') by taking a population size of say 5 and performing mutation and crossover.

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE

I SEMESTER

S.No.	Course Code	Subject Name		-	urs I Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D53101	Fundamentals of Artificial Intelligence	PC	3	0	0	3
2	21D53102	Soft Computing	PC	3	0	0	3
3	Profession	al Elective – I					
	21D53103	Mathematics for Machine Learning					
	21D53104	Digital Image Processing	PE	3	0	0	3
	21D52105	Advanced Python Programming					
4	Profession	al Elective – II					
	21D52103	Advanced Data Structures and Algorithms					
	21D53105	Data Science	PE	3	0	0	3
	21D53106	Knowledge Representation and Reasoning					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies					
7	21D53107	Artificial Intelligence Lab	PC	0	0	4	2
8	21D53108	Soft Computing Lab	PC	0	0	4	2
	Total				00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE

II SEMESTER

S.No. Course Code	Subject Name	Cate	-	urs Weel	-	Credits	
	Code		Gory	L	Т	Ρ	
1	21D53201	Knowledge Engineering & Intelligent Systems	PC	3	0	0	3
2	21D53202	Deep Learning	PC	3	0	0	3
3	Profession	al Elective – III			•	•	
	21D55105	Data Analytics					
	21D53203	Pattern Recognition	PE	3	0	0	3
	21D53204	Bio Inspired Computing					
4	Profession	al Elective – IV					L
	21D53205	Intrusion Detection Systems					
	21D53206	Computer Vision	PE	3	0	0	3
	21D53207	Natural Language Processing					
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga					
7	21D53208	Knowledge Engineering & Intelligent Systems Lab	PC	0	0	4	2
8	21D53209	Deep Learning Lab	PC	0	0	4	2
		Total	•	14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ARTIFICIAL INTELLIGENCE

III SEMESTER

S.No.	Course	Subject Name	Cate		urs I Weel		Credits
	Code	5	Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D53301	Reinforcement Learning					
	21D53302	Applied Artificial Intelligence	PE	3	0	0	3
	21D53303	Speech Processing					
2	Open Elect	ive					
	21D50301	Software Development and IT Services	OE	3	0	0	3
3	21D53304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
	Total			06	00	20	18

IV SEMESTER

S.No.	Subject Name			Subject Name	Hours Per Week			Credits
	Code	-	Gory	L	Т	Р		
1	21D53401	Dissertation Phase – II	PR	0	0	32	16	
	Total				00	32	16	

Course Code	21D53101	FUNDAMENTALS OF ARTIFICIAL	L	Τ	P	C
Semester	Ι	INTELLIGENCE	3	0	0	3
		(21D53101)				
Course Object	tives:					
• The go	oal of Artifi	icial Intelligence is to build software systen	ns t	hat	beha	ave
"intellig	gently".					
• The abi	lity to create	e representations of the domain of interest and re	asor	ı wi	th th	ese
represen	ntations is a k	key to intelligence.				
Course Outco	mes (CO): S	tudent will be able to				
• Underst	and the majo	or areas and challenges of AI				
Ability	to apply basi	c AI algorithms to solve problems				
• Able to	describe sear	rch strategies and solve problems by applying a s	iital	ole s	earch	1
method						
• Able to	describe and	apply knowledge representation				
To learn	n different kn	nowledge representation techniques				
Represe	ent knowledg	e of a domain formally,				
• Design,	implement a	and apply a knowledge-based system.				
UNIT - I			Le	cture	e Hrs	s:9
AI Problems a	nd Search: A	AI problems, Techniques, Problem Spaces and S	earc	h, H	leuris	stic
Search Technic	ques- Genera	te and Test, Hill Climbing, Best First Search Pro	blen	n rec	lucti	on,
Constraint Sati	sfaction and	Means End Analysis. Approaches to Knowledge	Rep	rese	ntati	on-
Using Predicate	e Logic and H	Rules.				
UNIT - II					e Hrs	
		: Introduction, Basic models of ANN, importan			-	
		vorks, Perceptron Networks, Adaptive Linear				
		sociative Memory Networks. Traing Algorith	ms	for	patt	ern
association, BA	M and Hopf	ield Networks.				
UNIT - III					e Hrs	
		twork- Introduction, Fixed Weight Competitive				
		en Self-Organizing Feature Maps, Learning Vector				
	-	orks, Adaptive Resonance Theory Networks. Sp	ecial	l Ne	twor	ks-
Introduction to	various netw	vorks.	_			
UNIT - IV					e Hrs	
		Sets (crisp Sets)and Fuzzy Sets- operations a			•	
		Fuzzy Relations- Cardinality, Operations,	-			
		nd equivalence relations. Membership funct	ions	- F	eatu	res,
	nembership v	value assignments, Defuzzification.	т			
UNIT - V	. 15				e Hrs	
Fuzzy Arithme	tic and Fuzzy	y Measures, Fuzzy Rule Base and Approximate R	easo	oning	g Fuz	zzy

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Decision making Fuzzy Logic Control Systems, Genetic Algorithm- Introduction and basic operators and terminology. Applications: Optimization of TSP, Internet Search Technique.

Textbooks:

- 1. Artificial Intelligence A Modern Approach. Second Edition, Stuart Russel, Peter Norvig, PHI/ Pearson Education.
- 2. Artificial Intelligence, Kevin Knight, Elaine Rich, B. Shivashankar Nair, 3rd Edition,2008
- 3. Artificial Neural Networks B. Yagna Narayana, PHI

Reference Books:

- 1. Artificial Intelligence, 2nd Edition, E.Rich and K.Knight (TMH).
- 2. Artificial Intelligence and Expert Systems Patterson PHI.
- 3. Expert Systems: Principles and Programming- Fourth Edn, Giarrantana/ Riley, Thomson.
- 4. PROLOG Programming for Artificial Intelligence. Ivan Bratka- Third Edition Pearson Education.
- 5. Neural Networks Simon Haykin PHI
- 6. Artificial Intelligence, 3rd Edition, Patrick Henry Winston., Pearson Edition

Online Learning Resources:

Course Code	21D53102	SOFT COMPUTING	L	Т	P	C
Semester	Ι	(21D53102)	3	0	0	3
Course Object						
-		wledge of soft computing theories fundamentals,	i.e.			
		ficial and neural networks				
*	*	f fuzzy sets and fuzzy logic and genetic algorithm	ns.			
		udent will be able to				
 Underst 	and intelliger	nt agents.				
• Solve se	earching prob	elems using A*, Mini-Max algorithms.				
• Create of	perations and	d Fuzzy sets logic.				
• Use Bay	yesian learnir	ng for classification problems.				
• Underst	and Natural l	Language Processing.				
UNIT - I			Le	cture	e Hrs	s:9
Introduction: W	WhatisAI? A	gents and Environments, The Structure of Ag	gents	s, P	roble	em-
		g for Solutions, Measuring problem-solving				
Uninformed S	earch Strate	egies, Avoiding Repeated States, Searching	g W	vith	Par	tial
Information, Se	ensorless prob	plems, Contingency problems.				
UNIT - II					e Hrs	
Informed Sear	ch and Exp	ploration: Informed (Heuristic) Search Strate	egies	, Н	euri	stic
Functions, Inv	venting adm	issible heuristic functions, Local Search A	Algo	rithn	ns a	and
Optimization P	roblems, Co	nstraint Satisfaction Problems: Backtracking Se	earch	n foi	r CS	Ps,
Local Search fo	or Constraint	Satisfaction Problems.				
UNIT - III					e Hrs	
		: Logical Agents, Reasoning Patterns in Prop				
		ference, Agents Based on Propositional Log				
-	-	l Engineering, Categories and Objects, Actions,				
		d Mental Objects, The Internet Shopping Wo				-
-	tegories, Rea	soning with Default Information, Truth Maintena				
UNIT - IV					e Hrs	
U	0				naly	,
		ocessing, statistical natural language processing,	-			<u> </u>
	-	field Networks, Learning in Neural Networks,				
		t Networks, Distributed Representations, Conne				and
	erception and	d Action Real-time Search, Perception, Robot A				
UNIT - V					e Hrs	
		oduction, Crisp Sets, Fuzzy Sets, Some Fuzzy			-	-
• •	-	no Style of Fuzzy Inference Processing, Fuzzy		-		
Threshold, N	lemo Fuzzy	Systems. Prolog: —The Natural Language	e o	t A	rtific	cial

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Intelligence, Introduction, Converting English to Prolog Facts and Rules, Goals, Prolog Terminology, Variables, Control Structures, Arithmetic Operators, Matching in Prolog, Backtracking, Cuts, Recursion, Lists, Dynamic Databases, Input/Output and Streams, Some Aspects Specific to LPA Prolog.

Textbooks:

- 1. Principles of Soft Computing- S N Sivanandam, S N Deepa, Wiley India, 2007
- 2. Soft Computing and Intelligent System Design -Fakhreddine O Karray, Clarence D Silva, Pearson Edition, 2004.

