COURSE STRUCTURE AND DETAILED SYLLABUS

FOR

M.TECH (COMPUTER AIDED STRUCTURAL ENGINEERING) REGULAR 2015 – Regulations

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY COLLEGE OF ENGINEERING (AUTONOMOUS) ANANTAPUR – 515 002 (A.P.)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY COLLEGE OF ENGINEERING :: (AUTONOMOUS) - ANANTAPUR CIVIL ENGINEERING DEPARTMENT Curriculum & Course Structure for M.Tech Course (Computer Aided Structural Engineering) 2015 For the batches admitted from 2015

I SEMESTER:

Code	SUBJECT	L	Р	С
15D10102	Computational Numerical Methods	4	0	4
15D11101	Matrix Methods of Structural Analysis	4	0	4
15D11102	Theory of Elasticity	4	0	4
15D12101	C++ and Data Structures	4	0	4
	Elective – I	4	0	4
15D11104	1. Experimental Stress Analysis			
15D12102	2. Optimization in Structural Design			
	Elective – II	4	4	2
15D12103	1. Modelling, Simulation & Computer Applications			
15D11107	2. Prestressed Concrete			
15D12104	CAD Laboratory – I	0	4	26

II SEMESTER:

Code	SUBJECT	L	Р	С
15D11201	Structural Dynamics	4	0	4
15D11202	Finite Element Analysis	4	0	4
15D12201	Artificial Neural Networks	4	0	4
15D12202	CAD & Computer applications in Structural Engineering	4	0	4
	Elective – III	4	0	4
15D11204	1. Analysis of Shells and Folded Plates			
15D12203	2. Reliability Based Engineering Design			
15D11207	3. Earthquake Resistant Structures			
	Elective – IV	4	4	2
15D12204	1. Management Information Systems			
15D11210	2. Fracture Mechanics			
15D11206	3. Advanced Concrete Technology			
15D54201	Research Methodology (Audit Course)			
15D12205	CAD Laboratory – II	2	4	26

III & IV SEMESTERS:

Code	Subject	Т	Р	С
15D12301	III Semester	0	4	2
	Seminar – I			
15D12401	IV Semester	0	4	2
	Seminar – II			
15D12302	III & IV Semester			44
	Project work			
		0	8	48

Note :All End Examinations (Theory and Practical)are of three hours duration.

T-Tutorial L-Theory P-Practical/Drawing C-Credits

L	Р	С
4	0	4

Subject Code:15D10102 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) First Semester

COMPUTATIONAL NUMERICAL METHODS

UNIT-I

Solution of Non-linear Equations: Newton-Raphson method, Von-mises formula, Chord's method, bisection method- Comparative study-solution of cubic equation and quartic equation. Numerical integration: Newton-Cotes integration formulas- Trapezoidal rule-Romberg Integration – Simpson's rule – Gaussian quadrature – Errors in integration formulas – Multiple integration with variable limits.

UNIT-II

Solution of system of equations: Gauss elimination method- gauss-Jordan method- L-U decomposition – Errors in the solution- iterative methods – solution of sets of non linear equations.

Boundary Value Problems and Characteristics – Value problems: Shooting method- solution through a set of equations – Derivative boundary conditions – characteristic value problems – Eigen values of matrix by iteration.

UNIT-III

Numerical Solution of Elliptical partial differential Equations: Equilibrium temperatures in a heated slab-Equation of steady state heat flow – Laplace equation on rectangular region – Poisson equation –Derivative boundary conditions.

UNIT-IV

Numerical Solution of parabolic partial Differential equations: Explicit Method- simple implicit method Crank- Nicolson method- Derivative boundary conditions – stability and convergence criteria - Equations in two dimensions.

UNIT-V

Finite Element method: General approach – Finite Element application in one dimension and 2-D problems.

TEXT / REFERENCE BOOKS:

- 1. Numerical Methods for Engineers by Steven c.chapra and Raymond P.canal –Mc Graw Hill book company.
- 2. Applied Numerical Analysis by Curtis .F.Gerald-Addition-wesley Publishing company.
- 3. C. Language and Numerical Methods by C.Xavier-New age international Publishers

L	Р	С
4	0	4

С

Subject Code:15D11101 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) First Semester MATRIX METHODS OF STRUCTURAL ANALYSIS

