Jawaharlal Nehru Technological University Anantapur College OF Engineering Anantapur (Autonomous) Course Structure for Master of Technology (Computer Science) (w.e.f 2015-16)

I Year I Semester

Code	Subject	L	T/P/D	С
15D51101	Advanced Data Structures	4	0	4
15D51102	Advanced Data Bases	4	0	4
15D51103	Advances in Software Engineering	4	0	4
15D51104	Advanced Network Technologies	4	0	4
	Elective –I	4	0	4
15D51105	1. Distributed and Cloud Computing			
15D51106	2. Distributed Operating Systems			
15D51107	3. Parallel Computing			
	Elective –II	4	0	4
15D51108	1. 3D Technologies			
15D51109	2. Computer Vision			
15D51110	3. Computational Intelligence			
15D51111	Data Structures & Data Bases Lab	0	4	2
	Total	24	4	26

I Year II Semester

Code	Subject	L	T/P/D	С
15D51201	Service Oriented Architecture	4	0	4
15D51202	Natural Language Processing	4	0	4
15D51203	Software Quality Assurance and Testing	4	0	4
15D51204	Advanced Data Mining	4	0	4
	Elective –III	4	0	4
15D51205	1. Cyber Security			
15D51206	2. Soft Computing			
15D51207	3. Information Retrieval Systems			
	Elective –IV	4	0	4
15D51208	1.Big Data Analytics			
15D51209	2. Digital Image Processing			
15D51210	3 Pattern Recognition			
15D54201	Research Methodology (Audit Course)			
15D51211	Service Oriented Architecture & Software Testing La	0	4	2
	Total	24	4	26

III & IV Semester

Code	Subject	L	Р	С
15D51301	III Semester Seminar - I	0	4	2
15D51401	IV Semester Seminar - II	0	4	2
15D51302	III & IV Semester Project Work			44
	Total	0	8	48

Note: All End Examinations (Theory and Practical) are of three hours duration.

T-Tutorial L-Theory P-Practical/Drawing C-Credits

JNTUA College Of Engineering (Autonomous):: Ananthapuramu

Department of Computer Science & Engineering

M.Tech. I– ISem (CS)

Т	Р	С
4	0	4

15D51101: Advanced Data Structures

Objectives:

- To Strengthen the ability to identify and apply the suitable data structure for the given real world problem
- To develop a base for advanced computer science study.
- Study the advanced data structures & know the application areas
- To get acquaintance with some of the advanced algorithms.

UNIT-I

Introduction: Algorithm, Algorithm Specification, Performance Analysis, Randomized Algorithms,

Divide- And- Conquer: General Method, Binary search, Finding the Maximum and Minimum, Merge sort, Quick Sort, Selection.

UNIT-II:

Stacks and Queues: Templates in C++, The Stack Abstract Data type, The Queue Abstract Data Type, Evaluation of Expressions.

Linken Lists: Singly Linked Lists, Representing Lists in C++, Circular Lists, Linked Stacks and Queues.

UNIT-III:

HEAP STRUCTURES: Min/Max Heap, Binary Heap, Applications of Priority Queue, d- Heap, Leftist Heap, Skew Heap, Binomial Queues,

UNIT IV:

Trees: Preliminaries, Binary Trees, Search Tree ADT- Binary Search Trees, AVL Trees, Splay Trees, Trees Traversals, B- Tree.

UNIT-V:

Graphs: The Graphs Abdtract Data Types, Elementary Graph Operations: Depth First Search, Breadth Components, Spanning Trees. Minimum Cost Spanning Trees.

NP- Hard and NP- Complete Problems: Basic Concepts, Cooks Theorem, NP-Hard Graph Problems, NP- Hard Scheduling Problem, NP-Hard CODE generation problem.

Text Books:

- 1. Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, GALGOTIA.
- 2. Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson.
- 3. Fundamentals of Data structures in C++ Sahni, Horowitz, Mehta, Universities Press, 2nd Edition.

M.Tech. I– I Sem (CS)		Т	Р	С
		4	0	4

15D51102: Advanced Databases

Objectives:

- Understand and describe current and emerging database models and technologies.
- Study the concepts of parallel and distributed databases
- Able to describe object and object relational databases
- Explore the databases for XML, Mobile and multimedia

UNIT I: PARALLEL AND DISTRIBUTED DATABASES

Database System Architectures: Centralized and Client-Server Architectures – Server System Architectures – Parallel Systems- Distributed Systems – Parallel Databases: I/O Parallelism – Inter and Intra Query Parallelism – Inter and Intra operation Parallelism – Distributed Database Concepts - Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing – Three Tier Client Server Architecture-Case Studies.

UNIT II: OBJECT AND OBJECT RELATIONAL DATABASES

Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies.

UNIT III: XML DATABASES

XML Databases: XML Data Model – DTD - XML Schema - XML Querying – Web Databases – JDBC – Information Retrieval – Data Warehousing – Data Mining

UNIT IV: MOBILE DATABASES

Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control -Transaction Commit Protocols- Mobile Database Recovery Schemes

UNIT V: MULTIMEDIA DATABASES

Multidimensional Data Structures – Image Databases – Text/Document Databases- Video Databases – Audio Databases – Multimedia Database Design.

Text Books

1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education/Addison Wesley, 2007.

2.Henry F Korth, Abraham Silberschatz, S. Sudharshan, "Database System Concepts", Fifth Edition, McGraw Hill, 2006

3. V.S.Subramanian, "Principles of Multimedia Database Systems", Harcourt India Pvt Ltd., 2001.

4. Vijay Kumar, "Mobile Database Systems", John Wiley & Sons, 2006

References:

- 1. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design, Implementation and Management", Third Edition, Pearson Education, 2007.
- 2. C.J.Date, A.Kannan and S.Swamynathan,"An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.

JNTUA College of Engineering (Autonomous)::Ananthapuramu

Department of Computer Science & Engineeting

M.Tech. I – I Sem.(CS)	Т	Р	С
	4	0	4

15D51103: Advances in Software Engineering

Objectives:

The course should enable the student

- a broad and critical understanding of all the processes for engineering high quality software and the principles, concepts and techniques associated with software development
- an ability to analyze and evaluate problems and draw on the theoretical and technical knowledge to develop solutions and systems
- a range of skills focused on the analysis of requirements, design and implementation of reliable and maintainable software, with strong emphasis on engineering principles

applied over the whole development lifecycle

• an awareness of current research in software development, the analytical skills and research techniques for their critical and independent evaluation and their application to new problems.

Unit - I :

Software and Software Engineering: The Nature of Software, The Unique Nature of WebApps, Software Engineering, Software Process, Software Engineering Practice, Software Myths.

Process Models: A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Terminology, Product and Process.

Unit – II:

Understanding Requirements: Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements.

Requirements Modeling: Requirements Analysis, Scenario-Based Modeling, UML Models That Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling.

Unit – III :

Design Concepts: Design within the Context of Software Engineering, Design Process, Design Concepts, The Design Model.

Architectural Design: Software Architecture, Architectural Genres, Architectural Styles, Architectural Design, Assessing Alternative Architectural Designs, Architectural Mapping Using Data Flow.

Component-Level Design: What is a Component, Designing Class-Based Components, Conducting Component-Level Design, Component-Level Design for WebApps, Designing Traditional Components, Component-Based Development.

Unit – IV :

User Interface Design: The Golden Rules, User Interface Analysis and Design, Interface Analysis, Interface Design Steps, Design Evaluation.

Coding and Testing: Coding, Code Review, Software Documentation, Testing, Testing in the Large versus Testing in the Small, Unit Testing, Black-Box Testing, White-Box Testing, Debugging, Program Analysis Tools, Integration Testing, Testing Object-Oriented Programs, System Testing, Some General Issues Associated with Testing.

Unit – V :

Verification and Validation: Planning Verification and Validation, Software Inspections, Automated Static Analysis, Verification and Formal Methods.

Software Maintenance: Characteristics of Software Maintenance, Software Reverse Engineering, Software Maintenance Process Models, Estimation of Maintenance cost.

Text Books :

- 1. Software Engineering A Practitioner's Approach, Roger S. Pressman, Seventh Edition McGrawHill International Edition.
- 2. Fundamentals of Software Engineering, Rajib Mall, Third Edition, PHI.

Reference Books :

- 1. Software Engineering, Ian Sommerville, Eighth Edition, Pearson education.
- 2. Software Engineering : A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008
- 3. Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.
- 4. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.
- 5. Software Engineering1: Abstraction and modeling, Diner Bjorner, Springer International edition, 2006.
- Software Engineering2: Specification of systems and languages, Diner Bjorner, Springer
 International addition 2006

International edition, 2006.

- 7. Software Engineering Foundations, Yingxu Wang, Auerbach Publications, 2008.
- 8. Software Engineering Principles and Practice, Hans Van Vliet,3rd edition, John Wiley &Sons Ltd.
- Software Engineering 3:Domains,Requirements,and Software Design, D.Bjorner, Springer International Edition.
- 10. Introduction to Software Engineering, R.J.Leach, CRC Press.

M.Tech. I– ISem (CS)	Т	Р	С
	4	0	4

15D51104: Advanced Network Technologies

Objectives:

- To understand the concepts and techniques that have been used to design and implement the TCP/IP Internet
- To understand the issues that are driving the development of new protocols to broaden and enhance the operation of the Internet
- Understand the architecture of the Internet protocols as a layered model
- Describe the functions implemented by each protocol, the design of the protocol and the characteristics of typical implementations
- Analyze the relationships and dependencies between the protocols
- Measure and characterize the behavior of the protocols in the operating environment seen on the Internet

Outcomes:

- Acquire Knowledge on TCP/IP architecture and layers and their comparison with the OSI layers
- Ability to analyze requirements of IP routing and choose appropriate routing methods
- Ability demonstrate how internetworking devices obtain their network configuration
- Ability to identify the purpose, features and functions of current common network hardware and OSI layer with which each is associated.

Unit I:

The OSI Model and the TCP/IP Protocols suite: Protocol layer, The OSI model, TCP/IP protocol suite, Addressing

Underlying Technologies: Wired local area networks, Wireless LANs, Point to point WANs, Switched WANs.

Introduction to Network Layer: Switching, Packet switching at network layer, Network layer services and issues.

Unit II:

Delivery and Forwarding of IP Packets: Delivery, Forwarding, Structure of a router **Internet Protocol Version 4(IPv4):** Datagrams, IP over ATM, Security, IP Package **Internet Protocol Version 6(IPv6):** Packet format, Transition from IPv4 to IPv6 **Address Resolution Protocol:** Address mapping, ATM layer, ARP packages **ICMPv4 and Mobile IP:** debugging tools and packages, Addressing, Agents, Three Phases, Inefficiency in mobile IP

UNIT-III: UNICAST AND MULTICAST ROUTING PROTOCOLS

Intra-and-Inter Domain Routing, Distance Vector Routing, RIP (Routing Information Protocol), Link State Routing, OSPF (Open Shortest Path First) protocol, BGP (Border Gateway Protocol), Difference between unicast, multicast and broadcast, Multicast Applications, Multicast Routing, Multicast Link State Routing (MOSPF), Multicast Distance Vector (DVMRP).

UNIT-IV: TRANSPORT LAYER PROTOCOLS

User datagram protocol (UDP)-Process-to-Process communication, User datagram, Checksum, UDP operation, Use of UDP, Package.

Transmission Control Protocol (TCP) -TCP services, Features, Segment, Connection, Flow and Error Control, Congestion Control, TCP timers, Options, TCP package, Stream Control Transmission Protocol (SCTP) Services, Features, Packet format

Unit V- IEEE 802.15 WPAN STANDARDS

Standards Organizations for Information Networking: Evolution of Local & Personal Area Networks - IEEE 802.15 Wireless Personal-Area Network Standardization Series - IEEE 802.15.1 Bluetooth Overall Architecture - Protocol Stack Physical & MAC Mechanism - Frame Formats - Connection Management & Security. Interference between Bluetooth and 802.11.

TEXT BOOKS:

1. TCP/IP Protocol Suite, Behrouz A. Forouzan, TMH

2. KavehPahlavan and Prashant Krishnamurthy, "Networking Fundamentals: Wide, Local and Personal Area Communications", John Wiley & Sons, 2009.

REFERENCES:

1. TCP/IP, Tittel Chappell, Cengage Learning.

2. TCP/IP Illustrated, Volume, 1the Protocols, W. Richard Stevens, G. Gabrani, Pearson.

3. TCP/IP Application Layer Protocols for Embedded Systems, M.Tim Jones, Networking Series

4. Ramjee Prasad and Luis Munoz, "WLANs and WPANs towards 4G Wireless", Artech House, 2003.

M.Tech. I– ISem (CS)	Т	Р	С
	4	0	4
15D51105: Distributed and	Cloud Computing		
(Elective-	• I)		

Objectives:

- Understand the cloud computing paradigm and recognize its various forms
- Gain an appreciation on the challenges and opportunities faced by cloud computing environments
- Able to implement some cloud computing features

Unit - I :

Distributed System Models and Enabling Technologies: Scalable Computing Service over the Internet; The Age of Internet Computing, Computing Trends and New Paradigms, Internet of Things and Cyber-Physical Systems. System Models for Distributed and Cloud Computing; Clusters of Cooperative Computers, Grid Computing Infrastructures, Peer-to-Peer Network Families, Cloud Computing over the Internet. Software Environments for Distributed Systems and Clouds; Service-Oriented Architecture (SOA), Distributed Operating Systems and Software Tools, Parallel/Distributed Programming Models. Performance, Security, and Energy-Efficiency: Performance Metrics and Scalability Analysis, Fault-Tolerance and System Availability, Network Threats and Data Integrity, Energy-Efficiency in Distributed Computing.

Unit – II:

Design of Cloud Computing Platforms: Cloud Computing and Service Models; Public, Private, and Hybrid Clouds, Cloud Ecosystem and Enabling Technologies, Infrastructure-as-a-Service (IaaS) Model, Platform- and Software-as-a-Service (Paas, SaaS). Architecture Design of Compute and Storage Clouds: A Generic Cloud Architecture Design, Layered Cloud Architectural development, Virtualization Support and Disaster Recovery, Architectural Design Challenges. Public Cloud Platforms: GAE, AWS and Windows Azure; Public Clouds and Service Offerings, Google Application Engine (GAE), Amazon Web Service (AWS), Microsoft Windows Azure. Inter- cloud Resource Management: Extended Cloud Computing Services, Resource Provisioning and Platform Deployment, Virtual Machine Creation and Management, Global Exchange of Cloud Resources. Cloud Security and Trust Management: Cloud Security Defense Strategies, Distributed Intrusion/Anomaly Detection, Data and Software Protection Techniques, Reputation-Guided Protection of Datacenters.

Unit – III :

Service Oriented Architectures: Services and Service Oriented Architectures: REST and Systems of Systems, Services and Web Services, Enterprise Multi-tier Architecture, Grid

Services and OGSA, Other Service Oriented Architectures and Systems. Message-Oriented Middleware: Enterprise Bus, Publish-Subscribe Model and Notification, Queuing and Messaging Systems, Cloud and Grid Middleware applications. Discovery, Registries, Metadata, and Databases: UDDI and Service Registries, Databases and Publish-Subscribe, Metadata catalogues, Semantic Web and Grid, Job Execution Environments and Monitoring. Workflow in Service-Oriented Architectures: Basic Concepts of Workflow, Workflow Standards, Workflow Architecture and Specification, Workflow Execution Engine

Unit – IV :

Cloud Programming and Software Environments: Features of Cloud and Grid Platforms; Cloud Capabilities and Platform Features, Traditional Features Common To Grids and Clouds, Data Features and Databases, Programming and Runtime Features. Parallel and Distributed Programming Paradigms; Parallel Computing and Programming Paradigms, MapReduce, Twister and Iterative MapReduce, Hadoop Library from Apache, Mapping Applications to Parallel and Distributed Systems. Programming Support of Google App Engine: Programming the Google App Engine, Google File System (GFS), Bigtable, Google's NOSQL system, Chubby, Google's Distributed Lock service. Programming on Amazon AWS and Microsoft Azure: Programming on Amazon EC2, Amazon Simple Storage Service S3, Amazon Elastic Block Store EBS and SimpleDB, Microsoft Azure programming support. Emerging Cloud Software Environments: Open Source Eucalyptus and Nimbus, OpenNebula, Sector/Sphere, and OpenStack, Manjrasoft Aneka Cloud and Appliances.

Unit – V :

Grid Computing Systems and Resource Management: Grid Architecture and Service Modeling; Grid History and service families, CPU Scavenging and Virtual super computers, OGSA, Data intensive Grid service models. Grid Resource Management and Brokering: Resource Management and Job Scheduling, Grid Resource Monitoring with CGSP, Service Accounting and Economy Model, Grid Resource Brokering with Gridbus. Software and Grid Computing; Open-Source Grid Middleware Packages, The Globus Toolkit Architecture (GT4), Containers and Resource/Data Management. Grid Application Trends and security measures; Trust models for grid security enforcement, Authentication and Authorization methods, GSI. On-Line Social and Professional Networking; Online Social Network Characteristics, Graph-Theoretic Analysis of Social networks, Communities and Applications of Social Networks, Facebook: The World's Largest Content-Sharing Network, Twitter for Microblogging, News and Alert Services.