Reference Books:

- 1. Artificial Intelligence and Soft Computing- Behavioural and Cognitive Modeling of the Human Brain- Amit Konar, CRC press, Taylor and Francis Group.
- 2. Artificial Intelligence Elaine Rich and Kevin Knight, TMH, 1991, rp2008.
- 3. Artificial Intelligence Patric Henry Winston Third Edition, Pearson Education.
- 4. A first course in Fuzzy Logic-Hung T Nguyen and Elbert A Walker, CRC. Press Taylor and Francis Group

Online Learning Resources:

Course Code	21D53103	MATHEMATICS FOR MACHINE	L	Т	Р	C
Semester	Ι	LEARNING	3	0	0	3
		(21D53103)				
		PE – I				
Course Object	tives:					
· · · · · · · · · · · · · · · · · · ·		ic theory underlying machine learning.				
		ulate machine learning problems correspondi	ng	to d	iffer	ent
applicati	ons		-			
• To under weakness	-	e of machine learning algorithms along with the	eir st	reng	ths a	ind
• To be a	ble to apply	machine learning algorithms to solve probler	ns c	of m	oder	ate
complex						
Course Outco	mes (CO): S	tudent will be able to				
-		d what is learning and why it is essential to	the	e de	sign	of
0	nt machines					
	neoretical four to label data	indations of decision trees to identify best spli points	it an	d B	ayes	ian
Acquire	knowledge in	n deep learning and be able to implement deep	learr	ning	mod	lels
for langu	lage, vision, s	peech and decision making				
		g of classifier models like SVM, Neural Networ	rks a	and i	ident	ify
	•	pical machine learning applications				
		clustering algorithms and identify its applicabi	lity	in r	eal	life
problems	š.		T			
UNIT - I				cture		
		of Linear Equations, Matrices, Solving Syst				
Equations vec Spaces.	tor spaces, I	inear Independence, Basis and Rank, Linear M	app	ings,	AII	me
-	positions. De	eterminant and Trace, Eigenvalues and Eigenve	ctor		holes	skv
	-	mposition and Diagonalization, Singular Value				•
Matrix Approx	-		Dee	omp	05111	011,
UNIT - II			Le	cture	Hrs	5:9
	I Distribution	s: Construction of a Probability Space, Discrete				
•		Product Rule, and Bayes' Theorem, Summary				
Independence,	Gaussian Di	stribution, Conjugacy and the Exponential Fan	nily,	Cha	ange	of
Variables/Inver	rse Transform	1.	-			
UNIT - III			Le	cture	Hrs	;:9
Parameter Esti	mation, Prob	abilistic Modeling and Inference, Directed Gra	aphi	cal N	Mode	els,
Model Selectio	n.					
0		em Formulation, Parameter Estimation, Ba	ayes	ian	Lin	ear
Regression, Ma	aximum Like	lihood as Orthogonal Projection				

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE)

UNIT - IV	L	Lecture Hrs:9						
Dimensionality	Dimensionality Reduction with Principal Component Analysis: Problem Setting, Maximum							
Variance Pers	pective, Projection Perspective, Eigenvector Computation an	nd Low-Rank						
Approximation	s, PCA in High Dimensions, Key Steps of PCA in Practice, La	atent Variable						
Perspective								
UNIT - V		Lecture Hrs:9						
UNIT-V: Den	sity Estimation with Gaussian Mixture Models: Gaussian Mi	ixture Model,						
Parameter Lean	rning via Maximum Likelihood, EM Algorithm, Latent-Variable	Perspective.						
Classification	with Support Vector Machines: Separating Hyper planes, Pr	imal Support						
Vector Machin	e, Dual Support Vector Machine, Kernels, Numerical Solution.							
Textbooks:								
1. Mathem	natics for Machine Learning, Marc Peter Deisenroth, A. Aldo Fa	isal, Cheng						
Soon O	ng 2020							
2. Machin	e Learning, Tom Mitchell, c Graw Hill							
Reference Boo)ks•							

Machine Learning: An Algorithmic Perspective, Stephen Marsland, Taylor & Francis 1. **Online Learning Resources:**

Course Code	21D53104	DIGITAL IMAGE PROCESSING	L	Т	P	C
Semester	Ι	(21D53104)	3	0	0	3
		PE – I				
Course Object	ives:					
		s to understand				
• The fun	damentals of	Computer Graphics and Image Processing				
		ted edge detection, segmentation, morpholo	gy	and	im	age
	ssion method		0.			U
Course Outcon	mes (CO): St	tudent will be able to				
understa	anding of di	gital image processing fundamentals: hardwar	e an	d so	oftwa	are,
	-	ement and restoration, encoding, segmentation, fe				
-		age processing techniques in both the spatial				
	r) domains				1	2
Ability	To understan	d (i.e., be able to describe, analyse and reason ab	out)	how	v dig	ital
images	are represer	nted, manipulated, encoded and processed, wi	th e	mph	asis	on
-	-	plementation and performance evaluation		•		
UNIT - I		÷	Le	cture	e Hrs	5:9
Digital Image I	Fundamentals	s: What is Digital Image Processing, examples of	of fie	elds t	that	use
digital image p	rocessing, fu	ndamental Steps in Digital Image Processing, Co	ompo	onen	ts of	an
Image processi	ing system,	Image Sampling and Quantization, Some Basi	c R	elati	onsh	ips
between Pixels.	, Linear and I	Nonlinear Operations.				
UNIT - II					e Hrs	
		e Enhancement in the spatial domain: some l				
transformations	s, histogram	processing, enhancement using arithmetic and l	ogic	ope	ratic	ons,
basics of spat	ial filters, si	moothening and sharpening spatial filters, co	mbiı	ning	spa	tial
enhancement m	nethods.					
UNIT - III			1		e Hrs	
-	U	twork- Introduction, Fixed Weight Competitive				
-		en Self-Organizing Feature Maps, Learning Vect	-	-		
1.		orks, Adaptive Resonance Theory Networks. Sp	ecia	l Ne	twor	ks-
Introduction to	various netw	vorks.				
UNIT - IV					e Hrs	
0 1		amentals, image compression models, elements			rmat	ion
-	ee compressi	on, lossy compression, Image Compression Stand				
UNIT - V					e Hrs	
	-	essing: Preliminaries, dilation, erosion, open	and	clos	ing,	hit
	-	ologic algorithms.		-		
U	rocessing: Co	olor fundamentals, Color Models and basics of	full-	colo	r im	age
processing						

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Textbooks:

- 1. "Digital Image Processing", Rafael C.Gonzalez and Richard E. Woods, Third Edition, Pearson Education, 2007
- 2. Digital Image Processing", S.Sridhar, Oxford University Press

Reference Books:

- 1. "Fundamentals of Digital Image Processing", S. Annadurai, Pearson Edun, 2001.
- 2. "Digital Image Processing and Analysis", B. Chanda and D.Dutta Majumdar, PHI, 2003.
- 3. "Image Processing", Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac and
- 4. Roger Boyle, 2nd Edition, Thomson Learning, 2001.
- 5. "Digital Image Processing" Vipula Singh, Elsevier

Online Learning Resources:

Course Code	21D53105	ADVANCED PYTHON PROGRAMMING	L	Т	P	C
Semester	Ι	(21D53105)	3	0	0	3
		$\mathbf{PE} - \mathbf{I}$				
Course Object	tives:					
• To be a	ble to introdu	ace core programming basics and program design	ı wi	th fu	inctio	ons
-	• • •	mming language.				
To under	erstand a rang	ge of Object-Oriented Programming, as well as ir	n-dej	oth c	lata a	and
informa	tion processi	ng techniques.				
To und	erstand the h	igh-performance programs designed to strength	en t	he p	racti	cal
expertis						
Course Outco	mes (CO): S	tudent will be able to				
Underst	tanding of dig	gital image processing fundamentals of python.				
Ability	to apply Obje	ect oriented concepts.				
Ability	To understan	d lists and methods.				
Illustrat	e the working	g of dictionaries and files.				
		zation and graphs.				
UNIT - I			Le	cture	e Hrs	s:9
Introduction: V	Vhat is a pro	gram, Running python, Arithmetic operators, Va	alue	and	Typ	bes.
		d Statements: Assignment statements, Script r				
operations, strip	ng operations	s, comments.				
Functions: Fun	ction calls, M	Iath functions, Composition, Adding new Functi	ons,	Def	initi	ons
and Uses, Flow	w of Executi	ion, Parameters and Arguments, Variables and	Par	ame	ters	are
	grams, Fruith	ful Functions and Void Functions, Why Functions	S.			
UNIT - II			Le	cture	e Hrs	s:9
Case study: Th	ne turtle mod	ule, Simple Repetition, Encapsulation, Generaliz	zatic	n, Iı	nterf	ace
design, Refacto	0	0				
		n: floor division and modulus, Boolean expre				
		ecution, Alternative execution, Chained condi	tion	als,	Nes	ted
		inite Recursion, Keyboard input.				
		n values, Incremental development, Compos	sitio	n, I	Bool	ean
	e recursion, I	eap of Faith, Checking types.	1			
UNIT - III					e Hrs	
	signment, U	pdating variables, The while statement, Break	, So	quare	e roo	ots,
Algorithms.				a .		
-		ence, len, Traversal with a for loop, String sli			-	
	arching, Loc	oping and Counting, String methods, The in o	oper	ator,	Str	ıng
comparison.	1					
		ists, Search, Looping with indices.	т·		. т	• • •
Lists: List is a	sequence, Lis	sts are mutable, Traversing a list, List operations,	L1S	t slic	es, I	_1st

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

methods, Map filter and reduce, Deleting elements, Lists and Strings, Objects and values, Aliasing, List arguments.