- 1. **INTRODUCTION:**-Indeterminacy-Determination of static and kinematic indeterminacies of two-dimensional and three-dimensional portal frames, pin jointed trusses and hybrid frames-coordinate systems –structural idealization. Introduction to Matrix Methods of Analysis-Flexibility and stiffness matrices-Force displacement relationships for axial force, couple, torsional moments stiffness method of analysis and flexibility method of analysis.
- 2. **ANALYSIS OF CONTINUOUS BEAMS** stiffness method and flexibility method of analysis –continuous beams of two and three spans with different end conditions-internal hinges.
- 3. ANALYSIS OF TWO DIMENSIONAL PORTAL FRAMES & PINJOINTED TRUSSES – stiffness and flexibility method of analysis of 2D portal frames with different end conditions-plotting of bending moment diagrams. Computation of joint displacement and member forces for pinjointed trusses.
- 4. **TRANSFORMATION OF CO-ORDINATES** Local and Global co-ordinate systemstransformation of matrices from local to global coordinates of element stiffness matrixdirect stiffness method of analysis-assembly of global stiffness matrix from element stiffness matrices –static condensation-sub-structuring.
- 5. **EQUATION SOLVERS-**solution of system of linear algebraic equations-direct inversion method-gauss elimination method-Cholesky method-banded equation solvers-frontal solution technique.

TEXT/REFERENCE BOOKS :

- 1. Structural Analysis by Pundit & Gupta, Tata MC Graw Hill Book company.
- 2. Structural Analysis by C.S.Reddy, Tata MC Graw Hill Book company
- 3. Cotes, R.C., Couties, M.G., and Kong, F.K., Structural Analysis, ELBS.
- MC.Guire, W.,and Gallagher, R.H., Matrix Structural analysis, John Wiley and sons.
 L P
- 5. John L.Meek., Matrix Structural Analysis, MC Graw Hill Book **4 0 4** company.
- 6. Structural Analysis R.C.Hibbeler, Pearson Education

Subject Code:15D11101

L	Р	С
4	0	4

Subject Code:15D11102

M.Tech (Computer Aided Structural Engineering) First Semester THEORY OF ELASTICITY

1. INTRODUCTION TO PLANE STRESS AND PLANE STRAIN ANALYSIS:

Elasticity –Notation for forces and stresses-Components of stresses –components of strain –Hooke's law. Plane stress-plane strain-Differential equations of equilibrium-Boundary conditions- Compatibility equations-stress function-Boundary conditions.

TWO DIMENSIONAL PROBLEMS IN RECTANGULAR COORDINATES: Solution by polynomials-Saint Venant's principle-Determination of displacementsbending of simple beams-application of Fourier series for two dimensional problems gravity loading.

3. TWO DIMENSIONAL PROBLEMS IN POLAR COORDINATES :

General Equation in polar co-ordinates - stress distribution symmetrical about an axis – Pure bending of curved bars- strain components in polar coordinates-Displacements for symmetrical stress distributions-simple symmetric and asymmetric problems-General solution of two dimensional problem in polar coordinates-Application of the general solution of two dimensional problem in polar coordinates-Application of the general solution in polar coordinates.

4. ANALYSIS OF STRESS AND STRAIN IN THREE DIMENSIONS: Principle stress - ellipsoid and stress-director surface-Determination of principle stresses- Maximum shear stresses-Homogeneous deformation-principle axis of strain rotation.GENERAL THEOREMS:

Balance laws - Differential equations of equilibrium- conditions of compatibility - Determination of displacement-Equations of equilibrium in terms of displacements-principle of superposition-Uniqueness of solution –the Reciprocal theorem.

5. TORSION OF PRISMATICAL BARS:

Torsion of prismatic bars- Elliptical cross section-other elementary solutions-membrane anology-Torsion of rectangular bars-solution of torsional problems by energy method-use of soap films in solving torsionol problems-hydra dyanmical analogies-Torsion of shafts, tubes, bars etc.

TEXT/REFERENCE BOOKS :

- 1. Theory of Elasticity and Plasticity by Timoshenko, S., MC Graw Hill Book company.
- 2. Advnced Strength of materials by Papoov, MC Graw Hill Book company.
- 3. Theory of Elasticity and Plasticity by Sadhu Singh. Khanna Publishers.
- 4. Chen, W.F. and Han, D.J.Plasticity for structural Engineers, Springer Verlag, New York.
- 5. Lubliner, J., Plasticity theory, Mac Millan Publishing Co., New York.
- 6. Foundations of Solid Mechanics by Y.C.Fung, PHI Publications.
- 7. Advanced Mechanics of Solids by L.S. Srinath, Tata MC Graw Hill Book company.

L	Р	С
4	0	4

8. Subject Code:15D12101

M.Tech (Computer Aided Structural Engineering) First Semester

C++ AND DATA STRUCTURES

Unit I :

Object oriented programming :- Procedure – oriented programming, object oriented programming paradigm, basic concepts of oop, benefits of opp. Basics of C++, key words, data types, operators, functions in C++, classes and objects.