Text Books :

- 1. Distributed and Cloud Computing, From Parallel Processing to the Internet of Things, Kai Hwang, Jack Dongarra, Geoffrey Fox. MK Publishers
- 2. Mastering Cloud Computing, Rajakumar Buyya, Christian Vecchiola, S.Thamarai Selvi, TMH

Reference Books :

- 1. Grid Computing Joshy Joseph, Craig Fellenstein, IBM Press, 2007.
- 2. Grid and Cluster Compting Prabhu, Prentice-Hall of India, 2007.
- 3. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter: Cloud Computing, A Practical Approach, McGraw Fill, 2010
- 4. Cloud Computing Concepts, Technology & Architecture, Thomas Erl, Zaigham Mahmood and Ricardo Puttini, Pearson Education
- 5. To the Cloud Cloud Powering an Enterprise, Pankaj Arora, Raj Biyani, Salil Dave, TMH
- 6. Cloud Computing A Practical Approch, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, TMH
- 7. Cloud Computing Principles and Paradigms, Rajkumar Buyya, James Broberg, Andrzej Goscinski, Wiley
- 8. Enterprise Cloud Computing-Technology, Architecture, Applications, Gautam Shroff, Cambridge

M.Tech. I– I Sem (CS)	Т	Р	С
	4	0	4
15D51106: DISTRIBUTED OP	PERATING SYSTEMS		
(Elective-	I)		
Objectives:	·		

- To learn the fundamentals of Distributed Systems.
- To gain knowledge on Distributed operating system concepts that includes architecture and Communication, process, synchronization, consistency and replication, and fault tolerance.
- To design and implement sample distributed file systems.

Outcomes:

- Students will identify the core concepts of distributed systems: the way in which several machines orchestrate to correctly solve problems in an efficient, reliable and scalable way.
- Students will examine how existing systems have applied the concepts of distributed systems in designing large systems, and will additionally apply these concepts to develop sample systems.

UNIT-I

Introduction of Distributed System & Communication: Goals, Hardware Concepts, Software Concepts, the Client-Server Model, Remote Procedure Call, Remote Object Invocation, Message Oriented Communication, Stream-Oriented Communication.

UNIT-II

Processes & Synchronization: Threads, Clients, Servers, Code Migration, Software Agents, Clock Synchronization, Logical Clocks, Global State, Election Algorithms, Mutual Exclusion, Distributed Transactions.

UNIT-III

Consistency & Replication: Introduction, Data-Centric Consistency Models, Client Centric Consistency Models, Distribution Protocols, Consistency Protocols, Examples.

UNIT-IV

Fault Tolerance: Introduction to Fault Tolerance, Process Resilience, Reliable Client-Server Communication, Reliable Group Communication, Distributed Commit, Recovery.

UNIT-V

Distributed File Systems: SUN Network File System, The CODA File System, Other Distributed File Systems, Comparison of Distributed File Systems.

Text Books

Andrew S. Tanenbaum, Maarten Van Steen. Distributed Systems – Principles and Paradigms 2/e, PHI, 2004.

Reference Books

1. Pradeep K. Sinha, "Distributed Operating Systems Concepts and Design", PHI 2002.

2. Randy Chow Theodore Johnson, "Distributed Operating Systems and Algorithm Analysis", PEA, 2009.

3. George Couloris, Jean Dollimore, Tim Kind berg, "Distributed Systems Concepts and Design", 3/e, PEA, 2002.

JNTUA College Of Engineering (Autonomous):: Ananthapuramu

Department of Computer Science & Engineering

M.Tech. I– ISem (CS)

P C 0 4

Т

4

15D51107: Parallel Computing

(Elective- I)

Course Outcomes:

Acquire knowledge on large scale parallel system

Ability to implement parallel programs for large-scale parallel systems

Ability to design efficient parallel algorithms and applications

Ability to be conversant with performance to analyze and model parallel programs

UNIT I - Introduction to Parallel Computing

Motivating Parallelism-Scope of parallel computing-Parallel programming platforms-Implicit Parallelism- Limitations of Memory System Performance-Dichotomy of Parallel computing platforms-Physical organization of parallel platforms-Communication costs in parallel machines-Routing mechanisms for inter connection networks.

UNIT II - Principles of Parallel Algorithm Design

Preliminaries-Decomposition techniques-characteristics of tasks and interactions-mapping techniques for load balancing-methods for containing interaction overheads-parallel algorithm models.

UNIT III - Basic Communication Operations

One to all broadcast and all to one reduction-all to all broadcast and reduction -scatter and gather –sources of overhead in parallel programs-performance metrics for parallel systems-the effect of granularity on performance.

UNIT IV - Programming Using Message Passing Paradigm

Principles of message passing programming-Building blocks-Message passing interface-Topologies and embedding-Overlapping computation with communication-Collective communication and computation operation.

UNIT V - Programming Shared Address Space Platforms

Thread basics-Why threads?-POSIX thread-Thread basics-Synchronization primitives in Pthreads-controlling thread and synchronization attributes-Composite synchronization constructs-Case study:Implementation of Chat Server.

TEXT BOOKS

Ananth Grama ,Vipin Kumar,"*Introduction to parallel computing*",Second edition,2007
 Cameron Hughes, Tracey Hughes,"*Parallel and Distributed Programming using C++*. Pearson education,2005

REFERENCES

- 1. Quinn, M. J., Parallel Computing: Theory and Practice (McGraw-Hill Inc.).
- 2. Bary Wilkinson and Michael Allen: Parallel Programming Techniques using Networked of workstations and Parallel Computers, Prentice Hall, 1999.
- 3. R. Buyya (ed.) High Performance Cluster Computing: Programming and Applications, Prentice Hall, 1999.

M.Tech. I– I Sem (CS)	Т	Р	С
	4	0	4
15D51108: 3D Techno	ologies		
(Elective II)			
Objectives:			
• Students should be able to loorn the concents of	f Animations 2D Sn	lines &	Shanaa

- Students should be able to learn the concepts of Animations, 2D Splines & Shapes & compound object, Animation Techniques.
- This course introduces fundamental 3D theories and principles of computer modeling and animation.

UNIT –I:

Computer-based Animation & Getting Started with Max Definition of Computer-based Animation, Basic Types of Animation: Real Time, Non-real-time, Definition of Modeling, Creation of 3D objects. Exploring the Max Interface, Controlling & Configuring the Viewports, Customizing the Max Interface & Setting Preferences, Working with Files, Importing & Exporting, Selecting Objects & Setting Object Properties, Duplicating Objects, Creating & Editing Standard Primitive & extended Primitives objects, Transforming objects, Pivoting, aligning etc.

Unit-II:

2D Splines & Shapes & compound object :Understanding 2D Splines & shape, Extrude & Bevel 2D object to 3D, Understanding Loft & terrain, Modeling simple 4 objects with splines, Understanding morph, scatter, conform, connect compound objects, blob mesh, Boolean ,Pro Boolean & procutter compound object.

Unit-III:

3DModelling: Modeling with Polygons, using the graphite, working with X Refs, Building simple scenes, Building complex scenes with X Refs, using assets tracking, deforming surfaces & using the mesh modifiers, modeling with patches & NURBS 8.

Unit-IV:

Key frame Animation Creating Key frames, Auto Key frames, Move & Scale Key frame on the timeline, Animating with constraints & simple controllers, animation Modifiers & complex controllers, function curves in the track view, motion mixer etc .

Unit –V:

Animation Techniques -- Non Linear and Character Animation -- Posing, Timing and Refining --Working with Poses.

Text Books:

- 1. Beginning Blender: Open Source 3D Modeling, Animation, and Game Design By Lance Flavell
- 2. Mastering 3D Animation, by Peter Ratner(Author) Autodesk Maya, 2011.
- 3. 3Ds Max 7 Fundamentals by Ted Boardman (Mar 26, 2005) New Riders Publication.

M.Tech. I– I Sem (CS)	Т	Р	С
	4	0	4
15D51109: Com	puter Vision		
(Electi	ve II)		
Objectives	,		

Objectives:

- The objective of this course is to understand the basic issues in computer vision and major approaches that address them.
- Students should be able to learn the Linear Filters, segmentation by clustering, Edge detection, Texture.

UNIT-I

LINEAR FILTERS: Introduction to Computer Vision, Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, Technique: Normalized Correlation and Finding Patterns, Technique: Scale and Image Pyramids.

UNIT II

EDGE DETECTION: Noise- Additive Stationary Gaussian Noise, Why Finite Differences Respond to Noise, Estimating Derivatives - Derivative of Gaussian Filters, Why Smoothing Helps, Choosing a Smoothing Filter, Why Smooth with a Gaussian? Detecting Edges-Using the Laplacian to Detect Edges, Gradient-Based Edge Detectors, Technique: Orientation Representations and Corners.

UNIT-III

TEXTURE:

Representing Texture - Extracting Image Structure with Filter Banks, Representing Texture Using the Statistics of Filter Outputs, Analysis (and Synthesis) Using Oriented Pyramids -The Laplacian Pyramid, Filters in the Spatial Frequency Domain, Oriented Pyramids, Application: Synthesizing Textures for Rendering, Homogeneity, Synthesis by Sampling Local Models, Shape from Texture, Shape from Texture for Planes,

UNIT-IV

SEGMENTATION BY CLUSTERING: What is Segmentation, Human Vision: Grouping and Gestalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering. The Hough Transform, Fitting Lines, Fitting Curves

UNIT-V

RECOGNIZATION BY RELATIONS BETWEEN TEMPLATES: Finding Objects by Voting on Relations between Templates, Relational Reasoning Using Probabilistic Models and Search, Using Classifiers to Prune Search, Hidden Markov Models, Application: HMM and Sign Language Understanding, Finding People with HMM.

TEXT BOOK:

1. David A.Forsyth, Jean Ponce, Computer Vision-A Modern Approach, PHI, 2003.

REFERENCE BOOKS:

- 1. Geometric Computing With Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics, Springer; 1 edition,2001 by Sommer.
- 2. Digital Image Processing and Computer Vision, 1/e, by Sonka.
- 3. Computer Vision and Applications: Concise Edition (With CD) by Jack, Academy Press, 2000.

M.Tech. I– I Sem (CS)	Т	Р	С
	4	0	4
15D51110: Computational In	telligence		
(ELECTIVE-II)			

Course Objectives:

- Computational Intelligence is the successor to Artificial Intelligence
- Offering special benefits in its applications in certain areas like Classification, Regression, Pattern Matching, Control, Robotics, Data Mining etc.
- To introduce the basic tools and techniques in Computational Intelligence such as Neural Networks and Genetic Algorithms from an application perspective to the students.

UNIT I

Introduction: Background and history of evolutionary computation, Behavioral Motivations for Fuzzy Logic, Myths and Applications areas of Computational Intelligence. Adaption, Self organization and Evolution, Historical Views of Computational Intelligence, Adaption and Self organization for Computational Intelligence, Ability to Generalize, Computational Intelligence and Soft Computing Vs Artificial Intelligence and Hard Computing.

UNIT II

Review of evolutionary computation theory and concepts: History of Evolutionary Computation, Evolution Computation Overview, Genetic algorithms, Evolutionary programming, Evolution strategies, genetic programming, and particle swarm optimization.

UNIT III

Review of basic neural network theory and concepts: Neural Network History, What Neural Networks are and Why they are useful, Neural Networks Components and Terminology, Neural Networks Topology, Neural Network Adaption, Comparing Neural Networks and Other information Processing Methods, Preprocessing and Post Processing.

UNIT IV:

Fuzzy Systems Concepts and Paradigms: Fuzzy sets and Fuzzy Logic, Theory of Fuzzy sets, Approximate Reasoning, Fuzzy Systems Implementations, Fuzzy Rule System Implementation.

UNIT V:

Computational Intelligence Implementations: Implementation Issues, Fuzzy Evolutionary Fuzzy Rule System Implementation, Best tools, Applying Computational Intelligence to Data Mining.

Performance Metrics: General Issues, Percent Correct, Average Sum-squared Error.

Textbooks:

1. Computational Intelligence - Concepts to Implementations by Eberhart & Shi

References:

- 1. Introduction to Genetic Algorithms by Melanie Mitchell
- 2. Handbook of Genetic Algorithms by Davis
- 3. Machine Learning by Tom Mitchell

I– ISem (CS)	Т	Р	С
	4	0	4
15D51111:Data Structures And Dat	ta Bases I	Lab	

Objectives:

M.Tech.

- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction
- Write a C++ program for sorting of array integers by using following techniques.
 a) Quick Sort, b) Merge Sort, c) Selection sort.
- 2. Write a C++ program to implement following using arrays.a) Stack b)queue c) circler Queue
- 3. Write a C++ program to implement following using Linked list a) Stack b)queue
- 4. Write a C++ program to implement ordered list using doubly linked list
- 5. Write C++ program for implementing Min/Max Heap.
- 6. Write a C++ program to implement binary search tree operation.
- 7. Write a C++ program to implement AVL Tree operations
- 8. Write a C++ program to implement Graph traverses by using following techniques a) DFS b) BFS
- 9. Write a SQL procedure that works with multimedia objects like images, audio, video and etc,.
- 10. Write DTD for XML representation of bank information.
- 11. Write a XML Schema for XML representation of bank information.
- 12. Using XPath perform the basic operations (Select query with where clause) on XML representation of bank information.
- 13. Using XQuery perform the grouping operation on XML representation of bank information.
- 14. Write a JSP program to retrieve bank information from XML file.

References

- 4. Fundamentals of Data structures in C++ Sahni, Horowitz, Mehta, Universities Press, 2nd Edition.
- 5. Data Structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson.
- 6. DataBase system concepts 5th edition by Silbersechatz, korath, Sudarshan.
- 7. Java Server Pages O'REILLY publications Hans Bergsten.

JNTUA COLLEGE OF ENGINEERING (Autonomous)::Ananthapuramu

Department Of Computer Science & Engineering

M.Tech. I – II Sem.(CS)	Т	Р	С
	4	0	4

15D51201: Service Oriented Architecture

Objectives:

The course should enable the student

- Understand SOA and evolution of SOA.
- Understand web services and primitive, contemporary SOA.
- Understand various service layers.
- Understand service-oriented analysis and design based on guidelines.

UNIT I

Introducing SOA: Fundamental SOA, Common Characteristics of Contemporary SOA, Common Tangible Benefits of SOA, Common Pitfalls of Adopting SOA.

The Evolution of SOA: An SOA Timeline, The Continuing Evolution of SOA, The Roots of SOA.

UNIT II

Web Services and Primitive SOA: The Web Services Frame Work, Services, Service Descriptions, Messaging.

Web Services and Contemporary SOA (Part I-Activity management and Composition): Message Exchange Patterns, Service Activity, Coordination, Atomic Transactions, Orchestration, Choreography.

Web Services and Contemporary SOA (Part-II-Advanced Messaging, Metadata and Security): Addressing, Reliable Messaging, Correlation, Policies, Metadata exchange, Security.

UNIT III

Principles of Service-Orientation: Service-Orientation and the Enterprise, Anatomy of SOA, Common Principles of Service-Orientation, Interrelation between Principles of Service-Orientation, Service Orientation and Object Orientation, Native Web Services Support for Principles of Service-Orientation.

Service Layers: Service-Orientation and Contemporary SOA, Service Layer abstraction, Application Service Layer, Business Service Layer, Orchestration Service Layer, Agnostic Services, Service Layer Configuration Scenarios.

UNIT IV

SOA Delivery Strategies: SOA Delivery Lifecycle Phases, The Top-Down Strategy, The Bottom-up Strategy, The Agile Strategy.

Service Oriented Analysis (Part I-Introduction): Introduction to Service Oriented Analysis, Benefits of a Business Centric SOA, Deriving Business Services.

Service Oriented Analysis (Part-II-Service Modelling): Service Modeling, Service Modelling Guidelines, Classifying Service Model Logic, Contrasting Service Modeling Approaches.

Service Oriented Design (Part I-Introduction): Introduction to Service-Oriented Design, WSDL Related XML Schema Language Basics, WSDL Language Basics, Service Interface Design Tools.

Service Oriented Design (Part II-SOA Composition Guidelines): SOA Composing Steps, Considerations for Choosing Service Layers, Considerations for Positioning Core SOA Standards, Considerations for Choosing SOA Extensions.

UNIT V

Service Oriented Design (Part III- Service Design): Service Design Overview, Entity-Centric Business Service Design, Application Service Design, Task-Centric Business Service Design, Service Design Guidelines.

Service Oriented Design (Part IV-Business Process Design): WS-BPEL Language Basics, WS- Coordination Overview, Service Oriented Business Process Design.

JTEXT BOOKS:

- 1. Service-Oriented Architecture-Concepts, Technology, and Design, Thomas Erl, Pearson Education.
- 2. Understanding SOA with Web Services, Eric Newcomer, Greg Lomow, Pearson Education.

REFERENCE BOOKS:

- 1. The Definitive guide to SOA, Jeff Davies & others, Apress, Dreamtech.
- 2. Java SOA Cook book, E.Hewitt, SPD.
- 3. SOA in Practice, N.M.Josuttis, SPD.
- 4. Applied SOA, M.Rosen and others, Wiley India pvt. Ltd.
- 5. Java Web Services Architecture, J.Mc Govern, and others, Morgan Kaufmann Publishers, Elsevier.
- 6. SOA for Enterprise Applications, Shankar.K, Wiley India Edition.
- 7. SOA-Based Enterprise Integration, W.Roshen, TMH.
- 8. SOA Security, K.Rama Rao, C.Prasad, dreamtech press.

M.Tech. I– IISem (CS)	Т	Р	С
	4	0	4

15D51202: Natural Language Processing

Objectives:

- able to explain and apply fundamental algorithms and techniques in the area of natural language processing (NLP)
- Understand approaches to syntax and semantics in NLP.
- Understand current methods for statistical approaches to machine translation.
- Understand language modeling.
- Understand machine learning techniques used in NLP.

UNIT I:

Introduction to Natural language

The Study of Language, Applications of NLP, Evaluating Language Understanding Systems, Different Levels of Language Analysis, Representations and Understanding, Organization of Natural language Understanding Systems, Linguistic Background: An outline of English Syntax.

Unit II: Grammars and Parsing

Grammars and Parsing- Top- Down and Bottom-Up Parsers, Transition Network Grammars, Feature Systems and Augmented Grammars, Morphological Analysis and the Lexicon, Parsing with Features, Augmented Transition Networks.

UNIT III: Grammars for Natural Language

Grammars for Natural Language, Movement Phenomenon in Language, Handling questions in Context Free Grammars, Hold Mechanisms in ATNs, Gap Threading, Human Preferences in Parsing, Shift Reduce Parsers, Deterministic Parsers.