Lecture Hrs:9

Dictionaries: A dictionary is a mapping, Dictionary as a collection of counters, Looping and dictionaries, Reverse Lookup, Dictionaries and lists, Memos, Global Variables.

Tuples: Tuples are immutable, Tuple Assignment, Tuple as Return values, Variable-length argument tuples, Lists and tuples, Dictionaries and tuples, Sequences of sequences.

Files: Persistence, Reading and writing, Format operator, Filename and paths, Catching exceptions, Databases, Pickling, Pipes, Writing modules.

Classes and Objects: Programmer-defined types, Attributes, Instances as Return values, Objects are mutable, Copying.

UNIT - V

UNIT - IV

Lecture Hrs:9

Introduction to NumPy, Pandas, Matplotlib.

Exploratory Data Analysis (EDA), Data Science life cycle, Descriptive Statistics, Basic tools (plots, graphs and summary statistics) of EDA, Philosophy of EDA. Data Visualization: Scatter plot, bar chart, histogram, boxplot, heat maps etc.

Textbooks:

- 1. Allen B. Downey, "Think Python", 2nd edition, SPD/O'Reilly, 2016.
- 2. Cathy O'Neil, Rachel Schutt, Doing Data Science, Straight Talk from the Frontline. O'Reilly, 2013.

Reference Books:

- 1. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 2. Kenneth A. Lambert, B.L. Juneja, "Fundamentals of Python", CENGAGE, 2015.
- 3. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019

Online Learning Resources:

Course Code	21D52103	ADVANCED DATA STRUCTURES AND	L	Т	P	C
Semester	Ι	ALGORITHMS	3	0	0	3
		(21D52103)				
		PE – II				
Course Object						
	le the founda Structures.	tions of the practical implementation and usage	e of	Alg	orith	ms
		lent evolves into a competent programmer capal	ble d	of de	sign	ing
		entations of algorithms and data structures for d			-	-
problems.						-
-		to the algorithm analysis techniques, to the theory	ry of	red	uctic	ons.
-		n of problems into complexity classes like NP.	5			,
		tudent will be able to				
Design	and analyze p	programming problem statements.				
Choose	appropriate of	lata structures and algorithms, understand the AI	DT/li	brar	ies, a	and
		ithms for a specific problem.				
Underst	and the neces	ssary mathematical abstraction to solve problems				
• come up	o with analys	is of efficiency and proofs of correctness				
Compre	hend and sel	ect algorithm design approaches in a problem spe	ecifi	c ma	nner	
UNIT - I			Le	cture	e Hrs	:9
Overview of I	Data Structur	es - Arrays, Stacks, Queues, linked lists, Lir	iked	stac	cks a	and
Linked queues,	Applications	3				
Algorithm Ana	lysis - Effici	ency of algorithms, Asymptotic Notations, Tim	e co	mple	exity	of
-	-	on, Polynomial Vs Exponential Algorithms, Av	erag	e, B	est, a	and
	mplexities, A	nalyzing Recursive Programs.				
UNIT - II					e Hrs	
-		of trees and binary trees, Representation of the				-
		s, Threaded binary trees, Graphs, representation				
		Trees and B Trees - Binary Search Trees: Defini				
		es: Definition, Operations and applications. B Transmission	rees:	Det	initi	on,
Operations and	applications		т		TT	0
UNIT - III		Same and Hash Tables Dad Dials Trans. Calar			Hrs	
	· · ·	rees and Hash Tables - Red–Black Trees, Splay				leir
	ash Tables, F	Iash Functions and various applications, File Org				
UNIT - IV	Conquer	& Greedy Method - General Method, Binary			Hrs Find	
	-	•				-
		Quick Sort, Merge sort, Strassen's Matrix Multip Iinimum Cost Spanning Trees, Single Source Sho				Juy
		– and – Bound - General Method, 8 – Queen's				anh
Dack Hacking	and Dianell	– and – Dound - General Michou, o – Queen s	1100	nem	, 01	ιμπ

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Coloring. Branch – and – Bound: The Method, LC Search, Control Abstraction, Bounding, 0/1 Knapsack Problem.

Classes and Objects: Programmer-defined types, Attributes, Instances as Return values, Objects are mutable, Copying.

UNIT - V

Lecture Hrs:9

Dynamic Programming - General Method, All Pairs Shortest Path, Single Source Shortest Path, 0/1 Knapsack problem, Reliability Design, Traveling Sales Person's Problem.

Textbooks:

1. Fundamentals of Computer Algorithms by Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, 2nd edition, University Press.

Reference Books:

- 1. Data Structures and Algorithms Using C++ by Ananda Rao Akepogu and Radhika Raju Palagiri, Pearson Education, 2010.
- 2. Classic Data Structures by D. Samanta, 2005, PHI
- 3. Data Structures and Algorithms by G.A.V. Pai, 2009, TMH.
- 4. Design and Analysis of Computer Algorithms by Aho, Hopcraft, Ullman 1998, PEA.
- 5. Introduction to the Design and Analysis of Algorithms by Goodman, Hedetniemi, TMG
- 6. Design and Analysis of Algorithms by E. Horowitz, S. Sahani, 3rd Edition, Galgotia.
- 7. Data Structures and Algorithms in C++ by Drozdek 2nd Edition, Thomson.

Online Learning Resources:

Course Code	21D53105	DATA SCIENCE	L	Т	P	C						
Semester	Ι	(21D53105)	3	0	0	3						
		PE – II										
Course Objectives:												
• demons	trate proficies	ncy with statistical analysis of Data.										
• execute	statistical and	alyses with professional statistical software.										
• demons	trate skill in I	Data management.										
 develop 	the ability to	build and assess Databased models.										
• apply d	ata science c	oncepts and methods to solve problems in real	-wo	rld o	onte	exts						
and will	communicat	e these solutions effectively										
Course Outcon	mes (CO): St	udent will be able to										
To deve	lop relevant	programming abilities.										
To dem	onstrate profi	ciency with statistical analysis of data.										
To deve	lop the abilit	y to build and assess data-based models.										
To exec	ute statistical	analyses with professional statistical software.										
To dem	onstrate skill	in data management.										
• To appl	y data science	e concepts and methods to solve problems in rea	l-wo	rld c	conte	exts						
		e these solutions effectively										
UNIT - I				cture								
		ical Learning?, Why Estimate f?, How Do We l										
		ion Accuracy and Model Interpretability, Sup										
-	0	egression Versus Classification Problems, A		<u> </u>								
-	-	Quality of Fit, The Bias-Variance Trade-of, Th										
-		Basic Commands, Graphics, Indexing Data,	Lo	adin	g Da	ata,						
	phical and Ni	umerical Summaries.	Ŧ			0						
UNIT - II	·			cture								
-	-	e Linear Regression, Multiple Linear Reg	-									
	-	ssion Model, Comparison of Linear Regression	W1t	n K-	Near	rest						
Neighbours, Li	near Regressi	on.	T.	- 4								
UNIT - III	Laciatia Da	organization Lincon Discriminant Analysis A		cture								
	U U	egression, Linear Discriminant Analysis, A	Con	ipari	ISOII	01						
UNIT - IV	log	istic Regression, LDA, QDA, and KNN.	Le	cture	<u>.</u> Цт	0						
	for basic cor	nputational methods such as Eigen values and										
			112	5011	vecti	ль,						
sparse matrices, QR and SVD, Interpolation by divided differences. Data Wrangling: Data Acquisition, Data Formats, Imputation, The split-apply-combine												
paradigm.	5. Data AC	Austron, Data Formats, Imputation, The spin	-αpf	лу-С	UIIU	inc						
Paraurgin.												

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

UNIT	V	Lecture Hrs:9
Data C	bjects and Attribute Types, Basic Statistical Descriptions of Data, Dat	a Visualization,
Measu	ring Data Similarity and Dissimilarity.	
Data V	Varehouse: Basic Concepts, Data Warehouse Modeling: Data Cube an	nd OLAP, Data
Wareh	ouse Design and Usage, Data Warehouse Implementation, Data Ge	eneralization by
Attrib	te-Oriented Induction.	-
Textb	ooks:	
1.	Gareth James Daniela Witten Trevor Hastie, Robert Tibshirani, An	Introduction to
	Statistical Learning with Applications in R, February 11, 20	13, web link:
	www.statlearning.com.	
	Mark Gardener, Beginning R The statistical Programming Language,	
3.	Han , Kamber, and J Pei, Data Mining Concepts and Technique	es, 3rd edition,
	Morgan Kaufman, 2012.	

Reference Books:

- 1. Sinan Ozdemir, Principles of Data Science, Packt Publishing Ltd Dec 2016.
- 2. Joel Grus, Data Science from Scratch, Oreilly media, 2015.