Concepts of C++:- Constructors, parameterized constructions, copy constructor, destructors, Inheritance – single, multilevel, multiple, Hierarchical, Hybrid, parameter passing methods.

Unit II :

Sorting: Bubble sort, selection sort, Insertion sort, Quick sort, Merge sort, Heap sort, Radix sort. Searching: Binary Search, Linear Search.

Unit III :

Linked Lists :- Single Linked List, Circular Linked List, Double Linked List, Circular Double Linked, insertion in to and deletion from linked list.

Unit IV :

Stacks:- Introduction, Implementation using arrays and linked lists, applications: Arithmetic Expression, Implementation of Recursion, Towers of Hanoi,.

Queues: Introduction, Implementation using arrays and linked lists, Types of queues, Applications

Unit V :

Trees :- binary trees, representing binary trees in memory, Operations on Binary Trees, Types of trees.

TEXT BOOKS :

- 1. Object oriented programming with C++, "Balaguru Swamy", Tata McGraw Hill.
- 2. Classic Data Structures, "D. Samantha", PHI Learning Pvt. Ltd..
- 3. Data structures, Algorithms and Applications in C++, S. Sahni, University Press (India) Pvt.Ltd, 2nd edition, Universities Press.

REFERENCES :

- 1. Data structures and Algorithms in C++, Michael T.Goodrich, R.Tamassia and Mount, Wiley student edition, John Wiley and Sons.
- 2. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education. Ltd., Second Edition.
- 3. Data structures and algorithms in C++, 3rd Edition, Adam Drozdek, Thomson
- 4. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.
- 5. Problem solving with C++, The OOP, Fourth edition, W.Savitch, Pearson education.
- 6. Data Structures using C++, D.S. Malik, Cengage Learning, India Edition.

L P C 4 0 4

Subject Code:15D11104 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING)

EXPERIMENTAL STRESS ANALYSIS

(Elective-I)

First Semester

1. PRINCIPLES OF EXPERIMENTAL APPROACH :-

Merits of Experimental Analysis Introduction, uses of experimental stress analysis advantages of experimental stress analysis, Different methods –Simplification of problems.

2. STRAIN MEASUREMENT USING STRAIN GAUGES :-

Definition of strain and its relation of experimental Determinations Properties of Strain-Gauge Systems-Types of Strain Gauges –Mechanical, Acoustic and Optical Strain Gauges. Introduction to Electrical strain gauges - Inductance strain gauges – LVDT – Resistance strain gauges – various types –Gauge factor – Materials of adhesion base.

3. STRAIN ROSSETTES AND NON - DESTRUCTIVE TESTING OF CONCRETE:-

Introduction – the three elements Rectangular Rosette – The Delta Rosette Corrections for Transverse Strain Gauge.

Ultrasonic Pulse Velocity method –Application to Concrete. Hammer Test – Application to Concrete.

4. THEORY OF PHOTOELASTICITY :-

Introduction – Temporary Double refraction – The stress Optic Law –Effects of stressed model in a polariscope for various arrangements – Fringe Sharpening. Brewster's Stress Optic law.

5. TWO DIMENSIONAL PHOTOELASTICITY :-

Introduction – Isochramic Fringe patterns- Isoclinic Fringe patterns passage of light through plane Polariscope and Circular polariscope Isoclinic Fringe patterns – Compensation techniques – Calibration methods – Separation methods – Scaling Model to prototype Stresses – Materials for photo – Elasticity Properties of Photoelastic Materials.

Reference Books:-

1. Experimental stress analysis by J.W.Dally and W.F.Riley, College House Enterprises

- 2. Experimental stress analysis by Dr.Sadhu Singh.khanna Publishers
- 3. Experimental Stress analysis by U.C.Jindal, Pearson Pubilications.
- 4. Experimental Stress Analysis by L.S.Srinath, MC.Graw Hill Company Publishers.

L	Р	С
4	0	4

Subject Code:15D12102 M.TECH (COMPUTER AIDED STRUCTURAL ENGINEERING) I – SEMESTER OPTIMIZATION IN STRUCTURAL DESIGN

(Elective-I)

- 1. System approach Techniques of operation research Decision making Research models.Basic concepts of minimum weight, minimum cost design, variables, constrains, model and model building, objective function, classical methods.
- 2. Concept of liner programming, Integer programming, Quadratic programming, Dynamic programming and geometric programming methods for optimal design of structural elements. Linear programming: Standard form of linear programming problem, geometry of linear programming problem. Solution of system of linear simultaneous equations. Application of linear programming methods for plastic design of frames Computer search methods of univarite and multivariate minimsation.
- 3. Simplex method. Revised simplex method, duality of linear programming sensitivity or post optimality analysis.
- 4. Optimization by structural theorems. Maxwell Mitchell and Heymans theorem for structures and frames.
- 5. Optimization Techniques applied to fully stressed design with deflection constraints, optimality criterion methods.