UNIT IV:

Semantic Interpretation

Semantic & Logical form, Word senses & ambiguity, The basic logical form language, Encoding ambiguity in the logical Form, Verbs & States in logical form, Thematic roles, Speech acts & embedded sentences, Defining semantics structure model theory.

Language Modeling

Introduction, n-Gram Models, Language model Evaluation, Parameter Estimation, Language Model Adaption, Types of Language Models, Language-Specific Modeling Problems, Multilingual and Crosslingual Language Modeling.

UNIT V:

Machine Translation

Survey: Introduction, Problems of Machine Translation, Is Machine Translation Possible, Brief History, Possible Approaches, Current Status.

Anusaraka or Language Accessor: Background, Cutting the Gordian Knot, The Problem,

Structure of Anusaraka System, User Interface, Linguistic Area, Giving up Agreement in Anusarsaka Output, Language Bridges.

Multilingual Information Retrieval

Introduction, Document Preprocessing, Monolingual Information Retrieval, CLIR, MLIR, Evaluation in Information Retrieval, Tools, Software and Resources.

Multilingual Automatic Summarization

Introduction, Approaches to Summarization, Evaluation, How to Build a Summarizer, Competitions and Datasets.

TEXT BOOKS:

1. James Allen, Natural Language Understanding, 2nd Edition, 2003, Pearson Education.

2.Multilingual Natural Language Processing Applications : From Theory To Practice-Daniel M.Bikel and Imed Zitouni , Pearson Publications.

3.Natural Language Processing, A paninian perspective, Akshar Bharathi, Vineet chaitanya, Prentice – Hall of India.

REFERENCES BOOKS:

1. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.

2. Jurafsky, Dan and Martin, James, Speech and Language Processing, 2nd Edition, Prentice Hall, 2008.

3. Manning, Christopher and Henrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) : : ANANTAPURAMU

Department Of Computer Science & Engineering

M.Tech. I – II Sem.(CS)

T P C 4 0 4

15D51203: Software Quality Assurance & Testing

Objectives:

The student should be able to:

- Understand software testing and quality assurance as a fundamental component of software life cycle
- Define the scope of software testing & quality assurance projects
- Efficiently perform testing & quality assurance activities using modern software tools
- Estimate cost of a testing & quality assurance project and manage budgets
- Prepare test plans and schedules for a testing & quality assurance project
- Develop testing & quality assurance project staffing requirements
- Effectively manage a testing & quality assurance project

UNIT I

Introduction to software quality, Challenges, Objectives, Quality Factors, Components of SQA, Contract review, Development and quality Plans, SQA Components in Project Life Cycle, SQA Defect Removal Policies, Reviews.

UNIT II

Software Testing Strategy and Environment: Minimizing Risks, Writing a Policy for Software Testing, Economics of Testing, Testing-an organizational issue, Management Support for Software Testing, Building a Structured Approach to Software Testing, Developing a Test Strategy.

Building Software Testing Process: Software Testing Guidelines, Workbench Concept, Customizing the Software Testing Process, Process Preparation Checklist.

UNIT III

Software Testing Techniques: Dynamic Testing – Black Box Testing Techniques, White Box Testing Techniques, Static Testing, Validation Activities, Regression Testing.

Software Testing Tools: Selecting and Installing Software Testing tools

Automation and Testing Tools: Load Runner, Win runner and Rational Testing Tools, Silk test, Java Testing Tools, JMetra, JUNIT and Cactus.

UNIT IV

Seven Step Testing Process–I: Overview of the Software Testing Process, Organizing of Testing, Developing the Test Plan, Verification Testing, Validation Testing.

UNIT V

Seven Step Testing Process-II: Analyzing and Reporting Test results, Acceptance and Operational Testing, Post-Implementation Analysis

Specialized Testing Responsibilities: Software Development Methodologies, Testing Client/Server Systems.

TEXT BOOKS:

1. Effective Methods for Software Testing, Third edition, William E. Perry, Wiley India, 2009

2. Software Testing – Principles and Practices, Naresh Chauhan, Oxford University Press, 2010.

3. Software Quality Assurance – From Theory to Implementation, Daniel Galin, Pearson Education, 2009.

Reference Books:

1. Testing Computer Software, Cem Kaner, Jack Falk, Hung Quoc Nguyen, Wiley India, rp2012.

2. Software Testing – Principles, Techniques and Tools, M.G.Limaye, Tata McGraw-Hill, 2009.

3. Software Testing - A Craftsman's approach, *Paul C. Jorgensen*, Third edition, Auerbach Publications, 2010.

4. Software Quality Assurance, Milind Limaye, Tata McGraw-Hill, 2011.

5. Software Quality – Theory and Management, *Alan C. Gillies*, Second edition, Cengage Learning, 2009.

6. Software Quality – A Practitioner's approach, *Kamna Malik, Praveen Choudhary*, Tata McGraw-Hill, 2008.

7. Software Quality Models and Project Management in a Nutshell, *Shailesh Mehta*, Shroff Publishers and Distributors, 2010.

8. Software Quality Engineering – Testing, Quality Assurance and Quantifiable Improvement, *Jeff Tian*, Wiley India, 2006.

M.Tech. I– IISem (CS)	Т	Р	С
	4	0	4

15D51204: Advanced Data Mining

Objectives:

- To develop the abilities of critical analysis to data mining systems and applications.
- To implement practical and theoretical understanding of the technologies for data mining
- To understand the strengths and limitations of various data mining models.

UNIT-I

Introduction about data mining, Need of data mining, Business data mining, data mining tools, Data Mining Process: CRISP Data Mining, Business Understanding, data understanding and data preparation, modeling, evaluation and deployment, SEMMAS Process, Data mining applications, comparison of CRISP & SEMMA.

UNIT-II

Memory-Based Reasoning Methods, Matching ,Weighted Matching, Distance Minimization Data Mining Methods As Tools X Contents, Association Rules in Knowledge Discovery, Market-Basket Analysis, Market Basket Analysis Benefits Demonstration on Small Set of Data, Real Market Basket Data The Counting Method Without Software.

UNIT-III

Fuzzy Sets in Data Mining, Fuzzy Sets and Decision Trees, Fuzzy Sets and Ordinal Classification, Fuzzy Association Rules, Demonstration Model, Computational Results, Testing Inferences.

Rough Sets :Theory of Rough Sets , Information System, Decision Table, Applications of Rough Sets, Rough Sets Software Tools, The Process of Conducting Rough Sets Analysis, Data Pre-Processing, Data Partitioning, Discretization, Reduct Generation, Rule Generation and Rule Filtering, Apply the Discretization Cuts to Test Dataset, Score the Test Dataset on Generated Rule set , Deploying the Rules in a Production System.

UNIT-IV

Support Vector Machines, Formal Explanation of SVM, Primal Form, Dual Form, Soft Margin, Non-linear Classification, Regression, implementation, Kernel Trick.

Use of SVM–A Process-Based Approach, Support Vector Machines versus Artificial Neural Networks, Disadvantages of Support Vector Machines, Genetic Algorithm Support to Data Mining, Demonstration of Genetic Algorithm, Application of Genetic Algorithms in Data Mining

UNIT-V

Performance Evaluation for Predictive Modeling, Performance Metrics for Predictive Modeling , Estimation Methodology for Classification Models, Simple Split, The *k*-Fold Cross Validation Bootstrapping and Jackknifing, Area Under the ROC Curve.

Applications: Applications of Methods Memory-Based Application, Association Rule Application Fuzzy Data Mining, Rough Set Models, Support Vector Machine Application, Genetic Algorithm Applications-Product Quality Testing Design, Customer Targeting .

Text Book:

[1] Advanced Data Mining Techniques Authors: David L. Olson (Author), Dursun Delen.

References :

- [1] Advances in data mining and modeling by Wai-Ki ChingMichael Kwok-Po Ng
- [2] Advanced Techniques in Knowledge Discovery and Data Mining edited by Nikhil R. Pal, Lakhmi C Jain.
- [3] Dynamic and Advanced Data Mining for Progressing Technological Development: Innovations and Systemic ApproachesA B M Shawkat Ali (Central Queensland University, Australia) and Yang Xiang (Central Queensland University, Australia)

M.Tech. I– IISem (CS)	Т	Р	С
	4	0	4
15D51205: Cyb	er Security		
Elective	-III		

Objectives:

- Learn fundamentals of cryptography and its application to network security.
- Understand network security threats, security services, and countermeasures.
- Acquire background Knowledge on well known network security protocols such as Kerberos, IPSec and SSL.
- Understand software vulnerability and Access control in the OS
- Acquire background on hash functions, authentication, firewalls, intrusion detection techniques.
- Obtain background for original research in network security, especially wireless network and cell phone security.

UNIT-I

Introduction: Cyber attacks, Defense Strategies and Techniques

Mathematical background for Cryptography: Modulo arithmetic, The greatest common divisor, Useful Algebraic Structures, Chinese Remainder Theorem

Basics of Cryptography: Secret versus Public key Cryptography, Types of attacks, Elementary substitution Ciphers, Elementary Transposition Ciphers, Other Cipher Properties

Secrete Key Cryptography: Product Ciphers, DES Construction, Modes of Operation, MAC and other Applications, Attacks, Linear Crypt analysis.

UNIT-II

Public Key Cryptography: RSA Operations, Performance, Applications, Practical Issues **Cryptographic Hash**: Properties, Construction, Applications and Performance

Discrete Logarithm and its applications: Diffie-Hellman Parameters, Other applications

Elliptic Curve Cryptography and Advanced Encryption Standard: Elliptic Curve Cryptography, Applications, Practical Considerations, Advanced Encryption Standard (AES).

UNIT-III

Key Management: Digital Certificates, Public key Infrastructure, Identity based Encryption, **Authentication-I**: One-way Authentication, Mutual Authentication, Dictionary attacks, **Authentication-II**: Centralized Authentication, The Needham-Schroeder Protocol, Kerberos, Biometrics

Security at the Network Layer: Security at Different Layers: Pros and Cons, IP Sec, Internet Key Exchange(IKE) protocol, Security policy and IPSec, Virtual Private Networks

Security at the Transport Layer: Introduction, SSL Handshake Protocol, SSL Record Layer Protocol, Open SSL.

UNIT-IV

Software Vulnerabilities: Phishing, Buffer Overflow, Format string attacks, Cross-site Scripting(XSS), SQL Injection, Virus and Worm Features, Internet scanning Worms, Topological Worms, Botnets,

Access Control in the Operating System: Preliminaries, Mandatory Access Control, Rolebased Access control

Firewalls: Basics, Practical issues

Intrusion Prevention and Detection: Prevention Versus Detection, Types of Intrusion detection systems, DDoS attack prevention/detection, Malware Defense.

UNIT-V

WLAN Security: IEEE 802.11 Wireless LAN Security: Background, Authentication, Confidentiality and Integrity

Cell phone Security: Preliminaries, GSM (2G) Security, Security in UMTS (3G)

RFIDs and E-Passports: RFID basics, Applications, Security issues, Addressing RFID Privacy Concerns, Electronic Passports

Electronic Payment: Introduction, Enabling Technologies, Cardholder Present E-Transactions, Payment over the Internet, Mobile Payments, Electronic cash

TEXT BOOKS:

1. Network security and Cryptography by Bernard Menezes CENGAGE Learning Publications, 2010.

REFERENCES:

- 1. Wenbo Mao, "Modern Cryptography Theory and Practice", Pearson Education, New Delhi, 2006.
- 2. Jonathan Katz, Yehuda Lindell, "Introduction to Modern Cryptography", Chapman & Hall/CRC, New York, 2007.
- 3. Bruce Schneier, "Applied Cryptography", John Wiley & Sons, New York, 2004.
- 4. Charlie Kafuman, Radia Perlman, Mike Spenciner, Network Security Private Communication in Private world, Second Edition, Prentice Hall India 2002,ISBN:81-203-2213-4

M.Tech. I– IISem (CS)

T P C 4 0 4

15D51206: Soft Computing (Elective -III)

Course Objective

To give students knowledge of soft computing theories fundamentals, i.e. Fundamentals of artificial and neural networks, fuzzy sets and fuzzy logic and genetic algorithms

Course Outcomes

Learn the unified and exact mathematical basis as well as the general principles of various soft computing techniques

Unit - I :

Artificial Intelligence: AI Problems, Techniques, Problem Spaces, Pattern and Data Search Techniques: Generate and Test, Hill Climbing, Best First Search Problem reduction. Knowledge Representation using Predicate Logic and Rules

Introduction: Hard Computing and Soft Computing.

Characteristics of Neural Networks: Biological Neural Networks and Features, Performance of Computer and Biological Neural Networks

Unit – II:

Artificial Neural Networks: Introduction, Basic models of ANN, important technologies Supervised Learning Networks, Perceptron Networks, Adaptive Linear Neuron, Back propagation Network, Associative Memory Networks, Training Algorithms for pattern association, BAM and Hopfield Networks

Unit – III :

Unsupervised Learning Network: Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohenen-Self-Organizing Featue Maps, Learning Vector Quantization, Counter Propagation Networks, Adaptive Resonance Theory Networks, Special Networks- Introduction o various networks

Unit – IV :

Introduction to Classical Sets (crisp sets) and Fuzzy Sets: operations and Fuzzy sets. Classical Relations and Fuzzy Relations-Cardinality, Operations, Properties and composition, Tolerance and equivalence relations.

Membership functions: Features, Fuzzifications, membership value assignments, Defuzzification
Unit – V :

Fuzzy arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning Fuzzy Decision making and Fuzzy Logic Control System.

Genetic Algorithm: Introduction and basic operators and terminology. Applications: Optimization of TSP, Internet Search Techniques

Text Books :

1. Principles of Soft Computing- S N Sivanandam, S N Deepa, Wiley, India, 2007.

2.Soft Computing and Intelligent System Design- Fakhreddine O Karry, Clarence D Silva, Pearson Edition, 2004.

Reference Books :

- 1. Artificial Intelligence and SoftComputing- Behavioural and Cognitive Modelling of the Human Brain- Amit Konar, CRC press, Taylor and Francis Group.
- 2. Artificial Intelligence Elaine Rich and Kevin Knight, TMH, 1991, rp2008.
- 3. "Soft Computing" Sameer Roy, Pearson Education, 2013.
- 4. A first course in Fuzzy Logic-Hung T Nguyen and Elbert A Walker, CRC. Press Taylor and Francis Group.
- 5. Artificial Intelligence and Intelligent Systems, N.P.Padhy, Oxford Univ. Press
- 6. "Artificial Intelligence and Neural Networks" Umarao, Pearson-Sangune

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (CS)	Т	Р	С
	4	0	4
15D51207: Information	Retrieval Systems		
(Elective	e III)		
Course Objective			

• To learn the different models for information storage and retrieval

- To learn about the various retrieval utilities
- To understand indexing and querying in information retrieval systems
- To expose the students to the notions of structured and semi structured data
- To learn about web search

Course Outcomes

- Ability to store and retrieve textual documents using appropriate models
- Ability to use the various retrieval utilities for improving search
- Ability to do indexing and compressing documents to improve space and time efficiency
- Ability to formulate SQL like queries for unstructured data

Unit - I :

Introduction to information retrieval

Retrieval Strategies: Vector space model, Probabilistic retrieval strategies: Simple term weights, Non binary independence model, Language Models

Unit – II:

Retrieval Utilities: Relevance feedback, Clustering, N-grams, Regression analysis, Thesauri.

Unit – III :

Retrieval Utilities: Semantic networks, Parsing.

Cross-Language Information Retrieval: Introduction, Crossing the language barrier.

Unit – IV :

Efficiency: Inverted index, Query processing, Signature files, Duplicate document detection

Unit – V :

Integrating Structured Data and Text: A Historical progression, Information retrieval as a relational application, Semi-structured search using a relational schema.

Distributed Information Retrieval: A Theoretical model of distributed retrieval, Web search

Text Books :

 Information Retrieval – Algorithms and Heuristics, David A. Grossman, Ophir Frieder, 2nd Edition, 2012, Springer, (Distributed by Universities Press) Reference Books :

- 1. "Modern Information Retrieval Systems", Yates, Pearson Education
- 2. "Information Storage and Retrieval Systems" Gerald J Kowalski, Mark T Maybury., Springer, 2000
- 3. "Mining the Web : Discovering Knowledge from Hypertext Data" Soumen Chakrabarti, , Morgan-Kaufmann Publishers, 2002
- 4. "An Introduction to Information Retrieval" Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, , Cambridge University Press, Cambridge, England, 2009

JNTUA College of Engineering (Autonomous): Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– IISem (CS)	Т	Р	С
	4	0	4
15D51208: Bi	g Data Analytics		
Course Objectives:	cuve IV)		
Course Objectives.			

- > To understand Big Data Analytics for different systems like Hadoop.
- > To learn the design of Hadoop File System.
- > To learn how to analyze Big Data using different tools.
- > To understand the importance of Big Data in comparison with traditional databases.

Course Outcomes:

- > To gain knowledge about working of Hadoop File System.
- > Ability to analyze Big Data using different tools.

UNIT- I

Introduction to Big Data. What is Big Data? Why Big Data is Important. Meet Hadoop Data, Data Storage and Analysis, Comparison with other systems, Grid Computing. A brief history of Hadoop. Apache hadoop and the Hadoop Ecosystem. Linux refresher, VMWare Installation of Hadoop.

UNIT-II

The design of HDFS. HDFS concepts. Command line interface to HDFS.Hadoop File systems. Interfaces. Java Interface to Hadoop. Anatomy of a file read. Anatomy of a file writes. Replica placement and Coherency Model. Parallel copying with distcp, keeping an HDFS cluster balanced.

UNIT-III

Introduction. Analyzing data with unix tools. Analyzing data with hadoop. Java MapReduce classes (new API). Data flow, combiner functions, Running a distributed MapReduce Job. Configuration API. Setting up the development environment. Managing configuration. Writing a unit test with MRUnit. Running a job in local job runner. Running on a cluster, Launching a job. The MapReduce WebUl.