Online Learning Resources:

Course Code	21D53106	KNOWLEDGE REPRESENTATIONS	L	Τ	P	C
Semester	Ι	AND REASONING	3	0	0	3
		(21D53106)				
		PE - II				
Course Objec						
	stigate the ke notations.	ey concepts of knowledge representation (KR)	tech	nniqu	les a	and
	grate the K tional knowle	R view as a knowledge engineering appro	bach	to	mo	odel
• To introd	duce the study	y of ontologies as a KR paradigm and application	s of	onto	logi	es.
• To under	rstand various	s KR techniques.			•	
• To under	rstand process	s, knowledge acquisition and sharing of ontology	•			
		tudent will be able to				
Analyze	e and design l	knowledge based systems intended for computer	impl	eme	ntati	on.
 Acquire 	theoretical	knowledge about principles for logic-based rep	orese	ntati	ion a	and
reasonii	ng.					
• Ability	to understand	knowledge-engineering process				
• Ability	to implement	production systems, frames, inheritance systems	and	app	roac	hes
to hand	le uncertain o	r incomplete knowledge.				
• To desig	gn and implei	ment data warehouse.				
UNIT - I			Le	cture	e Hrs	s:9
		dge, Representation, Reasoning, Why knowledg	e re	prese	entat	ion
and reasoning,						
		nd, Representing knowledge in logic, Varieties	of lo	ogic,	Nai	me,
Type, Measure	s, Unity Ami	dst diversity				
UNIT - II			-	cture		
	-	ategories, Philosophical background, Top-le			-	
		, Defining abstractions, Sets, Collections, Types	and	Cat	egor	ies,
Space and Tim	e		-			
UNIT - III				cture		
U	-	s: Knowledge Engineering, Representing struc				
	ata, Object-	oriented systems, Natural language Semant	ics,	Lev	/els	of
representation			T			
UNIT – IV				cture		
		nd Situations, Classification of processes, Proce			oces	ses
		ocesses, Computation, Constraint satisfaction, C				
•		xts, Semantics of contexts, First-order reasoni	ng	in co	onte	xts,
Modal reasonin	ng in contexts	s, Encapsulating objects in contexts.				

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE)

UNIT - V		Lecture Hrs:9					
Knowledge So	Knowledge Soup: Vagueness, Uncertainty, Randomness and Ignorance, Limitations of logic,						
Fuzzy logic, N	on-monotonic Logic, Theories, Models and the world, Semior	tics Knowledge					
Acquisition an	d Sharing: Sharing Ontologies, Conceptual schema, Accommo	dating multiple					
paradigms, Re	elating different knowledge representations, Language patte	erns, Tools for					
knowledge acq	uisition						
Textbooks:							
1. Knowled	ge Representation logical, Philosophical, and Computational	Foundations by					
John F. S	owa, Thomson Learning.						
2. Knowledg	ge Representation and Reasoning by Ronald J. Brachman, Hect	tor J. Levesque,					
Elsevier.							
Reference Boo	Reference Books:						
1. Knowle	edge Representation and Reasoning 1st Edition - May 19, 2004	Authors:					
Ronald	Brachman Hactor Lavasqua						

Ronald Brachman, Hector Levesque

Online Learning Resources:

Course Code	21D53107	ARTIFICIAL INTELL	IGENCE LAB	L	Т	P	С	
Semester	Ι	(21D53107) 0 0 4						
	·							
Course Objecti	ves:							
To under	rstand the vari	ous characteristics of Intell	igent agents					
• To learn	the different s	earch strategies in AI						
• To learn	to represent k	nowledge in solving AI pro	oblems					
• To under	rstand the diffe	erent ways of designing sol	ftware agents					
 To know 	about the var	ious grammars of NLP.	-					
Course Outcon	nes (CO):							
Understa	and different ty	pes of agents.						
• Solve set	arching proble	ms using A*, Mini-Max al	gorithms.					
Create lo	ogical agents to	o do inference using first or	rder logic.					
• Use Bay	esian learning	for classification problems	S.					
Understa	and different p	hases of Natural Language	Processing.					
 Impleme 	ent visualizatio	n techniques in R.	-					
List of Experin	nents:	•						
1. Imp	plementation c	f DFS for water jug proble	m using LISP/PR	OLC	G			
2. Imp	plementation c	f BFS for tic-tac-toe proble	em using LISP/PI	ROLO)G/J	ava		
		f TSP using heuristic appro						
-		f Simulated Annealing Alg		P/PR	OLC)G		
		f Hill-climbing to solve 8-						
-		f Towers of Honoi Probler	0	OLO	G			
		f A* Algorithm using LIS						
		f Hill Climbing Algorithm						
		Expert System with forward						
1	L	Expert System with backwa	0 0	RVD)/PR	OLO	G	
	plement Monk	ey banana problem using L	LISP/PROLOG					
References:								
		ATA STRUCTURES, and	Idioms in Prolog	, Lisț	o and	Java	ì,	
George (G. Luger, Will	iam A. Stubblefield.						

Course Code	21D53108	SOFT COMPUTING LAB	L	Т	Р	С
Semester	Ι	(21D53108)	0	0	4	2
	· ·					
Course Objectives:	:					
• To give stude	ents knowledge	e of soft computing theories fundam	entals, i	.e.		
 Fundamental 	ls of artificial a	nd neural networks				
		y sets and fuzzy logic and genetic al	gorithm	s.		
Course Outcomes ((CO):					
Understand F	Fuzzy concepts					
• Learn neural	networks with	back propagation and without prepa	aration			
• Learn the ope	erators of genet	tic algorithms				
	risp partitions					
List of Experiment						
Week-1: PERCEPT						
		te number of inputs and outputs. T			ed inci	emen
learning algorithm u	intil no change	in weights is required. Output the fi	inal weig	ghts		
Week-2: ARTIFICI		NETWODVS				
		icial neural network without back p	ronagati	on		
1 0	-	icial neural network with back prop	1 0			
white a program to r	implement attr	fertal neural network with back prop	ugution.			
Week-3: FUZZY SE	ETS					
		omplement and Difference operation	ns on fuz	zzy sets	s. Also	create
fuzzy relation by Ca	artesian produc	et of any two fuzzy sets and perfor	m max-	min co	mposit	ion or
any two fuzzy relation	ons.					
Week-4: GENETIC						
Implement travelling	g sales person p	problem (TSP) using genetic algorit	hms.			
Weels 5. COVADIA	NCE					
Week-5: COVARIA		t and visualize giving an overview	of rolati	onchin	amon	a date
	1	ariance: variance (ANOVA), if dat		-		0
on iris data.				allegon		auto
on mp autu.						
Week-6: DATA FIT	TING BY REC	GRESSION				
		ulti-regression for a set of data poin	ts.			
-						
Week-7: CRISP MC Implement crisp par	DEL					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Week-8: PERCEPTRON RULE

Write a program to implement Hebb's rule Write a program to implement Delta rule.

Week-9: LOGIC GATES Write a program to implement logic gates.

Week-10: CLASSIFICATION

Implement SVM classification by Fuzzy concepts.

Reference Books:

1. D.K Prathikar, -Soft Computing, Narosa Publishing House, New Delhi, 2008.

Web References:

- 1. https://ldrp.ac.in/images/syllabus/BE-Computer/802- 3%20soft%20computing.pdf
- 2. http://itmgoi.in/download/ CSE% 20&% 20IT/Soft% 20Computing% 20IT% 2 0(IT-802).pdf
- 3. http://mirlab.org/jang/book/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Semester II (21D53201) 3 0 0 3 Course Objectives: •	Course Code	21D53201	KNOWLEDGE ENGINEERING & INTELLIGENT SYSTEMS	L	Т	Р	C
 To introduce the Fundamentals of Knowledge Engineering and Intelligent Systems. To provide Deep understanding of Knowledge Engineering and Intelligent Systems To educate about all aspect of advanced models of Knowledge Engineering and It applications. Course Outcomes (CO): Student will be able to CO1: Demonstrate the knowledge of fundamental elements and concepts related to Intelligen Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligent System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Modes of Intelligent Interaction, Getting Data from Experience. UNIT - III Lecture Hrs:9 Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence orchestration Healing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: 	Semester	II	(21D53201)	3	0	0	3
 To provide Deep understanding of Knowledge Engineering and Intelligent Systems To educate about all aspect of advanced models of Knowledge Engineering and It: applications. Course Outcomes (CO): Student will be able to CO1: Demonstrate the knowledge of fundamental elements and concepts related to Intelligen Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligent System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience. UNIT - II Lecture Hrs:9 Inplementing Intelligence: The Components of an Intelligence Implementation. The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence orchestration and Advances Adversaries and Abuse, Approaching You Own Intelligent Systems. Reference Books: 	Course Ob	ojectives:					
To educate about all aspect of advanced models of Knowledge Engineering and It: applications. Course Outcomes (CO): Student will be able to CO1: Demonstrate the knowledge of fundamental elements and concepts related to Intelligen Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligent Experiences Is Hard, Balancing Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Crehestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Crehestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Creation Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	• To in	troduce the F	Fundamentals of Knowledge Engineering and Intelligent S	yste	ms.		
applications. Course Outcomes (CO): Student will be able to CO1: Demonstrate the knowledge of fundamental elements and concepts related to Intelligen Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligent System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience. Lecture Hrs:9 Intelligence: Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Creating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Overview Of Intelligence or Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference	• To pr	ovide Deep u	understanding of Knowledge Engineering and Intelligent S	Syste	ems		
applications. Course Outcomes (CO): Student will be able to CO1: Demonstrate the knowledge of fundamental elements and concepts related to Intelligen Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligent System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience. Lecture Hrs:9 Intelligence: Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Creating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Overview Of Intelligence or Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference	• To e	ducate about	t all aspect of advanced models of Knowledge Engi	neer	ing	and	Its
 CO1: Demonstrate the knowledge of fundamental elements and concepts related to Intelligen Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligent System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Creating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). 							
Systems. CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experience. UNIT - II Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligence, The Intelligence Runtime, Where Intelligence Lives, Intelligence, Representing Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Course Ou	itcomes (CO): Student will be able to				
 CO2: Representation of knowledge and different reasoning techniques. CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligent System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligent Experiences. Is Hard, Balancing Intelligent Experience, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent, Telemetry. UNIT - IV Lecture Hrs:9 Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: 	CO1: Der	nonstrate the	knowledge of fundamental elements and concepts relat	ed to	o Int	ellig	ent
CO3: Demonstrate the fundamental and advanced modules of Knowledge Engineering especially with Searching methods. Lecture Hrs:8 UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. Lecture Hrs:8 UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience. Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulte	Syst	ems.					
with Searching methods. Lecture Hrs:8 UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. Lecture Hrs:8 UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experience, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1 Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	CO2: Repr	esentation of	knowledge and different reasoning techniques.				
UNIT - I Lecture Hrs:8 Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. Lecture Hrs:8 UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experiences. Lecture Hrs:9 Data from Experience, Verifying Intelligent Experience. Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligence, The Intelligence Greating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: State A. Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018).	CO3: Dem	onstrate the f	fundamental and advanced modules of Knowledge Engine	erin	g es	pecia	ılly
Approaching an Intelligent System Project: Introducing Intelligent Systems, Knowing When to Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experiences. Lecture Hrs:8 UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. Lecture Hrs:9 UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. Lecture Hrs:9 UNIT - V Lecture Hrs:9 Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Verview of Intelligence Orchestration, the Intelligence You Own Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: Reference Books:	with	Searching m	nethods.				
Use Intelligent Systems, A Brief Refresher on Working with Data, Defining the Intelligen System's Goals. UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experiences, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligence, The Intelligence Runtime, Where Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Intelligence: Overview of Intelligence, Representing Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	UNIT - I						
System's Goals. Lecture Hrs:8 UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experiences, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experiences. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creating Intelligence: Overview of Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Approachi	ng an Intellig	gent System Project: Introducing Intelligent Systems, Kn	owi	ng V	Vher	to
UNIT - II Lecture Hrs:8 Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experiences, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. Lecture Hrs:9 UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Use Intelli	gent System	s, A Brief Refresher on Working with Data, Defining	g the	e Int	ellig	ent
Intelligent Experiences: The Components of Intelligent Experiences, Why Creating Intelligence Experiences Is Hard, Balancing Intelligent Experiences, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experiences. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	System's G	oals.					
Experiences Is Hard, Balancing Intelligent Experiences, Modes of Intelligent Interaction, Getting Data from Experience, Verifying Intelligent Experience. UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	UNIT - II			Le	cture	e Hrs	:8
Data from Experience, Verifying Intelligent Experience. Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. Intelligence UNIT – IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. Intelligence, Organizing Intelligence, Organizing Intelligence, Organizing Intelligence, Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018).							
UNIT - III Lecture Hrs:9 Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT - IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT - V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Experience	es Is Hard, Ba	alancing Intelligent Experiences, Modes of Intelligent Inte	eract	ion,	Gett	ing
Implementing Intelligence: The Components of an Intelligence Implementation, The Intelligence Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT – IV Icecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. Icecture Hrs:9 UNIT – V Icecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: Ist edition (2018).	Data from	Experience,	Verifying Intelligent Experience.				
Runtime, Where Intelligence Lives, Intelligence Management, Intelligent Telemetry. UNIT – IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT – V Creating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent Systems 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:							
UNIT – IV Lecture Hrs:9 Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT – V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Implement	ing Intelliger	nce: The Components of an Intelligence Implementation,	The	Intel	llige	nce
Creating Intelligence: Overview of Intelligence, Representing Intelligence, The Intelligence Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT – V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Runtime, V	Where Intellig	gence Lives, Intelligence Management, Intelligent Teleme	try.			
Creation Process, Evaluating Intelligence, Machine Learning Intelligence, Organizing Intelligence. UNIT – V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	UNIT – IV	7		Le	cture	e Hrs	:9
Intelligence. UNIT – V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Creating I	ntelligence:	Overview of Intelligence, Representing Intelligence, 7	The	Intel	llige	nce
UNIT – V Lecture Hrs:9 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Creation	Process, Ev	valuating Intelligence, Machine Learning Intelligen	ce,	Org	aniz	ing
 Orchestrating Intelligent Systems: Overview of Intelligence Orchestration, the Intelligence Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: 							
 Orchestration Environment, Dealing with Mistakes, Adversaries and Abuse, Approaching You Own Intelligent System. Textbooks: Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: 							
Own Intelligent System. Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:							
Textbooks: 1. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:	Orchestrati	on Environn	nent, Dealing with Mistakes, Adversaries and Abuse, Ap	proa	ichir	ig Y	our
 Building Intelligent Systems A Guide to Machine Learning Engineering, Authors Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books: 	Own Intell	igent System	a				
Hulten, Geoff, Apress; 1st ed. edition (2018). Reference Books:							
Reference Books:		U		erin	g, Ā	utho	ors:
	Hu	lten, Geoff, A	Apress; 1st ed. edition (2018).				
Online Learning Resources:	Reference	Books:					
Unime Learning Kesources:	Online I -	aming Dece					
	Unine Le	arning Keso					

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code 21D53202	21D53202	DEEP LEARNING (21D53202)	L	Т	Р	С
Semester	II		3	0	0	3
Course Objectives:						
• To identify Convolutional Neural Networks models to solve Supervised Learning						
Problems						
• To design Auto encoders to solve Unsupervised Learning problems						
• To apply Long Shot Term Memory (LSTM) Networks for time series analysis classification problems.						
 To apply Classical Supervised Tasks for Image Denoising, Segmentation and Object 						
detection problems.						
Course Outcomes (CO): Student will be able to						
CO1: Identify Convolutional Neural Networks models to solve Supervised Learning Problems						
CO2: Design Autoencoders to solve Unsupervised Learning problems						
CO3: Apply Long Shot Term Memory (LSTM) Networks for time series analysis classification						
problems.						
CO4: Apply Classical Supervised Tasks for Image Denoising, Segmentation and Object						
detection problems.						
UNIT - I					e Hrs	
Introduction to Biological Neurons, Artificial Neural Networks, McCulloch Pitts Neuron,						
Learning processes, Perceptron, Perceptron convergence theorem, XOR problem, Multilayer						
	ack Propaga	tion (BP) Learning.	т			0
UNIT - II					Hrs	
Activation functions: Sigmoid, Linear, Tanh, ReLU, Leaky ReLU, SoftMax, loss functions, First						
and Second order optimization methods, Optimizers: Gradient Descent (GD), Batch						
Optimization, Momentum Based GD, Stochastic GD, AdaGrad, RMSProp, Adam; Introduction to Self Organizing Maps; Sequence to sequence models, RNN, Vanishing and Exploding						
Gradients, GRU, LSTM for NLP Applications.						
UNIT - III		or rule Applications.	Le	cture	Hrs	·9
-	al Neural Ne	twork, Building blocks of CNN, Transfer Learning;	-			
Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter						
sharing and tying, Dropout.						
UNIT - IV			Le	cture	e Hrs	:9
Autoencoders : Unsupervised Learning with Deep Network, Autoencoders, Stacked, Sparse,						
Denoising Autoencoders, Variational Autoencoders; Recent Trends in Deep Learning						
Architectures, Residual Network, Skip Connection Network, GoogleNet, DensenNet, SqueezNet,						
MobileNet, NasNet Models.						

UNIT - V		Lecture Hrs:9
Classical S	upervised Tasks with Deep Learning, Segmentation Unet, FCN	models, Object
Localizatio	n (RCNN), FRCNN with Applications; Transformer, Generati	ve Adversarial
Network, I	esign own neural network models on Image, vision and NLP Appl	ications
Textbooks		
1. Dec	p Learning- Ian Good felllow, YoshuaBenjio, Aaron Courville, Th	e MIT Press.
2. Ch	stopher Bishop, Pattern Recognition and Machine Learning, Sprin	ger,2006.
Reference	Books:	
1. Sin	on Haykin, "Neural Networks, A Comprehensive Foundation"	', 2nd Edition,
Ad	ison Wesley Longman, 2001.	
2. Dec	p Learning From Scratch: Building with Python from First Prin	nciples by Seth
We	dman published by O`Reilley	
3. Gro	kking Deep Learning by Andrew W. Trask published by Manning	Publications.
Online Le	rning Resources:	

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D55105	DATA ANALYTICS (21D55105)	L	Т	Р	С	
Semester	II	PE – III	3	0	0	3	
Course Ob	jectives:						
To unc	lerstand statis	stical approaches to learning and exploratory data analys	s.				
To imp	plement basic	machine learning tools to solve real world problems.					
To ide	ntify basic ap	proaches for feature extraction and feature generation.					
To ide	ntify paradig	ms that constitute recommendation engine.					
-): Student will be able to					
CO1: Und	erstand the id	leas of statistical approaches to learning					
CO2: Und	erstand the	significance of exploratory data analysis (EDA) in c	lata	scien	ice a	and	
appl	y basic tools	(plots, graphs, summary statistics) to perform EDA.					
CO3: Rec	ognize the ch	aracteristics of machine learning techniques that are use	ful to	o sol	ve re	eal-	
wor	ld problems						
		proaches used for feature generation and feature sele					
	· • •	rs, Decision Trees, and Random Forests) and to apply t	he te	echni	ques	; in	
11	ications						
	• 1	ain fundamental mathematical and algorithm paradigms					
		engine. Build their own recommendation system	usi	ng e	ex1st	ıng	
	ponents.		т			0	
UNIT - I	What is D	Arte Crience 2 Die Dete and Dete Crience Irone and esti-		cture			
		ata Science? Big Data and Data Science hype and getting	U 1		•	- ·	
•	ifferent phase	n, Current landscape of perspectives, Skill sets, Life	e cy	cie (лр	'ala	
UNIT - II			La	cture	Uro	0	
	v Doto Analy	sis and the Data Science Process: Basic tools (plots, grap					
		ilosophy of EDA, The Data Science Process, Case S					
		n), Three Basic Machine Learning Algorithms: Linea					
		N), k-means.		Siest	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	к	
UNIT - III	<u> </u>	it, k mount.	Lect	ure I	Hrs·1	0	
		earning Algorithm and Usage in Applications: Motiva					
Filtering Spam, Why Linear Regression and k-NN are poor choices for Filtering Spam, Naive							
Bayes and why it works for Filtering Spam, Data Wrangling: APIs and other tools for scrapping							
		ation and Feature Selection (Extracting Meaning From I					
		omer) retention, Feature Generation (brainstorming,				-	
		imagination).					

UNIT – IV Lecture Hrs:10
Feature Selection algorithms: Filters; Wrappers; Decision Trees; Random Forests,
Recommendation Systems: Building a User-Facing Data Product: Algorithmic ingredients of a
Recommendation Engine, Dimensionality Reduction, Singular Value Decomposition, Principal
Component Analysis, Exercise: build your own recommendation system.
UNIT – V Lecture Hrs:9
Data Visualization: Basic principles, ideas and tools for data visualization, Case study on
industry projects, Exercise: create your own visualization of a complex dataset, Data Science and
Ethical Issues: Discussions on privacy, security, ethics, A look back at Data Science, Next-
generation data scientists.
Textbooks:
1. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline.
O'Reilly, 2014.
2. Jure Leskovek, AnandRajaraman and Jerey Ullman. Mining of Massive Datasets,
Cambridge University Press, 2014.
Reference Books:
1. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2013.
2. Foster Provost and Tom Fawcett. Data Science for Business: What You Need to Know
about Data Mining and Data-analytic Thinking. O'Reilly, 2013.
3. Trevor Hastie, Robert Tibshirani and Jerome Friedman. Elements of Statistical Learning,
Second Edition. Springer, 2009.
4. Avrim Blum, John Hopcroft and Ravindran Kannan. Foundations of Data Science.2018.
5. Mohammed J. Zaki and Wagner Miera Jr. Data Mining and Analysis: Fundamental
Concepts and Algorithms. Cambridge University Press, 2014.
6. Jiawei Han, MichelineKamber and Jian Pei. Data Mining: Concepts and Techniques,
Third Edition. Morgan Kaufmann, 2011.
Online Learning Resources:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D53203	PATTERN RECOGNITION (21D53203)	L	Т	Р	С	
Semester	II	PE – III	3	0	0	3	
			U	Ŭ	Ŭ	-	
Course Obje	ectives:						
• To u	nderstand the	PR importance in various real time applications					
• To u	nderstand the	e basic model and fundamental steps of PR system					
		e use of different classifiers/algorithms/tech					
		rent methods for combining classifiers.					
		roduction to various clustering algorithms					
^		Student will be able to					
	, ,	gms for PR problems					
-		as using NN, Bayes, HMM, Decision trees and SVM	class	sifier	S		
		classifiers for certain PR problems					
		en supervised and unsupervised classifiers.					
		ion : Handwritten Digit Recognition					
UNIT - I			Leo	cture	Hrs:	9	
Introduction	to Pattern F	Recognition: Data Sets for Pattern Recognition, Diff	ferer	nt Pa	radig	gms	
for Pattern I						-	
Pattern Rep	resentation: I	Data Structures for Pattern Representation, Representa	atior	n of (Clust	ers,	
Proximity N	leasures, Size	e of Patterns, Abstractions of the Data Set, Feature, F	eatu	re Se	electi	on,	
Evaluation of	of Classifiers,	, Evaluation of Clustering					
UNIT - II					Hrs:		
		ed Classifiers: Nearest Neighbour Algorithm, Vari					
		Nearest Neighbour Algorithm for Transaction Data	abas	es, l	Effici	ent	
		ion, Prototype Selection,					
		Theorem, Minimum error rate classifier, Estimation		Prob	abilit	ies,	
-	with the NN	C, Naive Bayes Classifier, Bayesian Belief Network.					
UNIT - III					Hrs:		
		s: Markov Models for Classification, Hidden M	Mark	OV	Mod	els,	
	-	Ms, Classification of Test Patterns.					
		iction, Decision Trees for Pattern Classification,					
	ees, Splitting	g at the Nodes, Over fitting and Pruning, Example of	of D	ecisi	on T	ree	
Induction.			_				
UNIT - IV					Hrs:		
		s: Introduction, Linear Discriminant Functions, Lea		<u> </u>			
Discriminant Function, Neural Networks, SVM for Classification, Linearly Separable Case, Non-linearly Separable Case.							
	· 1				• •	l	
		ers: Introduction, Methods for Constructing Ensemble				ers,	
Methods for	Combining	Classifiers, Evaluation of Classifiers, Evaluation of C	Just	terin	g		

UNIT - V Lecture Hrs:8							
Clustering: Clustering and its Importance, Hierarchical Algorithms, Partitional Clustering,							
Clustering Large Data Sets, An Application to Handwritten Digit Recognition: Description of							
the Digit Data, Pre-processing of Data, Classification Algorithms, Selection of Representative							
Patterns.							
Textbooks:							
1. Pattern Recognition an Introduction, V. Susheela Devi M. Narasimha Murty,							
University Press (India) Pvt Ltd, 2011.							
2. Pattern Recognition, Segrios Theodoridis, Konstantinos Koutroumbas, Fourth Edition,							
Academic Press, 2009							
Reference Books:							
1. Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, John Wiley, 2002.							
2. Andrew Webb, "Statistical Pattern Recognition", Arnold publishers, London, 1999.							
3. C.M.Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.							
4. Menahem Friedman, Abraham Kandel, "Introduction to Pattern Recognition							
Statistical, Neural and Fuzzy Logic Approaches", World Scientific Publishing Co. Ltd,							
2000.							
5. Robert J.Schalkoff "Pattern Recognition Statistical, Structural and Neural							
Approaches", John Wiley & Sons Inc., New York, 1992.							
Online Learning Resources:							

Course Code	21D53204	BIO INSPIRED COMPUTING (21D53204)	L	Т	Р	С	
Semester	II	PE – III	3	0	0	3	
	l						
Course O	bjectives:						
1. Introd	uce the basic	c of bio inspired computing and its application area	.s pa	rticu	larly	' to	
	morphic syste						
): Student will be able to					
		be able to apply brain-inspired neural network techni	que	s for	solv	ing	
	world proble						
		be able to apply nature-inspired evolutionary comp	utat	ion (gene	etic	
-		ques for solving optimization problems.	<i>.</i>				
	-	eness of the emerging area of neuromorphic systems	(100	cludi	ng th	ie1r	
	erlying silicor	n implementation techniques), and the way forward.	T.	- 4	TT		
UNIT - I		Artificial Evolution Constin Domessentation	1		Hrs		
	• •	s: Artificial Evolution, Genetic Representations tems: Cellular Automata, Modelling with Cellular				•	
	•	putation, Artificial life, Complex Systems, Analysis	•		·		
Cellular Sy	-	ditation, Artificial me, Complex Systems, Analysis	anu	Synt	nesis	, 01	
UNIT - II			Ie	cture	Hrs	•9	
	vstems: Bio	logical Nervous Systems, Artificial Neural Net					
		Signal Encoding, Synaptic Plasticity, Unsuper-					
		einforcement Learning.	150	* L	<i></i>		
UNIT – II			Le	cture	Hrs	:8	
		ms: Potential Advantages of Developmental	Rep	orese	ntati	on,	
-	•	nental Systems, Evolution and Development, De	-				
		nental Systems, Evolutionary Rewriting System					
Developme	ental Progran	ns and Processes.					
UNIT – IV	V		Le	cture	e Hrs	:8	
Immune S	Systems: Im	mune Systems work, Constituents of Biological In	ımu	ne S	ystei	ms,	
Lessons fo	or Artificial	Immune Systems, Algorithms and Applications	, Sł	nape	Spa	ice,	
-	-	orithm, Clonal Selection Algorithm. Behavioral Sy					
-		Artificial Intelligence, Behavior Based Robotics,		-			
		ogical Models, Robot Learning, Evolution of Beha			-		
	-	Behavioral Systems, Coevolution of Body and C	Cont	rol,	Tow	ard	
	duction, Sim	ulation and Reality.	Ŧ				
UNIT – V					e Hrs		
Collective Systems: Self Organiztion, Ant Colony Optimization, Particle Swarm							
Optimization, Swarm Robotics, Coevolutionary Dynamics: biological Models, Artificial							
Evolution of Competing Systems, Artificial Evolution of Cooperation.							

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Textbooks:

- 1. Bio- Inspired Artificial Intelligence theories, methods, and technologies, by Dario Floreano and Claudio Mattiussi, PHI publication, 2010.
- 2. Flake, Gary William. The Computational Beauty of Nature. MIT Press, 1998.