UNIT-IV

Classic Mapreduce. Job submission. Job Initialization. Task Assignment. Task execution .Progress and status updates. Job Completion. Shuffle and sort on Map and reducer side.

Configuration tuning. Map Reduce Types. Input formats. Output cormats. Sorting. Map side and Reduce side joins.

UNIT-V

The Hive Shell. Hive services. Hive clients. The meta store. Comparison with traditional databases. Hive QI. Hbasics. Concepts. Implementation. Java and Map reduce clients. Loading data, web queries.

Text Books:

1. Tom White, Hadoop,"The Definitive Guide", 3rd Edition, O'Reilly Publications, 2012.

2. Dirk deRoos, Chris Eaton, George Lapis, Paul Zikopoulos, Tom Deutsch ,"Understanding Big Data Analytics for Enterprise Class Hadoop and Streaming Data", 1st Edition, TMH,2012.

References:

- 1. Big Data and Health Analytics Hardcover <u>Katherine Marconi</u> (Editor), <u>Harold</u> <u>Lehmann</u> (Editor)
- 2. Analytics in a Big Data World: The Essential Guide to Data Science and its Applications by bart bassens, Wiley publications.

JNTUA College Of Engineering (Autonomous):: Ananthapuramu **Department of Computer Science & Engineering**

M.Tech. I– II Sem (CS)

Т Р 4

С 0 4

15D51209: DIGITAL IMAGE PROCESSING

-(Elective IV)

Objectives:

- Develop an overview of the field of image processing.
- Understand the Image segmentation, enhancement, compression etc., approaches and how to implement them.
- Prepare to read the current image processing research literature.
- Gain experience in applying image processing algorithms to real problems
- Analyze general terminology of digital image processing. •

Unit - I

Digital Image Fundamentals: What is Digital Image Processing, examples of fields that use digital image processing, fundamental Steps in Digital Image Processing, Components of an Image processing system, Image Sampling and Quantization, Some Basic Relationships between Pixels, Linear and Nonlinear Operations.

Unit – II:

Image Enhancement: Image Enhancement in the spatial domain: some basic gray level transformations, histogram processing, enhancement using arithmetic and logic operations, basics of spatial filters, smoothening and sharpening spatial filters, combining spatial enhancement methods.

Unit – III :

Segmentation: Thresholding, Edge Based Segmentation: Edge Image Thresholding, Region Based Segmentation, Matching, Representation and Description: Representation, Boundary Descriptors, Regional Descriptors.

Unit – IV ·

Image Compression: Fundamentals, image compression models, elements of information theory, error-free compression, lossy compression, Image Compression Stanadrds.

Unit – V ·

Morphological Image Processing: Preliminaries, dilation, erosion, open and closing, hit transformation, basic morphologic algorithms.

Color Image Processing: Color fundamentals, Color Models and basics of full-color image processing

Text Books :

- 1. "Digital Image Processing", Rafael C.Gonzalez and Richard E. Woods, Third Edition, Pearson Education, 2007
- 2. Digital Image Processing", S.Sridhar, Oxford University Press

Reference Books :

- 1. "Fundamentals of Digital Image Processing", S. Annadurai, Pearson Edun, 2001.
- 2. "Digital Image Processing and Analysis", B. Chanda and D. Dutta Majumdar, PHI, 2003.
- 3. "Image Processing", Analysis and Machine Vision, Milan Sonka, Vaclav Hlavac and Roger Boyle, 2nd Edition, Thomson Learning, 2001.
- 4. "Digital Image Processing" Vipula Singh, Elsevier

JNTUA College Of Engineering (Autonomous):: Ananthapuramu Department of Computer Science & Engineering

M.Tech. I– II Sem (CS) T P C 4 0 4 15D51210: PATTERN RECOGNITION

(Elective IV)

Objectives:

- Understand the fundamental pattern recognition and machine learning theories
- Able to design and implement certain important pattern recognition techniques
- Capable of applying the pattern recognition theories to applications of interest.

Unit - I :

Introduction to Pattern Recognition: Data Sets for Pattern Recognition, Different Paradigms for Pattern Recognition,

Pattern Representation: Data Structures for Pattern Representation, Representation of Clusters, Proximity Measures, Size of Patterns, Abstractions of the Data Set, Feature, Feature Selection, Evaluation of Classifiers, Evaluation of Clustering

Unit – II:

Nearest Neighbour Based Classifiers: Nearest Neighbour Algorithm, Variants of the NN Algorithm, Use of the Nearest Neighbour Algorithm for Transaction Databases, Efficient Algorithms, Data Reduction, Prototype Selection,

Bayes Classifier: Bayes Theorem, Minimum error rate classifier, Estimation of Probabilities, Comparison with the NNC, Naive Bayes Classifier, Bayesian Belief Network.

Unit – III :

Hidden Markov Models: Markov Models for Classification, Hidden Markov Models, Classification Using HMMs, Classification of Test Patterns.

Decision Trees: Introduction, Decision Trees for Pattern Classification, Construction of Decision Trees, Splitting at the Nodes, Over fitting and Pruning, Example of Decision Tree Induction.

Unit – IV :

Support Vector Machines: Introduction, Linear Discriminant Functions, Learning the Linear Discriminant Function, Neural Networks, SVM for Classification, Linearly Separable Case, Non-linearly Separable Case.

Combination of Classifiers: Introduction, Methods for Constructing Ensembles of Classifiers, Methods for Combining Classifiers, Evaluation of Classifiers, Evaluation of Clustering

Unit – V :

Clustering: Clustering and its Importance, Hierarchical Algorithms, Partitional Clustering, Clustering Large Data Sets, An Application to Handwritten Digit Recognition: Description of the Digit Data, Pre-processing of Data, Classification Algorithms, Selection of Representative Patterns.

Text Books :

- 1. Pattern Recognition an Introduction, V. Susheela Devi M. Narasimha Murty, University Press.
- 2. Pattern Recognition, Segrios Theodoridis,Konstantinos Koutroumbas, Fourth Edition, Elsevier

Reference Books :

- 1. Pattern Recognition and Image Analysis, Earl Gose, Richard John Baugh, Steve Jost, PHI 2004.
- 2. C. M. Bishop, 'Neural Networks for Pattern Recognition', Oxford University Press, Indian Edition, 2003.
- 3. Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, Johy Wiley, 2002

JNTUA COLLEGE OF ENGINEERING (*AUTONOMOUS*) : : ANANTAPUR

Department Of Computer Science & Engineering

M.Tech. I – II Sem.(CS)

15D54201: Research Methodology (Audit Course)

(Audit Course For M.Tech. -II Semester Program from 2015 admitted batches onwards)

<u>UNIT I</u>

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

<u>UNIT II</u>

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation. Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

<u>UNIT III</u>

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

UNIT IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Co-variance – Multi-variate Analysis.

UNIT V

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Text books:

1. Research Methodology: Methods and Techniques – C.R.Kothari, 2nd Edition, New Age International Publishers.

- 2. Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf on internet)
- 3. Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1st Edition,Excel Books,New Delhi.

REFERENCES:

- 1. Scientists must Write Robert Barrass (Available as pdf on internet)
- 2. Crafting Your Research Future Charles X. Ling and Quiang Yang (Available as pdf on internet)

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) : : ANANTAPURAMU

Department Of Computer Science & Engineering

M.Tech. I – II Sem.(CS)	Т	Р	С
	0	4	2

15D51211: SERVICE ORIENTED ARCHITECTURE & SOFTWARE TESTING LAB

Student is expected to complete the following experiments as a part of laboratory work.

Part - A

- 1. Develop at least 5 components such as Order Processing, Payment Processing, etc., using .NET component technology.
- 2. Develop at least 5 components such as Order Processing, Payment Processing, etc., using EJB Component Technology.
- 3. Invoke .NET components as web services.
- 4. Invoke EJB components as web services.
- 5. Develop a Service Orchestration Engine (workflow) using WS-BPEL and Implement Service Composition. For Example, a business process for planning business travels will invoke several services. This process will invoke several airline companies (such as American Airlines, Delta Airlines etc.) to check the airfare price and buy at the lowest price.
- 6. Develop a J2EE client to access a .NET web service.
- 7. Develop a .NET client to access a J2EE web service.

Part - B

- 1. Write programs in C Language to demonstrate the working of the following constructs: i) do...while ii) while....do iii) if...else iv) switch v) for
- 2. A program written in C language for Matrix Multiplication fails. Introspect the causes for its failure and write down the possible reasons for its failure.
- 3. Consider ATM System and Study its system specifications and report the various bugs.
- 4. Write the test cases for Banking application.
- 5. Create test plan document for Library Management System.
- 6. Create test cases for Railway Reservation.
- 7. Create test plan document for Online Shopping.

Working with Tool's:

Understand the Automation Testing Approach, Benefits, Workflow, Commands and Perform Testing on one application using the following Tool's.

- 1. Win runner Tool for Testing.
- 2. Load runner Tool for Performance Testing.
- 3. Selenium Tool for Web Testing.
- 4. Bugzilla Tool for Bug Tracking.
- 5. Test Director Tool for Test Management.
- 6. Test Link Tool for Open Source Testing.

Part-C

- 1. Transforming Data into ARFF
- 2. Transforming CSV into ARFF.
- 3. Visualizing Arff Data Files using WEKA
- 4. Simulating Apriori Algorithm in WEKA
- 5. Create OLAP Cube from Student Data Base
- 6. Demonstrating Decision trees using J48 Classifier
- 7. Create OLAP Cube from Library Data Base
- 8. Create OLAP Cube from Hotel Data Base
- 9. Create OLAP Cube from shopping Data Base.
- 10.Create OLAP Cube from sales Data Base

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER SCIENCE

I SEMESTER

S.No.	Course	Subject Name	Cate	Ho	urs I Weel	Per K	Credits
	Code		Gory	L	Т	Ρ	
1	21D51101	Advanced Computer Networks	PC	3	0	0	3
2	21D51102	Fundamentals of Data Science	PC	3	0	0	3
3	Profession	al Elective – I			•		
	21D51103	Computer Vision					
	21D51104	Machine Learning	PE	3	0	0	3
	21D51105	Agile Secure Software Engineering					
4	Profession	al Elective – II					
	21D51106	Distributed Systems					
	21D51107	Information Security	PE	3	0	0	3
	21D51108	Data Visualization					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies					
7	21D51109	Advanced Computer Networks Lab	PC	0	0	4	2
8	21D51110	Data Science Lab	PC	0	0	4	2
	·	Total		16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER SCIENCE

II SEMESTER

S.No.	Course	Subject Name	Cate	Ho	urs l Weel	Per	Credits	
2	Code		Gory	L	T	P	Siculto	
1	21D51201	Internet of Things	PC	3	0	0	3	
2	21D51202	Virtual Reality and Augmented Reality	PC	3	0	0	3	
3	Profession	al Elective – III		•		•		
	21D51203	Cyber Security & Digital Forensics						
	21D51204	Deep Learning	PE	3	0	0	3	
	21D51205	Service Oriented Architecture						
4	Profession	al Elective – IV						
	21D51206	Predictive Data Analytics						
	21D51207	Software Defined Networks	PE	3	0	0	3	
	21D51208	Randomized Approximation Algorithms						
5	21D11209	Technical Seminar	PR	0	0	4	2	
6	21D11210	Disaster Management						
	21D11211	Constitution of India	AC	2	0	0	0	
	21D11212	Stress Management by Yoga	-					
7	21D51209	Internet of Things Lab	PC	0	0	4	2	
8	21D51210	Virtual Reality and Augmented Reality Lab	PC	0	0	4	2	
	1	Total	1	14	00	12	18	

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COMPUTER SCIENCE

III SEMESTER

S.No.	Course	Subject Name	Cate	Ho	ours I Weel	Per s	Credits
	Coue		Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D51301	Block chain Technologies					
	21D51302	Reinforcement Learning	PE	3	0	0	3
	21D51303	Software Reliability					
2	Open Elect	tive					
	21D50301	Software Development and IT Services	OE	3	0	0	3
3	21D51304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
		Total		06	00	20	18

IV SEMESTER

S.No.	Course	Subject Name	Cate	Но	urs I Weel	Per s	Credits
	Code		Gory	L	Т	Р	
1	21D51401	Dissertation Phase – II PR 0 0					16
	Total					32	16

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51101	ADVANCED COMPUTER NETWORKS	L	Т	P	C		
Semester	Ι	(21D51101)	3	0	0	3		
	11					4		
Course Object	tives:							
To introd	luce the wirel	ess and mobile network environment.						
To discus	ss the workin	g of GSM						
• To teach	the emerging	technologies in the mobile environment.						
To transr	nit knowledg	e regarding wireless LANs.						
To elució	late the data c	dissemination techniques						
• To educ	cate the im	portance of adaptability of the transport	lave	er f	or	the		
wirelesse	environment.		5					
Course Outco	mes (CO): St	tudent will be able to						
Describe	the mobile ne	etwork environment						
• Justify th	le need for co	ntinuous emergence of technologies						
• Experime	ent with the p	protocols of GSM environment						
Develop	new routing j	protocols for mobile environment						
Propose i	• Propose new data dissemination techniques							
Recomm	end modifica	tions to network and transport protocols						
UNIT – I		k _k	Lee	cture	e Hrs	s:		
Introduction:	Mobility of	Bits and Bytes, Wireless- The Beginning, Mot	oile	Con	iputi	ing,		
Dialogue Con	trol, Networ	rks, Middleware and Gateways, Application	and	d S	ervi	ces,		
Developing M	obile Compu	iting Applications, Security in Mobile Comput	ing,	Sta	ndar	ds-		
Why are they N	Vecessary?, St	tandards Bodies, Players in the wireless Space.						
Mobile Comp	uting Archit	ecture: History of Computers, History of Intern	et, I	nter	net-	Гhe		
Ubiquitous Ne	etwork, Arch	hitecture for mobile computing, 3-tier architecture	tectu	ıre,	Des	ign		
considerations	for Mobile C	computing, Mobile Computing through Internet, I	Mak	ing (exist	ing		
applications mo	obile-enabled							
Mobile Device	s and Systen	ns: Mobile Smartphones, Smart mobiles, and Sys	tem	s, Ha	andh	ield		
Packet Compu	iters, Handhe	eld devices, Smart systems, Limitations of M	lobi	le L)evic	ces,		
Automotive Sy	stems		Ŧ					
$\frac{\text{UNIT} - \text{II}}{\text{D}}$			Lee	cture	$\frac{Hrs}{DFI}$	<u>3:</u>		
Emerging Tec	hnologies: In	ntroduction, Bluetooth, Radio frequency identif	1cati	on (KFI	D),		
Mobile IP, Inte	rnet Protocol	Version 6(IPV6).	V	10	d	50		
Wireless Media	um Access Co	ontrol, CDMA, 3G, wireless Broadband (wiMA	ι Χ),	4G	and	3 G		
	1		La	otres				
UNII – III Short Massage	Somioo(SN	(S). Mobile Computing over SMS_SMS_Value	Leo			5.		
through SMS	e Service(Siv	15): Mobile Computing over SMS, SMS, Value	auu	eu s		ces		
Conoral Pack	et Radio Se	arvice(CPRS). Introduction GPRS and Packet	dat	a N	otw	rk		
GPRS Networ	rk Architectu	ure GPRS Network Operations Data Servi	ices	a in	GP	RS		
Applications at	nd limitations	s for GPRS. Billing and charging in GPRS Enha	ince	d Da	ita r:	ates		
for GSM Evolu	ition(EDGE)				11	~~~		
Wireless Appl	ication Proto	col: Introduction, WAP, MMS.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

UNIT – IV		Lecture Hrs:							
Wireless LAN: Introduction, Advantages, IEEE 802.11 Standards, Architecture, Mobility in									
Wireless LAN,	, Deploying wireless LAN, Mobile adhoc Networks and Se	nsor Networks,							
Wireless LAN	Security, Wireless Access in Vehicular environment, Wirele	ess Local loop,							
Hiper LAN.									
Mobile Netwo	ork Layer: Mobile Internet Protocol, Packet delivery	and Handover							
management, l	Location management, Registration, Tunneling and Encaps	sulation, Route							
Optimization, I	DHCP, VOIP, IPSec.								
UNIT – V		Lecture Hrs:							
Mobile Trans	port Layer: Conventional TCP/IP transport layer protocols	, Indirect TCP,							
Snooping TCP,	Mobile TCP, Other methods for Mobile TCP layer Transmiss	ion.							
Data Dissemi	nation and Systems for Broadcasting: Communicatio	n Asymmetry,							
Classification of	of data delivery mechanism, Data dissemination Broadcast Me	odels, Selective							
tuning and Ir	idexing Techniques, Digital Audio Broadcasting(DAB),	Digital Video							
Broadcasting									
Textbooks:									
1. Asoke	K Talukder, Hasan Ahmed, Roopa R Yavagal, "Mobi	le Computing:							
Technol	logy, Applications and Service Creation", 2 nd edition, McGraw	/ Hill, 2010.							
2. RaJ Kar	nal, "Mobile Computing", 3 rd edition, Oxford University Press	8.							
Reference Boo	ks:								
1. Jochen	Schiller, "Mobile Communications", Addison-Wesley, Second	l Edition, 2009.							

Jochen Schnler, Mobile Communications, Addison-wesley, Second Edition, 2009.
 UWE Hansmann, LotherMerk, Martin S. Nocklous, Thomas Stober, "Principles of

Mobile Computing," Second Edition, Springer.

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51102	FUNDAMENTALS OF DATA SCIENCE	L	Т	P	C
Semester	Ι	(21D51102)	3	0	0	3
Course Object	tives:					
Provide	you with the	e knowledge and expertise to become a proficient	data	scie	entis	t.
• Demon	strate an und	lerstanding of statistics and machine learning co	once	pts t	that	are
vital for	data science					
Produce	e Python code	e to statistically analyse a dataset				
Critical	lv evaluate	data visualizations based on their design	an	d u	ise	for
commu	nicating stori	es from data				
Course Outco	mes (CO): S	tudent will be able to				
• Underst	and the key	concepts in data science, including their real-wo	rld a	appli	icatio	ons
and the	toolkit used	by data scientists		11		
• Explain	how data is	collected, managed and stored for data science				
Demon	strate an und	lerstanding of statistics and machine learning co	once	pts t	that	are
vital for	data science			1		
Critical	ly evaluate	data visualizations based on their design	an	d u	ise	for
commu	nicating stori	es from data				
UNIT – I			Lee	cture	e Hrs	3:
Introduction, W	Vhat Is Statis	tical Learning?, Why Estimate f?, How Do We H	Estin	nate	f?, 7	Гhe
Trade-Off Bet	ween Predic	tion Accuracy and Model Interpretability, Sup	ervi	sed	Ver	sus
Unsupervised	Learning, R	egression Versus Classification Problems, As	sess	sing	Mo	del
Accuracy, Mea	asuring the (Quality of Fit, The Bias-Variance Trade-of, The	e Cl	lassi	ficat	ion
Setting, Introd	uction to R	, Basic Commands, Graphics, Indexing Data,	Loa	ıding	g Da	ata,
Additional Gra	phical and N	umerical Summaries.				
UNIT – II			Lee	cture	Hrs	3:
Linear Regres	ssion, Simp	le Linear Regression, Multiple Linear Reg	ress	ion,	Ot	her
Considerations	in the Regre	ession Model, Comparison of Linear Regression	with	1 K-1	Near	rest
Neighbours, Li	near Regress	ion.				
UNIT – III			Lee	<u>cture</u>	<u>Hrs</u>	<u>;:</u>
Classification,	Logistic R	egression, Linear Discriminant Analysis, A	Com	ıpari	son	of
Classification N	Methods, Log	gistic Regression, LDA, QDA, and KNN.				
UNIT – IV			Le	cture	e Hrs	s:
Programming	for basic con	mputational methods such as Eigen values and	Eig	en v	vecto	ors.
sparse matrices	s, QR and S	VD, Interpolation by divided differences. Data V	Vran	glin	g: D	ata
Acquisition, Da	ata Formats,	Imputation, The split-apply-combine paradigm.		0	U	
UNIT – V			Lee	cture	e Hrs	3:
Data Objects an	nd Attribute	Types, Basic Statistical Descriptions of Data, Dat	a Vi	sual	izati	on,
Measuring Da	ta Similarity	and Dissimilarity. Data Warehouse: Basic	Con	cepts	s, D	ata
Warehouse Mo	odeling: Data	a Cube and OLAP, Data Warehouse Design and	nd U	Jsage	e, D	ata
Warehouse Implementation, Data Generalization by Attribute-Oriented Induction.						
Textbooks:						
1. Gareth	James Danie	ela Witten Trevor Hastie, Robert Tibshirani, An	Intr	oduc	ction	to
Statistic	cal Learning	g with Applications in R, February 11, 20	13,	wel	b li	nk:
www.st	atlearning.co	em.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

- 2. Mark Gardener, Beginning R The statistical Programming Language, Wiley, 2015.
- 3. Han ,Kamber, and J Pei, Data Mining Concepts and Techniques, 3rd edition, Morgan Kaufman, 2012.

Reference Books:

- 1. SinanOzdemir, Principles of Data Science, Packt Publishing Ltd Dec 2016.
- 2. Joel Grus, Data Science from Scratch, Oreilly media, 2015.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u>

(COMPUTER SCIENCE)

Course Code	21D51103	COMPUTER VISION	L	Т	Р	С		
Semester	Ι	(21D51103)	3	0	0	3		
		$\mathbf{PE} - \mathbf{I}$						
Course Objectives:								
• Be fami	iliar with both	h the theoretical and practical aspects of computing	wif	h im	ages			
Have de	escribed the f	Foundation of image formation measurement and a	nalv	sis.	.905.			
Underst	and the geon	netric relationships between 2D images and the 3D	wor	ld				
Grasp t	he principles	of state-of-the-art deep neural networks		10.				
Course Outcor	nes (CO): St	udent will be able to						
Develor	the practica	l skills necessary to build computer vision applicati	ons					
To have	e gained expo	sure to object and scene recognition and categoriza	tion	fron	ı im	ages		
UNIT - I	guinea expe	sure to object and seene recognition and eutogoriza	Le	cture	Hrs			
LINEAR FILT	ERS: Introdu	ction to Computer Vision Linear Filters and Convo	oluti	on S	Shift	Invariant		
Linear Systems	s. Spatial Fr	requency and Fourier Transforms. Sampling and	1 A	liasii	ng. I	Filters as		
Templates. Tec	hnique: Nor	malized Correlation and Finding Patterns. Techn	iaue	: Sc	alear	nd Image		
Pyramids.			1					
UNIT - II			Le	cture	Hrs	:		
EDGE DETEC	TION: Noise	- Additive Stationary Gaussian Noise, Why Finite	Dif	ferer	ices.	Respond		
to Noise, Estim	ating Derivat	tives - Derivative of Gaussian Filters, Why Smooth	ning	Help	s, Cl	noosing a		
Smoothing Filt	er, Why Sm	ooth with a Gaussian? Detecting Edges-Using th	neLa	plac	ian 1	to Detect		
Edges, Gradient	-Based Edge	Detectors, Technique: OrientationRepresentations	and	Cor	ners.			
UNIT - III		· · · ·	Le	cture	Hrs	:		
TEXTURE:Rep	presenting Te	exture - Extracting Image Structure with Filter	Ba	nks,	Rep	resenting		
Texture, Using	the Statistics	s of Filter Outputs, Analysis (and Synthesis) Using	g Or	iente	d Py	ramids –		
TheLaplacian P	yramid, Filte	rs in the Spatial Frequency Domain, Oriented Pyran	nids	5,				
Application:Syn	nthesizing T	extures for Rendering, Homogeneity, Synthesis	by	Sai	npliı	ng Local		
Models,Shape f	rom Texture,	Shape from Texture for Planes	1					
UNIT - IV			Le	cture	Hrs	:		
SEGMENTATI	ON BY CLU	JSTERING: What is Segmentation, Human Vision:	Gre	oupir	ng an	dGestalt,		
Applications: S	Shot Bounda	ary Detection and Background Subtraction, In	nage	Seg	nent	ation by		
Clustering Pixe	ls, Segmenta	tion by Graph-Theoretic Clustering. The HoughTra	nsfo	orm,	Fitti	ng Lines,		
Fitting Curves.			_					
UNIT - V			Le	cture	Hrs	:		
RECOGNIZAT	TON BY RI	ELATIONS BETWEEN TEMPLATES: Finding	Obj	ects	byV	oting on		
Relations betwee	een Template	es, Relational Reasoning Using Probabilistic Moc	lels	and	Searc	h, Using		
Classifiers to	Prune Searc	h, Hidden Markov Models, Application: HMN	/I a	nd S	Signl	Language		
Understanding,	Finding Peop	ble with HMM.						
1 Desid A Fam		Commenter Vision A Madam Assess to DUI 2	002			-		
1. David A.Fors	syth, Jean Pol	nce, Computer Vision-A Modern Approach, PHI, 2	003.					
Reference Boo	ks:			1	. 1			
1. Geometric	Computing	with Ulifford Algebras: Theoretical Foundation	is a	na A	Appli	cationsin		
2 Digital Ima	and Processing	and Computer Vision 1/a by Sonka						
2. Digital Illa	Jision and A	g and Computer vision, 1/t, by Solika.	ada	mv I	Prace	2000		
2. Digital Ima	Vision and Ro ge Processing Vision and Au	bobotics, Springer; 1 edition,2001 by Sommer. g and Computer Vision, 1/e, by Sonka.	ade	my I	-PPI	2000		

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51104	MACHINE LEARNING	L	Т	P	С
Semester	Ι	(21D51104)	3	0	0	3
		$\mathbf{PE} - \mathbf{I}$				
Course Object	ives:					
To understa	and the basic	theory underlying machine learning				
 To be able t 	to formulate i	machine learning problems corresponding to differe	ent a	nnlia	vatio	ns
To underst	and a range	of machine learning algorithms along with t	heir	etr	enoth	ns and
weaknesses		c of machine rearring argorithms along with t	nen	511	engu	is and
• To be able t	to apply mac	hine learning algorithms to solve problems of mode	rate	com	plex	ity
Course Outcor	nes (CO): St	udent will be able to				
Ability to machines	understand v	what is learning and why it is essential to the d	esig	n of	inte	lligent
• Apply theo	retical found	ations of decision trees to identify best split and B	aves	sian o	class	ifier to
label data p	oints	j i i i	5			
• Acquire kr	nowledge in	deep learning and be able to implement deep learning	earn	ing	mod	els for
language, v	vision, speech	and decision making		υ		
• Illustrate th	ne working of	f classifier models like SVM, Neural Networks an	d id	entif	fy cla	assifier
model for t	ypical machin	ne learning applications			2	
• Illustrate ar	nd apply clust	tering algorithms and identify its applicability in rea	ıl lif	epro	blem	IS.
UNIT - I			Le	cture	Hrs	
INTRODUCT	ION					
Learning Proble	ems – Perspe	ectives and Issues – Concept Learning – VersionSp	aces	s and	l Car	ndidate
Eliminations –	Inductive bi	as - Decision Tree learning - Representation - A	Algo	orith	n-He	euristic
SpaceSearch.						
UNIT - II			Le	cture	e Hrs	:
NEURAL NET	FWORKS A	ND GENETIC ALGORITHMS				
Neural Netwo	rk Represen	ntation – Problems – Perceptrons – Multilay	/er	Net	work	s and
BackPropagatic	on Algorithm	s – Advanced Topics – Genetic Algorithms – Hypo	thes	is Sp	pace	Search
– Genetic Progr	ramming – M	odels of Evaluation and Learning.				
UNIT - III			Le	cture	Hrs	:
BAYESIAN A	ND COMPU	JTATIONAL LEARNING				
Bayes Theorem	n – Concept	Learning – Maximum Likelihood – Minimum	Des	cript	ion 1	Length
Principle – Bay	yes Optimal	Classifier – Gibbs Algorithm – Naïve Bayes Cl	assi	fier ·	– Ba	iyesian
Belief Network	– EM Algor	ithm – Probability Learning – Sample Complexity	– Fi	nite	and I	nfinite
Hypothesis Spa	ces – Mistak	e Bound Model.				
UNIT - IV			Le	cture	Hrs	:
INSTANT BAS	SED LEARN	NING				~
K- Nearest Nei	ghbour Lear	ning – Locally weighted Regression – Radial Base	s Fi	uncti	ons -	– Case
Based Learning	5.					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

UNIT - V

Lecture Hrs:

ADVANCED LEARNING:

Learning Sets of Rules – Sequential Covering Algorithm – Learning Rule Set – First Order Rules – Sets of First Order Rules – Induction on Inverted Deduction – Inverting Resolution – Analytical Learning – Perfect Domain Theories – Explanation Base Learning – FOCLAlgorithm-Reinforcement Learning – Task – Q-Learning – Temporal DifferenceLearning

Textbooks:

1. Machine Learning – Tom M. Mitchell, -MGH

Reference Books:

1. Machine Learning: An Algorithmic Perspective, Stephen Marsland, Taylor & Francis

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (COMPUTER SCIENCE)

Course	21D51105	AGILE SECURE SOFTWARE ENGINEERING	L	Т	P	С
Code		(21D51105)				
Semester	Ι	PE – I	3	0	0	3

Course Objectives:

- To understand security in delivery of more useful software
- To understand the essence of agile development methods
- To understand the risks and attacks of agile programming
- To understand the principles and practices of extreme programming

Courses Outcomes:

- Introduce the concept of development agility and the Agile enablers
- Review each of the major agile development methods underscoring their strengths and weaknesses of security threats
- Understand how to manage an agile environment even within a structured organizational approach
- Learn how to introduce agility into a development organization

Lecture Hrs: Getting started with Security: Security is about Risk, Threat actors and Knowing Your Enemy, Security Values: Protecting our data, systems and people, Common security misconceptions or mistakes.

Agile Enablers: Build Pipeline, Automated Testing, Continuous Integration, Infrastructure as code, Release Management, Visible Tracking, Centralised Feedback, The Only Good code is deployed code, Operating Safely and at Speed.

Welcome to the Agile Revolution: Agile: A Potted Landscape, Scrum, the Most Popular of Agile Methodologies, Extreme Programming, Kanban, Lean, Agile Methods in General, What about DevOps?, Agile and Security.

Working with Your Existing Agile Life Cycle: Traditional Application Security Models, Per-Iteration Rituals, Pre-Iteration Involvement, Post-Iteration Involvement, Setting Secure Baselines, What About When You Scale?, Building Security Teams That Enable. UNIT - II

Lecture Hrs:

Security and Requirements: Dealing with Security in Requirements, Agile Requirements: Telling Stories, Tracking and Managing Stories: The Backlog, Dealing with Bugs, Getting Security into Requirements, Security Personas and Anti-Personas, Attacker Stories: Put Your Black Hat On, Attack Trees, Infrastructure and Operations Requirements.

Agile Vulnerability Management: Vulnerability Scanning and Patching, Dealing with Critical Vulnerabilities, Securing Your Software Supply Chain, How to Fix Vulnerabilities in an Agile Way, Security Sprints, Hardening Sprints, and Hack Days, Taking On and Paying Down Security Debt.

Risk for Agile Teams: Security Says, No, Understanding Risks and Risk Management, Risks and Threats, Dealing with Risk, Risk Management in Agile and DevOps, Handling Security Risks in Agile and DevOps.

Threat Assessments and Understanding Attacks: Understanding Threats: Paranoia and Reality, Your System's Attack Surface, Agile Threat Modelling, Common Attack Vectors.

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

UNIT - III		Lecture Hrs:						
Building Secu	re and Usable Systems: Design to Resist Compromise ,S	Security Versus						
Usability, Technical Controls, Security Architecture, Complexity and Security								
Code Review	for Security: Why Do We Need to Review Code?, Types of	Code Reviews,						
Peer Code Rev	iews, When Should You Review Code?, How to Review Code	, Who Needs to						
Review Code?, Automated Code Reviews, Code Review Challenges and Limitations,								
Adopting Secure Code Reviews, Reviewing Security Features and Controls, Reviewing								
Code for Inside	er Threats.							
Agile Security	Testing: How Is Testing Done in Agile? , If You Got Bu	ıgs, You'll Get						
Pwned, The A	gile Test Pyramid, Unit Testing and TDD, Service-Level Te	sting and BDD						
Tool, Accepta	nce Testing, Functional Security Testing and Scanning,	Testing Your						
Infrastructure,	Creating an Automated Build and Test Pipeline, A Place for 1	Manual Testing						
in Agile, How	Do You Make Security Testing Work in Agile and DevOps?	ſ						
UNIT - IV		Lecture Hrs:						
External Rev	iews, Testing, and Advice: Why Do We Need Exter	rnal Reviews?,						
Vulnerability	Assessment, Penetration Testing, Red Teaming, Bug Boun	ties, How Bug						
Bounties ,Conf	iguration Review, Secure Code Audit, Crypto Audit, Choos	ing an External						
Firm, Getting Y	Cour Money's Worth.							
Operations an	d OpSec: System Hardening: Setting Up Secure Systems, Ne	etwork as Code,						
Monitoring an	d Intrusion Detection, Catching Mistakes at Runtime, Run	ntime Defense,						
Incident Respo	onse: Preparing for Breaches, Securing Your Build Pipeline,	ShhKeeping						
Secrets Secret.								
Compliance:	Compliance and Security, Different Regulatory Appro	oaches, Which						
Approach Is E	setter?, Risk Management and Compliance, Traceability of	Changes, Data						
Privacy, How t	o Meet Compliance and Stay Agile, Building Compliance into	o Your Culture,						
Certification ar	id Attestation.							
$\frac{\text{UNIT} - \text{V}}{\text{Q}}$		Lecture Hrs:						
Security Cult	ure: The Importance of Security Culture, Building a Se	curity Culture,						
Principles of E	ffective Security, Security Outreach.	0. D.1.						
What Does A	gile Security Mean?: Laura's Story, Jim's Story, Michael	s Story, Rich's						
Story.								
1 extbooks:	Augliertien Constitut Eachline Constitution - Continuous Dal	· D'1'						
I. Agile	Application Security: Enabling Security in a Continuous Den	VD silly Madia						
By Lat	ira den, Michael Brunton-Spall, Kich Smith, Jim Bird, C	J Kenny Media,						
Defence De								
1 James	'KS; Shore and Shane Warden " The Art of Agile Developmen							
I. James	Shore and Shahe warden, The Art of Agne Development	ι , \cup NLILLI ,						

2007

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51106	DISTRIBUTED SYSTEMS	L	Т	Р	С					
Semester	Ι	(21D51106)	3	3							
		PE – II									
Course Objectives:											
To introd	uce the funda	mental concepts and issues of managing large volu	ıme	of sł	nared	data					
in a para	llel and dist	ributed environment, and to provide insight into	o re	lated	rese	earch					
problems											
Course Outcor	nes (CO): St	udent will be able to									
• Design trends in distributed systems.											
Apply net	work virtuali	zation.									
Apply ren	note method	invocation and objects									
UNIT - I			Le	cture	Hrs						
Distributed data	processing:	What is a DDBS: Advantages and disadvantages of	of D	DBS	: Pro	blem					
areas; Overview	of database	and computer network concepts			, -						
DISTRIBUTED	DATABAS	E MANAGEMENT SYSTEM ARCHITECTURE	Tra	nspa	renci	ies in					
a distributed DI	BMS; Distrib	uted DBMS architecture; Global directory issues		•							
UNIT - II		.	Lee	cture	Hrs						
DISTRIBUTED DATABASE DESIGN											
Alternative design strategies; Distributed design issues; Fragmentation; Data Allocation											
SEMANTICS I	DATA CONT	TROL									
View managem	ent; Data sec	urity; Semantic Integrity Control									
QUERY PROC	ESSING ISS	UES									
Objectives of qu	uery processi	ng; Characterization of query processors; Layers of	que	ry pi	oces	sing;					
Query decompo	sition; Local	ization of distributed data									
UNIT - III			Lee	cture	Hrs						
Factors govern	ing query o	ptimization; Centralized query optimization; Or	derir	ng o	ffrag	ment					
queries; Distrib	uted query op	otimization algorithms									
TRANSACTIO	N MANAGE	EMENT									
The transaction	n concept; (Goals of transaction management; Characteristi	cs (oftra	nsact	ions;					
Taxonomy of tr	ansaction mo	odels									
CONCURREN	CY CONTRO	DL		~ ~							
Concurrency co	ontrol in cent	ralized database systems; Concurrency control in L	DB	Ss;D	istri	outed					
concurrency con	ntrol algorith	ms; Deadlock management	_								
UNIT - IV			Lee	cture	Hrs	:					
Reliability issu	es in DDB	Ss; Types of failures; Reliability techniques; C	Com	nit	prote	ocols;					
Recovery proto	cols		-								
UNIT - V			Le	cture	Hrs						
PARALLEL D	ATABASE S	YSTEMS									
Parallel archited	ctures; paralle	el query processing and optimization; load balancin	g								
ADVANCED I	OPICS										
Mobile Databas	es, Distribute	ed Object Management, Multi-databases									
Textbooks:	D' / 1 / 1 F				11 10	0.1					
1. Principles of	Distributed L	Database Systems, M. I. Ozsu and P. Valduriez, Pre	ntice	e-Ha	11, 19	191.					
Keierence Boo	KS:		<u> </u>								
1. Distributed Database Systems, D. Bell and J.Grimson, Addison-Wesley, 1992.											