Reference Books:

Online Learning Resources:

Course Code	21D53205	INTRUSION DETECTION SYSTEMS (21D53205)	L	Т	Р	С			
Semester	II	PE – IV	3	0	0	3			
Course Ob	Course Objectives:								
• To unde	• To understand when, where, how, and why to apply Intrusion Detection tools and								
techniqu	es in order to	improve the security posture of an enterprise.							
 Apply kit 	nowledge of	the fundamentals and history of Intrusion Detection	n or	der t	o av	oid			
common	pitfalls in th	e creation and evaluation of new Intrusion Detection	Sys	tems	5.				
• Analyze	intrusion det	ection alerts and logs to distinguish attack types from	n fal	se al	arms	5.			
• To be ab	le to analyze	the basic Firewall mechanism.							
Course Ou	tcomes (CO)	: Student will be able to							
CO1: Acqu	ire knowledg	ge of Intrusion Detection.							
CO2: Abil	ity to improv	ve the security posture of any enterprise by applyi	ng t	he ii	ntrus	ion			
mech	anism.								
		new Intrusion Detection Systems in the lower level.							
	ify attack typ	bes from false alarms.							
UNIT - I					Hrs				
		etection: Audit, Concept and definition, Internal and							
		d types of IDS, Information sources Host based infor	rmat	ion s	sourc	es,			
	sed informati								
UNIT - II					Hrs:				
		system and Snort: Network IDs protocol based II							
		king about intrusion. A model for intrusion an							
-		sponse Process – IDS ad IPS response Phases Forer			-				
		on Scenarios, Installing Snort, Running Snort on M	-						
		and Line Options. Step-By-Step Procedure to Con	pile	anc	Ins	tall			
	ion of Snort	Files, Snort Modes Snort Alert Modes.	.		T 1	0			
UNIT - III					Hrs:1				
		D: Rule Headers, Rule Options, the Snort Configu							
		and Output Modules, Using Snort with MySQL - U							
		Agent development for intrusion detection - Archite	ectur	e mo	baels	OI			
IDs and IPs	•		r 4		Hrs:1	0			
UNIT - IV	traduction								
		and Technologies: Why Internet Firewalls - Internet Firewalls - Packets and Protocols - What Doe							
	Like? - IP - Protocols Above IP - Protocols Below IP - Application Layer Protocols - IP Version - Non-IP Protocols - Attacks Based on Low-Level Protocol Details - Firewall								
Technologies - Some Firewall Definitions - Packet Filtering - Proxy Services - Network									
Technologie	es - Some F	irewall Definitions - Packet Filtering - Proxy Serv	vices	: _ N	Jetwa	ork			

UNIT - V	Lecture Hrs:9				
Building Firewalls: Firewall Architectures - Firewall Design - Packet Filtering - Proxy					
Systems - Bastion Hosts - UNIX and Linux Bastion Hosts 176 - Windows N	T and Windows				
2000 Bastion Hosts.					
Textbooks:					
1. RafeeqRehman, " Intrusion Detection with SNORT, Apache, My	SQL, PHP and				
ACID," 1st Edition, Prentice Hall, 2003.					
2. Carl Endorf, Eugene Schultz and Jim Mellander"Intrusion Detection	& Prevention",				
1st Edition, Tata McGraw-Hill, 2004.					
3. Elizabeth D. Zwicky, Simon Cooper & D. Brent Chapman, "Br	uilding Internet				
Firewalls" O'Reilly.					
Reference Books:					
1. Christopher Kruegel, Fredrik Valeur, Giovanni Vigna: "Intrusion	Detection and				
Correlation Challenges and Solutions", 1st Edition, Springer, 2005.					
2. Stephen Northcutt, Judy Novak : "Network Intrusion Detection", 3r	d Edition, New				
Riders Publishing, 2002.					
3. T. Fahringer, R. Prodan, "A Text book on Grid Application De	evelopment and				
Computing Environment". 6th Edition, Khanna Publihsers, 2012.					
Online Learning Resources:					

Code Semester		(21D53206)	L	Т	Р	С		
Schlester	II	$\frac{(21D33200)}{PE - IV}$	3	0	0	3		
1								
Course Obje	ectives [.]							
· · · · · ·		uses on development of algorithms and techniques	to	analı		and		
-		orld around us.	5 10		yze e	unu		
1		anding of the fundamental concepts related to mu	11ti /	limo	ncio	nal		
		feature extraction, visual geometric model			chas			
optimizati	0,	reature extraction, visual geometric model	mg,	sic	Chas	suc		
-		concents is necessary in this field to explore or	d a	ontri	huta	to		
-		concepts is necessary in this field, to explore an	iu c	onur	Dute	10		
		evelopments in the field of computer vision.): Student will be able to						
		(plots, graphs, summary statistics) to carry out C	0.000		Vie	ion		
tasks.		(plots, graphs, summary statistics) to carry out C	omt	outer	V 18.	IOII		
CO2: Descri	ibe the Con	puter Vision Process and how it works.						
		other tools to build Computer Vision models.						
		er Vision in different case studies.						
•	-	ine learning algorithms (Linear Regression, k-Ne	ares	t Ne	ighb	ors		
		, Naive Bayes) for Computer Vision tasks.			U			
UNIT - I			Lee	cture	Hrs	:9		
Digital Imag	ge Formati	on and low-level processing: Overview and	Stat	e-of-	the-a	art,		
Fundamental	ls of Imag	e Formation, Transformation: Orthogonal, Euc	lide	an,	Affi	ne,		
		r Transform, Convolution and Filtering, Image						
Restoration,	Histogram	Processing, introduction to computer vision.						
UNIT - II			Lec	ture	Hrs:	10		
Feature Extr	raction: Sha	pe, histogram, color, spectral, texture, Feature a	naly	vsis,	feat	ure		
vectors, dista	ance /simila	arity measures, data preprocessing, Edges - Cann	y, L	OG,	, DC) G;		
Scale-Space	Analysis- I	mage Pyramids and Gaussian derivative filters, G	abor	· Filt	ers a	ind		
DWT; Line	detectors (I	Hough Transform), Orientation Histogram, SIFT,	SU	RF,	GLC)H,		
Corners - Ha	urris and He	ssian Affine.						
UNIT - III			Lee	cture	Hrs	:9		
Depth estimation	ation and M	ulti-camera views: Perspective, Homography, Rec	tific	atior	ı, DI	LT,		
		ruction framework; Binocular Stereopsis: Camer						
Geometry; A	Geometry; Auto-calibration.							
Image Segmentation: Region Growing, Edge Based approaches to segmentation, Graph-								
Cut, Mean-Shift, MRFs, Texture Segmentation; Object detection.								
UNIT - IV		_ v	Lee	cture	Hrs	:9		
Motion Analysis: Optical Flow, KLT, Spatio-Temporal Analysis, Background								
	Subtraction and Modeling, Dynamic Stereo; Motion parameter estimation.							

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

UNIT - V	Lecture Hrs:9					
Shape from X: Light at Surfaces; Use of Surface Smoothness Constraint; Shape from						
Texture, color, motion and edges Albedo estimation; Photometric Stereo	; Phong Model;					
Reflectance Map.						
Textbooks:						
1. Richard Szeliski, Computer Vision: Algorithms and Applications,	Springer-Verlag					
London Limited 2011.						
2. Computer Vision: A Modern Approach, D. A. Forsyth, J.	Ponce, Pearson					
Education, 2003.						
3. 3. Richard Hartley and Andrew Zisserman, Multiple View Geome	try in Computer					
Vision, Second Edition, Cambridge University Press, March 2004.						
Reference Books:						
1. R.C. Gonzalez and R.E. Woods, Digital Image Processing, Ac	ddison- Wesley,					
1992.						
2. K. Fukunaga; Introduction to Statistical Pattern Recognition,	Second Edition,					
Academic Press, Morgan Kaufmann, 1990.						

Online Learning Resources:

Course Code	21D53207	NATURAL LANGUAGE PROCESSING (21D53207)	L	Т	Р	С		
Semester	II	$\mathbf{PE} - \mathbf{IV}$	3	0	0	3		
			-	-				
Course Ob	jectives:							
	•	iven word with basic language processing feature	res					
		s the current and likely future performance of se		1 NI	Р			
applicat		F						
		be briefly a fundamental technique for processin	g lai	າງແລ	ge fo	or		
		ch as morphological processing, parsing, word so	-	-8	8	~~		
	guation etc.							
	-	these techniques draw on and relate to other area	is of	Cor	nnut	er		
Science		and the second quee draw on and relate to other area		001	nput	••		
): Student will be able to						
		rent and likely future performance of several NL	P at	oplic	atio	ns.		
		ese techniques draw on and relate to other are	-	-				
-	ence.	1			1			
		cessing language for subtasks						
	-	e processing features.						
UNIT - I	00		Le	cture	e Hrs	s:9		
Introducti	on to NLP :	Knowledge in Speech and Language Processin	g	Info	rmat	ion		
		odels and Algorithms, Language : N-gram Lan	-					
		Iodels, Thought and Understanding - The State						
the Near te	rm Future							
UNIT - II			Le	cture	e Hrs	s:9		
Speech Ta	agging and	Transducers: Part of Speech Tagging, Pro	babi	lity	Basi	ics:		
Hidden M	larkov - Ma	aximum Entropy Models, Word Transducer	s: I	Finit	e St	ate		
Transducer	s - Orthogra	phic Rules - Finite-State Transducers Combinin	ıg F	ST I	Lexi	con		
Rules, Lex	icon Free FS	Ts: The Porter Stemmer Human Morphological	Pro	cessi	ng.			
UNIT - III	[Le	cture	e Hrs	s:9		
		x Parsing: Grammar Formalisms - Tree Banks						
Context Fr	Context Free Grammars - Features and Unification, Statistical parsing: probabilistic							
CFGs (PCI	FGs) - Lexica	alized PCFG						
UNIT - IV			Le	cture	e Hrs	s:9		
Semantic A	Semantic Analysis: Representing Meaning – Semantic Analysis - Lexical Semantics –							
Computatio	Computational Lexical Semantics - Supervised – Dictionary based and Unsupervised							
Approache	s - Composit	tional Semantics - Semantic Role Labelling - S	ema	ntic	Pars	ing		
- Discours	e Analysis.							