JAWAHAI JNTUA COLL

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51107	INFORMATION SECURITY	L	Т	Р	С					
Semester	Ι	(21D51107)	3	0	0	3					
		PE - II									
Course Object	ives:										
To unders	stand basics of	of Cryptography and Network Security.									
• To be abl	e to secure a	message over insecure channel by various means.									
• To learn about how to maintain the Confidentiality, Integrity and Availability of a Data											
• To understand various protocols for network security to protect against the threats in the											
networks.											
Course Outcomes (CO): Student will be able to											
Provide s	ecurity of the	e data over the network.									
Do resear	ch in the eme	erging areas of cryptography and network security	•								
Implement	nt various net	working protocols.									
Protect an	ny network fr	om the threats in the world									
UNIT - I			Lee	cture	Hrs	;:					
Security Attack	s (Interruptio	on, Interception, Modification and Fabrication), S	ecur	ity S	bervi	ces					
(Confidentiality	y, Authentica	tion, Integrity, Non-repudiation, access Control a	nd A	Avail	abil	ity)					
and Mechanism	ns, A model	for Internetwork security, Internet Standards an	d R	FCs,	But	ffer					
overflow & for	rmat string v	ulnerabilities, TCP session hijacking, ARP atta	cks,	rou	te ta	ble					
modification, U	DP hijacking	g, and man-in-the-middle attacks.	T								
UNIT - II			Lee	cture	Hrs	<u>;</u>					
Conventional E	incryption Pr	inciples, Conventional encryption algorithms, cipl	ier b		mo ″	des					
of operation,	location of	Example of the second s	es (of N	less	age					
Authentication,	Secure Hash	Functions and HMAC.	Lo		IL						
UNII - III Dublia kay ary	ntography pr	inciples public key expression algorithms di			nrs						
digital Cartific	ptography pr	ate Authority and key management Kerberge N	gitai	ס sigi	iroot	es,					
Authentication	ales, Certific	are Authority and key management Kerberos, 2	X .30	9 D.	neci	ory					
LINIT - IV			Ιe	eture	Hrc	•					
Email privacy:	Pretty Good	Privacy (PGP) and S/MIME IP Security Overvi	ew	IP S	Secu:	rity					
Architecture A	Authentication	Header Encapsulating Security Payload Com	ow, bini	ng S	Secu	rity					
Associations an	d Key Mana	gement	.om	11 <u>6</u> -	, ccu	incy					
UNIT - V			Le	cture	Hrs						
Web Security F	Requirements	. Secure Socket Laver (SSL) and Transport Laver	Sec	uritv	(TL	<u>.</u> S).					
Secure Electron	nic Transactio	on (SET).Basic concepts of SNMP, SNMPv1 Cor	nmu	nity	faci	lity					
and SNMPv3. I	Intruders, Vir	uses and related threats.		2		2					
Textbooks:											
1. Network	k Security I	Essentials (Applications and Standards) by W	illia	m S	talli	ngs					
Pearson	Education.										
2. Hack Pr	oofing your	network by Ryan Russell, Dan Kaminsky, Rain Fo	rest	Pup	opy,	Joe					
Grand,	David Ahm	ad, Hal Flynn IdoDubrawsky, Steve W.Man	zuik	and	d R	yan					
Permeh	, wileyDream	itech,									
3. Cryptog	graphy and ne	twork Security, Third edition, Stallings, PHI/Pears	son								

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Reference Books:

- 1. Network Security and Cryptographyl, Bernard Menezes , Cengage Learning.
- 2. Cryptography and SecurityC.K. Shymala, N. Harini and Dr. T.R. Padmanabhan,Wiley-India.
- 3. Applied Cryptography, Bruce Schiener, 2nd edition, John Wiley & Sons.
- 4. Cryptography and Network Security, AtulKahate, TMH.
- 5. Introduction to Cryptographyl, Buchmann, Springer.
- 6. Number Theory in the Spirit of Ramanujan^I, Bruce C.Berndt, University Press
- 7. Introduction to Analytic Number Theoryl, Tom M.Apostol, University Press

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51108	DATA VISUALIZATION	L	Т	P	С
Semester	Ι	(21D51108)	3	0	0	3
		PE – II				
Course Object	tives:					
• To deve	lop skills to l	both design and critique visualizations.				
• To intro	duce visual p	perception and core skills for visual analysis.				
• To unde	erstand visual	ization for time-series analysis.				
• To unde	erstand visual	ization for ranking analysis.				
To unde	erstand visual	ization for deviation analysis				
Course Outcon	mes (CO): St	tudent will be able to				
 Explain 	principles of	visual perception				
 Apply c 	ore skills for	visual analysis				
 Apply v 	visualization t	echniques for various data analysis tasks				
• Design	information d	lashboard				
UNIT - I			Le	cture	e Hrs	:
Information vis	sualization –	effective data analysis - traits of meaningful data	- v	isual	per	ception –
making abstrac	t data visible	e – building blocks of information visualization – a	ınaly	vtical	inte	raction –
analytical navi	gation – opt	timal quantitative scales - reference lines and re-	egioi	ns –	trel	lises and
crosstabs – mi	ultiple concu	rrent views – focus and context – details on de	man	1d –	ove	r-plotting
reduction – ana	lytical patter	ns – pattern examples.				
UNIT - II			Le	cture	e Hrs	•
Distribution ar	nalysis – des	scribing distributions – distribution patterns – d	istri	butic	on di	splays –
distribution an	alysis best p	practices – correlation analysis – describing corr	elati	ons	- co	orrelation
patterns – corr	elation displ	ays – correlation analysis techniques and best pi		$\cos -$	- mu	Itivariate
analysis – mul	tivariate patt	erns – multivariate displays – multivariate analys	is te	cnnie	ques	and best
practices.			I.		IIma	
UNIT - III Information d	abboard	Introduction dashboard design issues and as		clure	e Hrs	: maada
Considerations	asnooard –	Introduction – dashboard design issues and ass	sessi	nent	01	needs –
Considerations	tor designing	g dashboard-visuar perception – Achieving eloquent	е.			
UNIT - IV			Le	cture	e Hrs	:
Advantages of	Graphics _L	ibrary of Graphs – Designing Bullet Graphs – D	esig	ning	Spa	rklines –
Dashboard Dis	splay Media	-Critical Design Practices - Putting it all tog	gethe	er- I	Jnve	iling the
dashboard.						
UNIT - V			Le	cture	e Hrs	•
Plotting Geosp	atial Data: I	ntroduction to Geoplotlib, Design Principles of	Geor	olotli	b, G	eospatial
Visualizations,	Plotting Geo	ospatial Data on a Map Web-Based Visualizations	s: Co	once	pts c	of Bokeh,
Interfaces-Plott	ing and Moc	lel Interfaces, Output, Bokeh Server, Presentation	, Int	egrat	ting	– HTML
Document and	Bokeh Appli	cations				
Textbooks:				•	•	
I. Ben Fry	, "Visualizin	g data: Exploring and explaining data with the pro	cess	ing e	envir	onment",
O'Reilly	y, 2008.		•11			
2. Mario L	2010	brodmann, "Data Visualization with Python", O'Re	шy,	FIrst		
Edition,	, 2019	ative data viewalization for the web" OND -:11 We-1	ie T		0012	
	unav. miera	cuve data visualization for the web. U Kenty Med	1a. Il	IU., 4	2013	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Reference Books:

- 1. Stephen Few, "Information dashboard design: Displaying data for at-a-glance monitoring", second edition, Analytics Press, 2013.
- 2. Greg Conti, "Security Data Visualization: Graphical Techniques for Network Analysis", No Starch Press Inc, 2007.

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51109	ADVANCED COMPUTER NETWORKS	L	Т	Р	С		
Semester	Ι	LAB	0	0	4	2		
		(21D51109)	-		-			
Course Objectives:								
Aims to	• Aims to provide advanced background on relevant computer networking topics to							
have a c	comprehensiv	e and deep knowledge in computer networks		_	_			
Course Outcon	mes (CO):							
Develop	o programs fo	r client-server application						
Perform	n packet sniffi	ng and analyze packets in network traffic.						
• Implem	ent error dete	cting and correcting codes						
• Implem	ent network s	ecurity algorithms						
List of Experi	ments:							
1. Implem	entation of cl	ient server programs for different network appli	icatio	ons				
2. Study a	nd analysis of	the network using Wireshark network protocol	l ana	lysei	•			
3. Implem	entation of to	pology generation for network simulation		•				
4. Implem	entation of qu	ieuing management						
5. Implem	entation of M	AC-layer protocols						
6. Implem	entation of ro	uting protocols						
7. Implem	entation of tra	ansport-layer protocols						
8. Implem	entation of ne	etwork security mechanisms						
References:								
Online learning	g resources/V	rtual labs						

Cours	se Code	21D51110	Data Science Lab	L	Т	Р	С
Sen	Semester I (21D51110)				0	4	2
		•			•	•	
Cours	e Objectiv	ves:					
•	To make	e students un	derstand learn about a Big Data - R Prog	gram	ming	, wa	y of
	solving p	problems.					•
•	To teach	students to w	rite programs in Scala to solve problems.				
Cours	e Outcom	nes (CO):					
•	Develop	new algorithi	ms and software tools for data management a	and r	ninir	ng, ar	nd to
	use them	for social go	od.				
•	Applying	g machine le	earning, data mining, and network analy	sis	to r	eal-w	/orld
	problems	s in society an	id industry.				
•	Exploring	g the creation	n of novel statistical and computational me	thod	s for	· sca	lable
	data min	ing, machine	e learning, optimization as well as statistic	al m	odel	ling	with
	complex	data sets					
List of	Experim	ients:					
1.	Write an	R program to	evaluate the following expression ax+b/ax-t).			
2.	Write an	R program to	read input from keyboard (hint: readLine()).				
3.	Write an	R program to) find the sum of n natural numbers: $1+2+3+4$	ł+	.n		
4.	Write an	R program	to read n numbers. (1) Sum of all even r	iumt	bers	(11)	Fotal
_	number o	of even number	ers.	1) C	
5.	write an	R program to	b read n numbers. (1) Total number of odd nu	imbe	ers (11	1) Su	m oi
6	Write on	uniders	a abtain (i)gum of two matrices A and P (ii)	auht	rooti	on of	- truco
0.	matrices	A and B (iii)	Product of two matrices	SUDL	lactio		two
7	Write on	A and D (III) P program fo	r "declaring and defining functions "				
8	Write an	R program th	at uses functions to add n numbers reading f	rom	kevh	oard	
9	Write an	R program us	ses functions to swap two integers	. OIII I	Reyb	oara	
10	Write an	1 R program	that use both recursive and non-recurs	ive	func	tions	for
10	impleme	nting the Fact	torial of a given number. n.				101
11.	Write an	R program t	o reverse the digits of the given number {ex	kamr	ole 12	234 t	o be
	written a	s 4321}	6 6 (1			
12.	Write an	R program to	implement (i)Linear search (ii) Binary Search	ch.			
13.	Write an	R program to	implement (i)Bubble sort (ii) selection sort.				
14.	Write a F	R program to	implement the data structures (i) Vectors (ii)	Arra	ay (ii	ii) M	atrix
	(iv) Data	Frame (v) Fa	actors				
15.	Write a	R program	to implement scan(), merge(), read.csv()	ano	d re	ad.ta	ble()
	command	ds.					
16.	Write an	R program (to implement "Executing Scripts" written or	n the	note	e pac	l, by
	calling to	the R consol	le.				
17.	Write a l	R program, R	Reading data from files and working with date	itase	ts (i)	Rea	ding
	data from	n csv files, ins	spection of data. (ii) Reading data from Excel	files	S.		
18.	Write a I	R program to	implement Graphs (i) Basic high-level plot	s (ii)	Mod	itica	tions
	ot scatter	r plots (iii) Mo	odifications of histograms, parallel box plots.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

References:

- 1. Big data Black Book: 2015 edition: dreamtech press. Pg. (490- 642)
- 2. Introducing to programming and problem solving by scala, mark c. lewis, lisal.lacher. CRC press, second edition.

Online Learning Resources:

- 1. https://www.tutorialspoint.com/scala/
- 2. https://www.tutorialspoint.com/r/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D51201	INTERNET OF THINGS	L	Т	Р	С				
Semester	II	(21D51201)	3	0	0	3				
Course Objectives:										
• To	• To provide students with good depth of knowledge of Designing Industrial IOT									
Sys	tems for varie	ous applications.								
• Kno	owledge for t	he design and analysis of Industry 4.0 Systems								
Course Ou	utcomes (CC): Student will be able to								
CO1: Know	wledge of the	eory and practice related to Industrial IoT Systems.								
CO2: Abil	ity to identify	y, formulate and solve engineering problems by using I	ndu	strial	l IoT	•				
CO3: Abil	ity to implen	nent real field problem by gained knowledge of Indust	rial	appli	icatio	ons				
with	IoT capabili	ty.	1							
UNIT – I			Le	cture	e Hrs	:				
IoT Data N	Aanagement	and Compute Stack, Fog Computing, Edge Computing	g,Th	e Hi	erar	chy				
of Edge, F	og and Clou	d, Smart Objects: The "Things" in IoT Sensors, Actua	tors	, and	1 Sm	iart				
Objects Se	nsors.		Ŧ							
UNIT - II			Le	cture	Hrs	<u>;</u>				
Actuators	Micro-Electi	Co-Mechanical Systems (MEMS) Smart Objects Sm	iart	Obje	ects:	A				
Definition (WSNa) C	I rends in	n Drotocols for Wireless Sensor Networks, Wireless Sel	nsor	ING	etwo	rks				
(WSINS), C		Il Protocols for wheless Sensor Networks.	La	oturo	LInc.	•				
Connacting	I Smort Obi	asts Communications Criteria Danga Fraguancy	Don	da		vor				
Consumpti	on Topology	a Constrained Devices Constrained Node Networks	Dall	us, a R	FUN ate e	and				
Throughpu	it Latency	and Determinism Overhead and Payload	Dai	ια Γ. hT		ess				
Technolog	ies IEEE 80	2 15 4 Standardization and Alliances Physical Layer	· M		Lav	ver				
Topology	Security. Co	mpetitive Technologies.	, 10		Luj	C 1,				
UNIT – IV	7		Le	cture	Hrs	:				
Smart and	Connected	Cities, An IoT Strategy for Smarter Cities, Vertical	IoI] Ne	eds	for				
Smarter C	ities, Global	vs. Siloed Strategies, Smart City IoT Architecture, St	reet	Lav	er C	lity				
Layer, Da	ta Center La	ayer, Services Layer, On-Premises vs. Cloud Smar	t Ci	ity S	Secu	rity				
Architectu	re, Smart Cit	y Use-Case Examples, Connected Street Lighting, C	onn	ected	d Str	reet				
Lighting S	olution Stree	t Lighting .								
UNIT – V			Le	cture	e Hrs	5:				
Architectu	re Smart Pa	rking, Smart Parking Use Cases, Smart Parking Arch	nitec	ture,	, Sm	nart				
Traffic Co	ntrol, Smart	Traffic Control Architecture, Smart Traffic Applicati	ons,	Co	nnec	ted				
Environme	ent,The Need	for a Connected Environment, Connected Environment	nt Ai	rchite	ectu	re.				
Textbooks	s:									
1. IoT	`Fundamenta	als: Networking Technologies, Protocols and Use Case	s foi	Inte	ernet	of				
Thi	ngs, David H	Ianes, Gonzalo Salgueiro, Patrick Grossetete, Rob Bar	ton a	und J	eron	ne				
Hei	nry, Cisco Pr	ess, 2017.								
Reference	Books:									
1. Ind	ustry 4.0: T	he Industrial Internet of Things Alasdair Gilchrist	Publ	licati	ons:	А				
pre	ss.									