UNIT - V	Lecture Hrs:9
Case Studies and Applications: Machine Translation Language	Similarities and
Differences - Named Entity Recognition and Relation Extraction- II	E using sequence
labelling-Machine Translation (MT) - Basic issues in MT-Statistical t	ranslation - Word
Alignment - Phrase-based Translation – Question Answering	
Textbooks:	
1. Daniel Jurafsky and James H. Martin, Martin Speech and Lang	guage Processing,
2008, 2nd Edition, Prentice Hall.	
2. Christopher D. Manning and HinrichSchuetze, Foundatio	ns of Statistical
Natural Language Processing, 1999, MIT Press.	
Reference Books:	
1. James Allen, Natural Language Understanding, 1994, 2nd	Edition, Addison
Wesley.	
2. Steven Bird, Ewan Klein and Edward Loper, Natural Languag	e Processing with
Python, O'Reilly Media, 2009, 1st Edition.	-
Online Learning Resources:	

Course Code	21D53208	KNOWLEDGE ENGINEERING & INTELLIGENT SYSTEMS LAB	L	Т	Р	С	
Semester	II	(21D53208)	0	0	4	2	
Course Ob	jectives:						
 Determine 	ne which typ	e of intelligent system methodology wou	ıld be	suita	able f	for a	
given ty	pe of applicat	ion problem.					
• Demons	strate, in the f	orm of a major project work, the ability to	desig	n and	d dev	elop	
an intell	igent system	for a selected application.					
	tcomes (CO)						
11.		elligence techniques to solve different prob					
		gence technique(s) to design and develop	intellig	gent s	syster	ns.	
List of Exp	eriments:						
1. Stuc	ly of PROLO	G. Write the following programs using PR	OLOG	r			
2. Writ	te a program t	o solve 8 queens problem					
3. Solve any problem using depth first search.							
4. Solv	e any probler	n using best first search.					
5. Solv	e 8-puzzle pr	oblem using best first search					
6. Solve Robot (traversal) problem using means End Analysis.							
7. Solv	7. Solve traveling salesman problem.						
References	•						
1. Arti	ficial Intellige	ence: A Modern Approach,. Russell & No	orvig.	1995	, Pre	ntice	
Hall	•						
	v	ence, Elain Rich and Kevin Knight, 1991, 7					
	0	ence-A modern approach, Staurt Russel and	d peter	norv	vig, 1	998,	
PHI							
		ence, Patrick Henry Winston:, 1992, Additi	on We	esley	3 Ed	••	
	Introduction to prolog.						
Online learning resources/Virtual labs:							

Course Code	21D53209 DEEP LEARNING LAB	L	Т	Р	С			
Semester	II	(21D53209)		0	4	2		
Course Objectives:								
• To imp	lement Multil	ayer Feed Backward Neural network on MNIT	' digi	ts da	taset			
		LSTM, BiLSTM Networks for time series ana	lysis	class	sifica	ation		
probler								
	-	ders to solve Unsupervised Learning problems	Sam	nonto	tion	and		
	detection prol	al Supervised Tasks for Image Denoising,	Segn	nenta	uion	and		
v	utcomes (CO							
		ayer Feed Backward Neural network on MNIT	digit	s dat	aset			
		TM, BiLSTM Networks for time series ana				ation		
-	olems.							
	•	lers to solve Unsupervised Learning problems	a					
		ical Supervised Tasks for Image Denoising,	Segr	nenta	tion	and		
5	ect detection p							
LIST OF	EXPERIME	NTS:						
1. Implement perceptron learning algorithm and attempt to solve two input (i) AND gate (ii) OR Gate (iii) EXOR gate problems.						AND		
	. Design and implement a perceptron learning algorithm and attempt to solve XOF problem							
-	mplement a Multilayer Feed Backward Neural network algorithm on MNIT ligits dataset.							
	Build your own Recurrent networks and Long short-term memory networks or IMDB movie reviews classification data.							
	0	mplement a BiLSTM and BERT on given a product review dataset to review rating from 1 to 5 classes						
6. De	sign and imple	nplement Autoencoders for credit card fraud detection.						
		n and implement a Convolutional Neural Network for image classification Fashion-MNIST dataset.						
-	Implement a VGG19 model for image classification with and without Transfer Learning on Grocery dataset.							

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> <u>(ARTIFICIAL INTELLIGENCE)</u>

- 9. Implement a U-Net convolutional neural network model on segmentation of electron microscopic (EM) images of the brain dataset.
- 10. Implement a FRCNN algorithm for object detection on small object dataset.

References:

- 1. Deep Learning- Ian Goodfelllow, YoshuaBenjio, Aaron Courville, The MIT Press.
- 2. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Simon Haykin, "Neural Networks, A Comprehensive Foundation", 2nd Edition, Addison Wesley Longman, 2001.

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Semester III (OPEN ELECTIVE) 3 0 0 3	Course Code	21D50301	SOFTWARE DEVELOPMENT AND IT SERVICES-ORDER	L	Т	Р	С
	Semester	III	(OPEN ELECTIVE)	3	0	0	3

Course objectives:

- Take user stories and translate them into functioning web applications using HTML, CSS, and JavaScript
- Evaluate alternative approaches to software implementations
- Work through coding issues with analytical debugging techniques

Course Outcomes:

UNIT – I:

The Big Picture: A Snapshot of Devops Culture, The Evolution of Culture, The Value of the Story, Illustrating Devops with Stories, What is Devops? The Devops equation, A History of Devops, Developer as Operator, The Advent of Software Engineering, The Advent of Proprietary Software and Standardization, The Age of the Network, The Beginnings of a Global Community, The Age of Applications and the Web, The Growth of Software Development Methodologies, Open Source Software, Proprietary Services, Agile Infrastructure, The Beginning of devopsdays, The Current State of Devops.

Foundational Terminology and Concepts: Software Development Methodologies, Operations Methodologies, Systems Methodologies, Development, Release, and Deployment Concepts, Infrastructure Concepts, Cultural Concepts

Devops Misconceptions and Anti-Patterns: Common Devops Misconceptions, Devops Anti-Patterns, The Four Pillars of Effective Devops

UNIT – II:

Collaboration: Individuals Working Together, Defining Collaboration, Individual Differences and Backgrounds, Opportunities for Competitive Advantage, Mentorship, Introducing Mindsets, Mindsets and Learning Organizations, the Role of Feedback, Reviews and Rankings, Communication and Conflict Resolution Styles, Communication Context and Power Differentials, Empathy and Trust, Humane Staffing and Resources, Effective Collaboration with Sparkle Corp.

Collaboration: Misconceptions and Troubleshooting: Collaboration Misconceptions, Collaboration Troubleshooting.

UNIT – III:

Affinity: From Individuals to Teams, What Makes a Team, Teams and Organizational Structure,

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (ARTIFICIAL INTELLIGENCE)

Finding Common Ground Between Teams, Improving Team Communication, Case Study: United States Patent and Trademark Office, Bene[‡]ts of Improved Affinity, Requirements for Affinity, Measuring Affinity

Misconceptions and Troubleshooting: Affinity Misconceptions, Affinity Troubleshooting.

UNIT – IV:

Overview of Software, <u>Automation</u>, <u>Monitoring</u>, <u>Metrics</u>, <u>Logging</u>, <u>Alerting</u>, <u>Events</u>, <u>Evolution</u> <u>of the Ecosystem</u>.

Tools: Accelerators of Culture, What Are Tools? Irrelevance of Tools, Selection of Tools, Auditing Your Tool Ecosystem, Case Studies, Examining Etsy, Motivations and Decision-Making Challenges.

UNIT – V:

Scaling:Inflection Points, Understanding Scaling, Organizational Structure, Team Flexibility, Organizational Lifecycle, Complexity and Change, Scaling for Teams.

Case Studies: Growing and Scaling Teams, Job Postings and Recruitment Issues, Developing Individuals and Teams, Team Scaling and Growth Strategies, Managing Conflict, Scaling for Organizations.

Misconceptions and Troubleshooting: <u>ScalingMisconceptions</u>, <u>ScalingTroubleshooting</u>.

TEXT BOOKS:

1. Effective DevOps Building a Culture of Collaboration, Annity, and Tooling at Scale, Jennifer Davis and Ryn Daniels

2. DevOpsfor Developers, Michael Hüttermann