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D51202	VIRTUAL REALITY AND AUGMENTED	L	Т	Р	С
Code	TT	(21D51202)	2	0	Δ	2
Semester	11	(21D51202)	3	U	U	3
Course Of	viactivas					
	Jecuves.	human interaction with computers				
• 10	Development about 1	Nisteral meliter				
• 10 T	Demonstrate	Virtual reality				
• 10	introduce to t	he current state of VR Hardware and Software.				
• To	explain how t	to apply VR/MR/AR for various applications.				
Course Ou	itcomes (CO): Student will be able to				
CO1:	Study the fund	damentals of VR, AR and MR				
CO2: 5	Select approp	riate software and hardware for developing VR Appli	catic	ons		
CO3: 1	Design VR A	pplications				
CO4: 0	Create game of	objects using unity	-			
UNIT – I			Le	cture	e Hrs	5:
Introducti	on to Virtua	l Reality				
What is Vi	rtual Reality,	Modern VR experiences, History Repeats.				
Unity: Vir	tually Everyt	thing for you, what is virtual reality to you, types o	f he	ad-n	noun	ted
displays: I	Desktop VR,	Mobile VR, The difference between virtual reality	and	aug	men	ted
reality, Ap	plications vs	Games, Types of VR experiences, and Technical	ski	lls t	hat	are
important t	o VR.					
UNIT – II			Le	cture	Hrs	5:
Bird's-Eye	e View					
Hardware,	Software, Hu	man Physiology and Perception.				
Unity: Ol	bjects and S	Scale: Getting started with unity, creating a si	mple	e D	iorai	na,
Measureme	ent tools, Fi	rst Person Character: Understanding the Unity ch	iarac	cters,	, Ur	nity
standard as	ssets.					
UNIT – II	Ι		Lee	cture	e Hrs	5:
The Geom	etry of Virtu	al Worlds & Light and Optics:				
Geometric	Models, Ch	nanging Position and Orientation, Axis-Angle Rep	prese	entati	ions	of
Rotation, V	liewing Trans	sformations, Chaining the Transformations				
Light and	Optics: Ba	sic behavior of light, lenses, Optical Aberration	is, E	Iuma	ın E	ye,
Cameras, a	nd Displays.					
UNIT – IV	7		Le	cture	e Hrs	5:
The Physic	ology of Hun	nan Vision				
From the	Cornea to	Photoreceptors, From Photoreceptors to the Visu	al C	Corte	x, I	Eye
Movement	s, Implication	ns for VR.				
UNIT – V			Le	cture	e Hrs	5:
Motion in	Real and Vi	rtual Worlds The Vestibular System, Physics in the V	/irtu	al W	orld	•
Audio: Th	e Physics of S	Sound, the Physiology of Human Hearing, Auditory P	erce	ptior	1	
Textbooks	5:					
1. Vir	tual Reality, S	Steven M. LaValle, Cambridge University Press, 2016	5			
Reference	Books:					
1. Uni	ity Virtual rea	lity Projects, Jonathan Linowes, PACKT Publishing				

Ananthapuramu – 515 002, Andhra Pradesh, India

Code Libertool (21D51203) Semester II PE – III Course Objectives: • • • • To understand the basic digital forensics and technic examination on different digital devices. • • • To understand how to examine digital evidences. • • •	ques for conduct	2 3	0	0	3							
Semester II PE – III Course Objectives: • • • To understand the basic digital forensics and technic examination on different digital devices. • To understand how to examine digital evidences.	ques for conduct	3	0	0	3							
 Course Objectives: To understand the basic digital forensics and technic examination on different digital devices. To understand how to examine digital evidences 	ques for conduct	ino										
 To understand the basic digital forensics and technic examination on different digital devices. To understand how to examine digital evidences 	ques for conduct	ing	Course Objectives:									
examination on different digital devices.To understand how to examine digital evidences	-		the f	oren	sic							
• To understand how to examine digital evidences	1 .1 1	•										
is understand now to examine digital evidences	such as the d	ata	acqu	iisiti	on,							
identification analysis.												
• Understand key terms and concepts in Cryptography,	Governance and	Cor	nplia	nce.								
• Develop cyber security strategies and policies												
• Understand principles of web security and to gu	uarantee a secu	re	netw	ork	by							
monitoring and analyzing the nature of attacks the	rough cyber/com	put	er fo	orens	sics							
software/tools.												
Course Outcomes (CO): Student will be able to												
CO1: Analyze and evaluate the cyber security needs of an	organization.											
CO2: Determine and analyze software vulnerabilities and	l security solution	ns to	o red	uce	the							
risk of exploitation.	•											
CO3: Measure the performance and troubleshoot cyber se	curity systems.		• •									
CO4: Implement cyber security solutions and use	of cyber securi	ty,	info	rmat	ion							
assurance, and cyber/computer forensics software/to	0018.	τ.	- 4	TT								
UNII – I Infrastrusture geografite in Deel month. Security Cheller and	. Understanding	Le	cture	$\frac{1}{2}$ Hrs	.: 							
and Monitoring Systems: A Quick Primer on Infrastructure	turo Socurity	ACC	ess-	Cont	.roi							
Security Policies Physical Security Controls Access	Control Gates	ACCE A 11	than	-Ollu ticat	ion							
Systems Remote access Monitoring	Control Gates,	Λu	unen	ticat	ion							
UNIT – II		Le	cture	Hrs								
Understanding Video Surveillance systems. Understan	ding Intrusion-	Det	ectio	n a	nd.							
Reporting Systems, Local Host Security in the Real world. S	Securing Devices	S. Pr	otect	ting	the							
Inner Perimeter.	8	,		0								
UNIT – III		Le	cture	e Hrs	:							
Protecting Remote Access: Protecting Local Computing	Devices, Imple	eme	nting	g Lo	cal							
Protection Tools, Using Local Intrusion-Detection Tools,	Configuring Br	ows	er S	Secu	rity							
Options, Defending against Malicious Software, Hardening	Operating syste	ms,	Ove	ersee	ing							
Application Software Security, Applying Software Update	es and Patches.	Loc	al N	letw	ork							
Security in the Real world, Perimeter Security in the Real wo	rld.											
UNIT – IV		Le	cture	e Hrs	:							
Hiding the Private Network, Protecting the Perimeter:	Understanding	the	per	rime	ter,							
Firewalls, Network Appliances, Proxy Servers, Demilitariz	zed Zones (DMZ	Zs),	Hon	leypo	ots,							
Extranets, Protecting Data Moving Through the Internet	et: Securing Da	ata	in l	Moti	on,							
Cryptography.		Ŧ										
		Le	cture	e Hrs								
I dontifying and Defending appingt Vulnershilt 7	Software.	1:+:-		o.ft	0.42							
Exploite Social Engineering Exploite Network Throate ex	Day vuinerabi	inne	5, D	UILW Attac	are							
Denial of service (DoS) Attacks Spam Other Exploits	iu Allacks, DICl	10116	uy F	niac	лз,							
Identifying and Defending against Vulnerabilities: Zero Exploits, Social Engineering Exploits, Network Threats an	Day Vulnerabi nd Attacks, Dict	litie iona	s, S ary A	oftw Attac	are ks,							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Textbooks:

1. Charles J. Brooks, Christopher Grow, Philip Craig: Cyber Security- Essentials.

Reference Books:

- 1. Warren G.KruseII and Jay G.Heiser, "Computer Forensics: Incident Response Essentials", Addison Wesley, 2002.
- 2. Nelson, B.Phillips, A.Enfinger, F.Stuart, C., "Guide to computer forensics and investigators, 2 edition, Thomson Course Technology, 2006, ISBN: 0-619-21706-5.

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course	21D51204	DEEP LEARNING (21D51204)	L	Т	Р	С
Somostor	П	(21D51204) PF III	3	0	Δ	3
Semester	11	$\mathbf{I} \mathbf{E} - \mathbf{I} \mathbf{I}$	3	U	U	3
Course Ol	ojectives:					
• Der	nonstrate the	e major technology trends driving DeepLearning				
• Bui	ld, train and	apply fully connected deep neuralnetworks				
• Imp	plement effic	ient (vectorized) neuralnetworks				
• Ana	alyze the key	parameters and hyper parameters in a neural network'	sarc	hitec	ture	
Course Ou	itcomes (CC): Student will be able to				
CO1: A	Apply linear a	algebra and probability theory in the deep learning app	licat	ions		
CO2: E	Elaborate the	challenges and motivations to Deep learning				
CO3: I	Differentiate	the architectures of deep neuralnetwork				
CO4: E	Build a convo	olutional neuralnetwork				
CO5: E	Build and trai	n RNN andLSTMs				
UNIT – I			Lee	cture	Hrs	:
Linear A	l gebra: Scal	lars, Vectors, Matrices and Tensors, Matrix opera	ition	s, ty	ypes	of
matrices,	Norms, Ei	gen decomposition, Singular Value Decomposi	tion	, P	rinci	pal
Componen	ts Analysis.					
Probabilit	y and Info	prmation Theory: Random Variables, Probability	y D	istril	butic	ms,
Marginal F	Probability, C	Conditional Probability, Expectation, Variance and Cov	varia	nce,	Bay	'es'
Rule, Info	rmation The	cory. Numerical Computation: Overflow and Under	flow	7, G	radie	ent-
Based Opt	mization, Co	onstrained Optimization, Linear Least Squares.	-			
UNIT – II			Lee	cture	Hrs	:
Machine	Learning:	Basics and Under-fitting, Hyper parameters and	√alic	latio	n S	ets,
Estimators	, Bias and \mathbf{N}	ariance, Maximum Likelihood, Bayesian Statistics,	Sup	ervis	sed a	and
Unsupervis	sed Learning	, Stochastic Gradient Descent, Challenges Motivating	Deej	p Le	arnır	ıg.
Deep Feed	1-forward N	Networks: Learning XOR, Gradient-Based Learning	, H1	dder	i Un	its,
Architectu	re Design, Ba	ack-Propagation and other Differentiation Algorithms	-			
$\frac{\text{UNIT} - \text{II}}{\text{D}}$			Lee	cture	Hrs	:
Regulariza	ation for I	Deep Learning: Parameter Norm Penalties, Norm	n F	'enal	ties	as
Constraine	d Optimiza	tion, Regularization and Under-Constrained Pro	blen	ıs,	Data	iset
Augmentat	ion, Noise I	Robustness, Semi-Supervised Learning, Multi-Task	Lear	mng	g, Ea	irly
Stopping,	Parameter 1	ying and Parameter Sharing, Sparse Representation	.s, В	aggi	ng a	ind
Other Ense	emble Mietho	Das, Dropout, Adversarial Training, Tangent Distance	2, 18	ange	nt P	rop
	angent C	lassiner.		•	NT	1
Optimizat	lon lor lr	Desig Algorithms Dependent Initialization, Charles	iges		Inel	Irai
Network (Jpumization,	, Basic Algoriums, Parameter initialization Strateg	ies,	Alg		ins i
and Moto	live Learning	g Raies, Approximate Second-Order Methods, Optimiz	Latio	ու	rateg	,ies
	argoriumis.		I a	otures	U	•
Convolut	nol Not-	when The Convolution Operation Dealing Conv		tion		
Convolutio	n Eurotiona	Structured Outputs Date Types Efficient Convolution	volu		D?	ISIC
Dandom of	I Functions	ad Eastures, Basis for Convolutional Networks	1011	Aig	лш	ш\$,
with Adapt and Meta-4 UNIT – IV Convolutio Convolutio Random of	Algorithms. Algorithms. and Netwo on Functions. Unsupervise	g Rates, Approximate Second-Order Methods, Optimiz orks: The Convolution Operation, Pooling, Con , Structured Outputs, Data Types, Efficient Convolut ed Features, Basis for Convolutional Networks.	zatio Leo volu ion	tion,	rateg Hrs Ba prith	;ies : : : : : : : : : : : : : :

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (COMPUTER SCIENCE)

Lecture Hrs:

 $\mathbf{UNIT} - \mathbf{V}$ Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational Graphs, Recurrent Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence Architectures, Deep Recurrent Networks, Recursive Neural Networks, Echo State Networks, LSTM, Gated RNNs, Optimization for Long-Term Dependencies, Auto encoders, Deep Generative Models.

Textbooks:

- 1. Deep Learning", Ian Goodfellow, YoshuaBengio, Aaron Courville, MIT Press 2016.
- 2. Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017

Reference Books:

- 1. Fundamentals of Deep Learning, Designing next-generation machine intelligence algorithms, Nikhil Buduma, O'Reilly, Shroff Publishers, 2019.
- 2. Deep learning Cook Book, Practical recipes to get started Quickly, DouweOsinga, O'Reilly, Shroff Publishers, 2019

Online Learning Resources:

- 1. https://keras.io/datasets/
- 2. http://deeplearning.net/tutorial/deeplearning.pdf
- 3. https://arxiv.org/pdf/1404.7828v4.pdf

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> <u>(COMPUTER SCIENCE)</u>

Course	21D51205	SERVICE ORIENTED ARCHITECTURE	т	т	D	C
Code	21051205	(21D51205)	L		I	C
Semester	II	$\mathbf{PE} - \mathbf{III}$	3	0	0	3
Course O	bjectives:					
• Uno	derstand SOA	A and evolution of SOA.				
• Uno	derstand web	services and primitive, contemporary SOA.				
• Uno	derstand vario	ous service layers.				
• Uno	derstand serv	ice-oriented analysis and design based on guidelines.				
Course O	utcomes (CC	(): Student will be able to				
CO1: Desi	ign and motiv	vate software architecture for large scale software syste	ems			
C02 : Reco	ognize major	software architectural styles, design patterns, and fran	newo	orks		
CO3: De	scribe a sof	ftware architecture using various documentation	appr	oach	es a	and
arch	nitectural dese	cription languages				
CO4 : Ger	nerate archite	ctural alternatives for a problem and select among the	n			
CO5: Use	well-underst	ood paradigms for designing new systems				
UNIT – I			Le	cture	e Hrs	5:
Introduci	ng SOA: Fu	indamental SOA, Common Characteristics of Cont	emp	orary	/ SC)A,
Common 7	Tangible Ben	nefits of SOA, Common Pitfalls of Adopting SOA. T	he E	Evolu	ıtion	ı of
SOA: An S	SOA Timelin	e, The Continuing Evolution of SOA, The Roots of SO)A.			
UNIT – II			Le	cture	Hrs	5:
Web Serv	vices and Pr	rimitive SOA: The Web Services Frame Work, Ser	ervic	es,	Serv	ice
Description	ns, Messagi	ing. Web Services and Contemporary SOA (Part	I-/	Activ	/ity
manageme	ent and Comp	oosition): Message Exchange Patterns, Service Activit	y, C	oord	inati	on,
Atomic Tr	ansactions, (Orchestration, Choreography. Web Services and Con	temŗ	orar	y So	ЭA
(Part-II-Ac	lvanced Mes	ssaging, Metadata and Security): Addressing, Relia	ble	Mes	sagi	ng,
Correlation	n, Policies, M	Ietadata exchange, Security.	T			
UNIT – II	I		Le	cture	Hrs	5:
Principles	of Service-	-Orientation: Service–Orientation and the Enterpris	se, A	Anato	omy	of
SOA, Con	mmon Princ	iples of Service–Orientation, Interrelation between	1 P1	rinci	ples	of
ServiceOri	entation, Se	ervice Orientation and Object Orientation, Native	We	b S	ervi	ces
Support fo	or Principles	s of Service-Orientation. Service Layers: Service-	Jrie	ntati	on a	and
Contempor	rary SOA, Se	ervice Layer abstraction, Application Service Layer, F	susir	less	Serv	ice
Layer, Or	chestration	Service Layer, Agnostic Services, Service Layer	C	onfig	urat	ion
Scenarios.	7		T			
$\frac{\mathbf{UNII} - \mathbf{I}}{\mathbf{SOA} \mathbf{D}}$		the COA Daliance Liferents Director The Tax Dar	Le	cture	${1}$ Hrs): []
SUA Dell	very Strateg	the Agile Strategy Service Oriented Analysis (Dert	n St	rates	gy, I	ine
Bottom-up	Strategy, I	De Agne Strategy. Service Oriented Analysis (Part	1-III SO			Ш): in а
Business S	on to service	- Onemeu Analysis, benefits of a dusiness Centric	30/	л, D		mg
Dusiness 5						
Service ()riented Ar	nalysis (Part-II-Service Modelling). Service Mo	deliı	าธ	Serv	vice
Modelling	Guidelines	Classifying Service Model Logic Contrasting Se	rvice	-5, - M	odel	ing
Approache	es. Service O	riented Design (Part I-Introduction): Introduction to S	Servi	ce-C)rien	ted

Design, WSDL Related XML Schema Language Basics, WSDL Language Basics, Service

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Interface Design Tools. Service Oriented Design (Part II-SOA Composition Guidelines): SOA Composing Steps, Considerations for Choosing Service Layers, Considerations for Positioning Core SOA Standards, Considerations for Choosing SOA Extensions.

UNIT – V

Lecture Hrs:

Service Oriented Design (Part III- Service Design): Service Design Overview, Entity-Centric Business Service Design, Application Service Design, Task-Centric Business Service Design, Service Design Guidelines.

Service Oriented Design (Part IV-Business Process Design): WS-BPEL Language Basics, WS- Coordination Overview, Service Oriented Business Process Design.

Textbooks:

- 1. Service-Oriented Architecture-Concepts, Technology, and Design, Thomas Erl, Pearson Education.
- 2. Understanding SOA with Web Services, Eric Newcomer, Greg Lomow, Pearson Education.

Reference Books:

- 1. The Definitive guide to SOA, Jeff Davies & others, Apress, Dreamtech.
- 2. Java SOA Cook book, E.Hewitt, SPD.
- 3. SOA in Practice, N.M.Josuttis, SPD.
- 4. Applied SOA, M.Rosen and others, Wiley India pvt. Ltd.
- 5. Java Web Services Architecture, J.Mc Govern, and others, Morgan Kaufmann Publishers, Elsevier.
- 6. SOA for Enterprise Applications, Shankar.K, Wiley India Edition.
- 7. SOA-Based Enterprise Integration, W.Roshen, TMH.
- 8. SOA Security, K.RamaRao, C.Prasad, dreamtech press

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course Code	21D51206	PREDICTIVE DATA ANALYTICS (21D51206)	L	Т	Р	С
Semester	II	PE – IV	3	0	0	3

Course Objectives:

- To learn, how to develop models to predict categorical and continuous outcomes, using such techniques as neural networks, decision trees, logistic regression, support vector machines and Bayesian network models.
- To know the use of the binary classifier and numeric predictor nodes toautomate model selection.
- To advice on when and how to use each model. Also learn how to combine two or more models to improve prediction.

Course Outcomes (CO): Student will be able to

- CO1: Understand the process of formulating business objectives, data selection/collection preparation and process to successfully design, build, evaluate and implement predictive models for a various business application.
- CO2: Analyze Probability and Random experiments.

CO3: Define sampling techniques and apply various distribution models.

CO4: Solving Testing of Hypothesis Problems.

CO5: Apply predictive modeling approaches using a suitable package.

Lecture Hrs:

Statistic Fundamentals- Frequency Distributions and Measures of Central Tendency-Frequency Distribution, Graphic Representation of a Frequency Distribution, Averages or Measures of Central Tendency or measures of Location, Requisites for an Ideal Measure of Central Tendency, Arithmetic Mean, Median, Mode, Geometric Mean, Harmonic Mean, Selection of an Average, Partition Values, Measures of Dispersion, Skewness and Kurtosis– Dispersion, Characteristics for an Ideal Measure of Dispersion, Measures of Dispersion, Range, Quartile Deviation, Mean Deviation, Standard Deviation and Root Mean Square Deviation, Coefficient of Dispersion, Moments, Skewness, Kurtosis.

UNIT – II

UNIT – I

Lecture Hrs:

Probability and Random Variables- Basic Probability - Random Experiments, Sample Spaces Events, The Concept of Probability, The Axioms of Probability, Some Important Theorems on Probability, Assignment of Probabilities, Conditional Probability, Theorems on Conditional Probability, Independent Events, Bayes Theorem or Rule, Discrete Random Variables, Continuous Random Variables and examples of Random Variables.

UNIT – IIILecture Hrs:Sampling- Sampling-Introduction, Types or Sampling, Parameter and Statistic, Tests of
Significance, Null Hypothesis, Errors in Sampling, Critical Region and Level of Significance,
Sampling of Attributes, Sampling of Variable, Unbiased Estimate for population Mean and
Variance, Standard Error of Sample Mean, Test of Significance for Single Mean, Difference
of Means and Difference of Standard Deviations; Chi-Square Variate, Derivation of the
Chisquare Distribution, Applications or Chi-square DistributionUNIT – IVLecture Hrs:

Inferential Statistics- Introduction, Characteristics of Estimators, Methods or Estimation, Confidence Interval and Confidence Limits, Statistical Hypothesis-Simple and Composite, Steps in Solving Testing of Hypothesis Problem, Optimum Test Under Different Situations,

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (COMPUTER SCIENCE)

Neyman-Pearson Lemma.

Lecture Hrs:

UNIT – V Linear Models and Regression- Overview of Supervised Learning - Two Simple Approaches to Prediction, Statistical Decision Theory, Statistical Models, Supervised Learning and Function Approximation, Structured Regression Models, Classes of Restricted Estimators; Linear Methods for Regression- Linear Regression Models and Least Squares, Subset Selection, Shrinkage Methods, Methods Using Derived Input Directions, Lasso and Related Path Algorithms; Logistic Regression

Textbooks:

- 1. Fundamentals of mathematical statistics; S.C. Gupta, V.K. Kapoor; Sultan Chand & Sons.
- 2. Probability and statistics: Murrav R. Spiegel. John Schiller and R. AluSrinivasan;Sschaum's outline series, Mcgraw-hill.
- 3. The Elements of Statistical leaning; Trevor Hastie, Robert Tibshirani, Jerome Friedman; Springer.

Reference Books:

- 1. Applied Linear Statistical Models, Michael H. Kutner, Christopher J. Nachtsheim, John Neter; McGraw Hill
- 2. Applied logistic Regression, David W. Hosme, Stanley lemeshow; Wiley 3. Practical Statistics for Data Scientists, Peter Bruce & Andrew Bruce, O'Reilly

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course Code	21D51207	SOFTWARE DEFINED NETWORKS (21D51207)	L	Т	Р	С
Semester	II	$\mathbf{PE} - \mathbf{IV}$	3	0	0	3

Course Objectives:

This course introduces about software defined networking, an emerging paradigm in computer networking that allows a logically centralized software program to control the behavior of an entire network.

Course Outcomes (CO): Student will be able to

- CO1: Differentiate between traditional networks and software defined networks and understand the key benefits and use cases of SDN.
- CO2: Interpret the SDN data plane devices and Open-Flow Protocols
- CO3: Implement the operation of SDN control plane with different controllers
- CO4: Apply techniques that enable applications to control the underlying network using SDN

CO5: Evaluate Network Functions Virtualization components and their roles in SDN

UNIT – ILecture Hrs:Introduction: basic packet switching terminology, Historical background, the modern data
centre, traditional switch architecture, Autonomous and Dynamic forwarding tables, Can we

increase the packet forwarding IQ, Open source and technological shifts.

Why SDN: Evolution of switches and control panels, Cost, SDN Implications for research and innovation, Data centre innovation, Data centre needs.

UNIT – II	

Lecture Hrs:

Genesis of SDN: The evolution of networking technology, Forerunners of SDN, Legacy mechanisms evolve toward SDN, Software defined networking is born, Sustaining SDN interoperability, Open source contributions, Network virtualization, May I please call my network SDN.

How SDN Works: Fundamentals characteristics of SDN, SDN operation, SDN devices, SDN controller, SDN applications, Alternate SDN methods.

UNIT – III	Lecture Hrs:							
The OpenFlow Specification: Chapter-specific terminology, OpenF	low overview,							
OpenFlow 1.0 and OpenFlow basics, OpenFlow 1.1 additions, OpenFlow 1.2 additions,								
OpenFlow 1.3 additions, OpenFlow 1.4 additions, OpenFlow 1.5 additi	ons, Improving							
OpenFlow interoperability, Optical transport protocol extensions, OpenFlow 1	imitations							
UNIT – IV	Lecture Hrs:							
SDN in the data centre: Data centre definition, Data centre demar	ds, Tunnelling							
technologies for the data centre, Path technologies in the data centre, Ethern	et fabrics in the							
data centre, SDN use cases in the data centre, Comparison of open SDN, Over	erlays and APIs,							
Real-world data centre implementations.	-							
Network Function Virtualization: Definition of NFV, what can we virtualize, Standards,								
OPNFV, Leading NFV vendors, SDN vs NFV, In-Line Network functions.								
UNIT – V	Lecture Hrs:							

UNIT - VLecture Hrs:SDN Applications: Terminology, before you begin, Application Types, A brief history of
SDN controllers, Using floodlight for training purposes, A simple reactive java application,

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Controller considerations, Network device considerations, Creating network virtualization tunnels, Offloading flows in the data centre, Access control for the campus, traffic Engineering for service providers.

SDN Futures: Current state of affairs, SD-WAN, Potential novel applications of Open SDN.

Textbooks:

1. Paul Goransson Chuck Black timothy Culver: Software Defined Networks: A Comprehensive Approach, Morgan Kaufmann, Second Edition.

Reference Books:

1. Ken Gray Thomas Nadeau: network Function Virtualization, Morgan Kaufmann, 2016.

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course	21D51208	RANDOMIZED APPROXIMATION	L	т	Р	С
Code		ALGORITHMS	-	-	-	
Semester	п	(21D51208)	3	0	0	3
Semester		PE – IV	U	v	v	Ŭ
Course Ol	ojectives:					
• some f	amiliarity v	with several of the main thrusts of work in randomiz	ed a	lgor	ithm	1S
giving	you contex	t for formulating and seeking known solutions to	an	algo	rithr	nic
problem	n;					
• Design	and analysi	s of new algorithms for new problems that you encounted	er			
Course Ou	utcomes (C	O): Student will be able to				
CO1: Desi	gn and anal	yze efficient randomized algorithms.				
CO2: Anal	yze random	ized algorithms with respect to probability error and ex	kpec	ted 1	unn	ing
time	•					
CO3: Anal	yze approxi	mation algorithms and determine approximation factor.	1			
UNIT – I			Le	cture	e Hrs	3:
Introductio	on to Appro	ximation Algorithms, Greedy algorithms and local se	arch	, Ro	ound	ing
data and d	ynamic prog	ramming.				
UNIT – II			Le	cture	e Hrs	3:
Random sa	ampling and	randomized rounding of linear programs randomized ro	ounc	ling	of se	emi
definite pro	ograms, cuts	and metrics.				
UNIT – II	Ι		Le	cture	e Hrs	3:
Introductio	on: A Min-C	ut Algorithm, Las Vegas and Monte Carlo, Binary Plan	ar F	Partit	ions	, A
Probabilist	ic Recurren	nce, Computation Model and Complexity Classes, G	Gam	e-Tł	neore	etic
Technique	s, Moments	and Deviations, Tail Inequalities.				
UNIT – IV	7		Le	cture	e Hrs	3:
The Probal	oilistic Meth	od, Markov Chains and Random Walks, Algebraic Tech	hniq	ues		
UNIT – V			Le	cture	e Hrs	3:
Application	ns: Geomet	ric Algorithms and Linear Programming, Parallel a	ind	Dist	ribu	ted
Algorithms	s, The Fund	amental Data-structuring Problem.				
Textbooks	5:					
1. The	e Design of	Approximation Algorithms by David P. Williamson	an	d Da	avid	B.
Shi	noys I(Unit	I and Unit II)				
Reference	Books:					
1. Rai	ndomized A	lgorithms by Rajeev Motwani, PrabhakarRaghavan (Un	it II	to I	Unit	V)

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course Code	21D51209	INTERNET OF THINGS LAB	L	Τ	Р	С
Semester	II	(21D51209)	0	0	4	2

Course Objectives:

The main objective IOT applications are to know the different real time sensors used to measure the different electrical parameters and to control the different devices from anywhere through IOT.

Course Outcomes (CO): Student will be able to

- CO1: The students will be thorough about the technology behind the IoT and associated technologies
- CO2: The students will be able to use the IoT technologies in practical domains of society
- CO3: The students will be able to gain knowledge about the state of the art methodologies in IoT application domains.

LIST OF EXPERIMENTS:

- 1. Setting up of Raspberry Pi and connect to a network.
- 2. Familiarization with GPIO pins and control hardware through GPIO pins.
- 3. Speed Control of motors using PWM with python programming.
- 4. Use sensors to measure temperature, humidity, light and distance.
- 5. Web based hardware control.
- 6. Connect IOT devices through cloud using IoT protocol such as MQTT.
- 7. Controlling IoT devices using Arduino.
- 8. Create Wireless network of sensors using Zigbee.
- 9. Experiment on connectivity of Rasberry Pi with existing system components.
- 10. Exercise on working principle of Rasberry Pi.

Reference:

Online learning resources/Virtual labs

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course	21D51210	VIRTUAL REALITY AND AUGMENTED	T.	т	р	С
Code		REALITY LAB		1	1	C
Semester	Π	(21D51210)	0	0	4	2

Course Objectives:

The objective of this course is to explore the concepts of Virtual reality and develop 3D virtual environment.

Course Outcomes (CO): Student will be able to

CO1: Create and deploy a VR application.

CO2: understand the physical principles of VR

CO3: Create a comfortable, high-performance VR application using Unity

CO4: Identify, examine and develop software that reflects fundamental techniques for the design and deployment of VR experiences.

LIST OF EXPERIMENTS:

- 1. Installation of Unity and Visual Studio, setting up Unity for VR development, understanding documentation of the same.
- 2. Demonstration of the working of HDMs
- 3. Develop a scene in Unity that includes:i. a cube, plane and sphere, apply transformations on the 3 game objects.ii. add a video and audio source
- 4. Develop a scene in Unity that includes a cube, plane and sphere. Create a new material and texture separately for three Game objects. Change the colour, material and texture of each Game object separately in the scene. Write a C# program in visual studio to change the colour and material/texture of the game objects dynamically onbutton click.
- 5. Develop a scene in Unity that includes a sphere and plane. Apply Rigid body component, material and Box collider to the game Objects. Write a C# program to grab and throw the sphere using vr controller.
- 6. Develop a simple UI(User interface) menu with images, canvas, sprites and button. Write a C# program to interact with UI menu through VR trigger button such that on each successful trigger interaction display a score on scene.
- 7. Create a Simple Mini Project

References:

Online learning resources/Virtual labs

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course Code	21D51302	REINFORCEMENT LEARNING (PE – V)	L	Т	Р	С
Semester	II		3	0	0	3

Course Objectives:

- 1. Reinforcement Learning is a subfield of Machine Learning, but is also a generalpurpose formalism for automated decision-making and AI.
- 2. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world.

Course Outcomes:

- CO1: Formulate Reinforcement Learning problems
- CO2: Apply various Tabular Solution Methods to Markov Reward Process Problems
- CO3: Apply various Iterative Solution methods to Markov Decision Process Problems
- CO4: Comprehend Function approximation methods

UNIT I:

Introduction: Introduction to Reinforcement Learning (RL) – Difference between RL and Supervised Learning, RL and Unsupervised Learning. Elements of RL, Markov property, Markov chains, Markov reward process (MRP).

UNIT II:

Evaluative Feedback - Multi-Arm Bandit Problem: An n-Armed Bandit Problem, Exploration vs Exploitation principles, Action value methods, Incremental Implementation, tracking a non-stationary problem, optimistic initial values, upper-confidence-bound action selection, Gradient Bandits. Introduction to and proof of Bellman equations for MRPs

UNIT III:

Introduction to Markov decision process (MDP), state and action value functions, Bellman expectation equations, optimality of value functions and policies, Bellman optimality equations. Dynamic Programming (DP): Overview of dynamic programming for MDP, principle of optimality, Policy Evaluation, Policy Improvement, policy iteration, value iteration, asynchronous DP, Generalized Policy Iteration.

UNIT IV:

Monte Carlo Methods for Prediction and Control: Overview of Monte Carlo methods for model free RL, Monte Carlo Prediction, Monte Carlo estimation of action values, Monto Carlo Control, On policy and off policy learning, Importance sampling. Temporal Difference Methods: TD Prediction, Optimality of TD(0), TD Control methods - SARSA, Q-Learning and their variants.

UNIT V:

Eligibility traces: n-Step TD Prediction, Forward and Backward view of TD(λ), Equivalence of forward and backward view, Sarsa(λ),, Watkins's Q(λ), Off policy eligibility traces using importance of sampling. Function Approximation Methods: Value prediction with function

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

approximation, gradient descent methods, Linear methods, control with function approximation.

Textbooks:

- 1. Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction", 2nd Edition, The MIT Press.
- 2. CsabaSzepesvari Algorithms for Reinforcement Learning Morgan & Claypool, 2010.

References:

1. Reinforcement Learning By Richard S. (University Of Alberta) Sutton, Andrew G. (Co-Director Autonomous Learning Laboratory) Barto

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> (COMPUTER SCIENCE)

Course Code	21D50301	SOFTWARE DEVELOPMENT AND IT SERVICES-ORDER	L	Т	Р	C
Semester	III	(OPEN ELECTIVE)	3	0	0	3

Course objectives:

- Take user stories and translate them into functioning web applications using HTML, CSS, and JavaScript
- Evaluate alternative approaches to software implementations
- Work through coding issues with analytical debugging techniques

Course Outcomes:

UNIT – I:

The Big Picture: A Snapshot of Devops Culture, The Evolution of Culture, The Value of the Story, Illustrating Devops with Stories, What is Devops? The Devops equation, A History of Devops, Developer as Operator, The Advent of Software Engineering, The Advent of Proprietary Software and Standardization, The Age of the Network, The Beginnings of a Global Community,The Age of Applications and the Web, The Growth of Software Development Methodologies, Open Source Software, Proprietary Services, Agile Infrastructure, The Beginning of devopsdays, The Current State of Devops.

Foundational Terminology and Concepts: Software Development Methodologies, Operations Methodologies, Systems Methodologies, Development, Release, and Deployment Concepts, Infrastructure Concepts, Cultural Concepts

Devops Misconceptions and Anti-Patterns: Common Devops Misconceptions, Devops Anti-Patterns, The Four Pillars of Effective Devops

UNIT – II:

Collaboration: Individuals Working Together, Defining Collaboration, Individual Differences and Backgrounds, Opportunities for Competitive Advantage, Mentorship, Introducing Mindsets, Mindsets and Learning Organizations, the Role of Feedback, Reviews and Rankings, Communication and Conflict Resolution Styles, Communication Context and Power Differentials, Empathy and Trust, Humane Staffing and Resources, Effective Collaboration with Sparkle Corp.

Collaboration: Misconceptions and Troubleshooting: Collaboration Misconceptions, Collaboration Troubleshooting.

UNIT – III:

Affinity: From Individuals to Teams, What Makes a Team, Teams and Organizational Structure, Finding Common Ground Between Teams, Improving Team Communication, Case Study: United States Patent and Trademark Office, Bene‡ts of Improved Affinity, Requirements for Affinity, Measuring Affinity

Misconceptions and Troubleshooting: Affinity Misconceptions, Affinity Troubleshooting.

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING</u> <u>(COMPUTER SCIENCE)</u>

UNIT – IV:

Overview of Software, Automation, Monitoring, Metrics, Logging, Alerting, Events, Evolution of the Ecosystem.

Tools: Accelerators of Culture, What Are Tools? Irrelevance of Tools, Selection of Tools, Auditing Your Tool Ecosystem, Case Studies, Examining Etsy, Motivations and Decision-Making Challenges.

UNIT – V:

Scaling:Inflection Points, Understanding Scaling, Organizational Structure, Team Flexibility, Organizational Lifecycle, Complexity and Change, Scaling for Teams.

Case Studies: Growing and Scaling Teams, Job Postings and Recruitment Issues, Developing Individuals and Teams, Team Scaling and Growth Strategies, Managing Conflict, Scaling for Organizations.

Misconceptions and Troubleshooting: ScalingMisconceptions, ScalingTroubleshooting.

TEXT BOOKS:

- 1. Effective DevOps Building a Culture of Collaboration, A□nity , and Tooling at Scale, Jennifer Davis and Ryn Daniels
- 2. DevOpsfor Developers, Michael Hüttermann