TEXT / REFERENCE BOOKS:

- 1. Spunt, Optimum Structural Design, Civil Engineering and Engineering mechanics Services, Prentice Hall New Jersey, 1971.
- 2. S.S.Rao, Optimization theory and applications, Wiley Eastern Limited, New Delhi, 1977.
- 3. Uri Krisch, Optimum Structural Design Mc Graw hill Book co., 1981.
- 4. Richard Bronson, Operations Research, Schaums, outline series, Mc Graw Hill book company, Singapore 1983.
- 5. J.S.Arora, introduction to optimum Design, Mc Graw Hill Book company, new your, 1989.
- 6. A.J. Morris (Editor) Foundations of Structural Optimization a unified Approach, John Wiley and Sons, Chichester, 1982.

L	Р	С
4	0	4

Subject Code:15D12103 M.TECH (COMPUTER AIDED STRUCTURAL ENGINEERING) I – SEMESTER

MODELLING, SIMULATIONS AND COMPUTER APPLICATIONS

(Elective-II)

- 1. System models: Concepts, continues and discrete systems, system modeling, types of models, subsystems, corporate model, and system study.System simulation: Techniques, comparison of simulation and analytical methods, types of simulation, Distributed log models, cobweb models.
- **2. Continuous System Simulation:** Nemeric solution of differential equations, Analog computers, Hybrid computers, continuous system simulation languages CSMP, system dynamic growth models, logistic curves.
- **3. Probability concepts in simulation:** Monte Carlo techniques, stochastic variables, probability functions, Random Number generation algorithms.
- 4. Queuing Theory: Arrival pattern distributions, servicing times, queuing disciplines, measure of queues, mathematical solutions to queuing problems.Discrete System Simulation: Events, generation of arrival patterns, simulation programming tasks, analysis of simulation output.
- **5. GPSS & SIMSCRIPT, programming in GPSS:** simulation programming Techniques: Data Structures, Implementation of activities, events and queues, Event scanning, simulation algorithms in GPSS and SIMSCRIPT.

TEXT/ REFERENCE BOOKS:

- 1. Geoffery Gordon: System Simulation, PHI.
- 2. Naylor, Thomas, H.Computer Simulation experiments with models of economic systems, John Wiley and sons, 1971.
- 3. Naylor Thomas, H and ET. AI. Computer simulation techniques, John wiley and Sons, 1966.
- 4. Louis Wdward Alfeld and Alan K.Graham, Introduction to Urban Dynamics, wright Allen Press Inc., Massachusetts, 1976.
- 5. Richard J.Chorley and Peter haggett, Models in Geography, Methuen & Co.Ltd., 1977.
- 6. Hamdy A.Taha, Operations Research An Introduction, Macmillan Company, New York, 1987.
- 7. Thirumurthy.A.m. Environmental Facilities and Urban development in India-A System Dynamic Model for developing countries, Academic foundations, India.

L P C 4 0 4

Subject Code:15D11107

M.TECH (COMPUTER AIDED STRUCTURAL ENGINEERING) I – SEMESTER PRESTRESSED CONCRETE STRUCTURES ELECTIVE – II

- 1. INTRODUCTION: Development of prestressed concrete Advantages and Disadvantages of PSC over RCC –General principles of pre-stressing-pre tensioning and post tensioning –Materials used in PSC-high strength concrete –High tension steel-Different types /methods/systems of prestressing.
- **2.** Losses of prestress: Estimation of the loss of prestress due to various causes like elastic shortening of concrete ,creep of concrete, shrinkage of concrete, relaxation of steel, slip in anchorage, friction etc.
- **3. Flexure & Deflections:** Analysis of sections for flexure in accordance with elastic theory-Allowable stresses-Design criteria as per I.S code of practice –Elastic design of Beams (rectangular, I and T sections) for Flexure –Introduction to partial prestressing. Introduction-Factors influencing deflections-short term and long term deflections of uncracked and cracked members.
- 4. Shear, bond, Bearing and Anchorage: shear in PSC beams –Principal stresses Conventional elastic design for shear-transfer of prestress in pretensioned members-transmission length –Bond stresses-bearing at anchorage –Anchorage zone stresses in post-tensioned members-Analysis and design of end blocks by Guyon, Magnel and approximate methods –Anchorage zone reinforcements.
- **5. Statistically indeterminate structures**: Introduction –advantages and disadvantages of continuity –Layouts for continuous beams-primary and secondary moments –Elastic analysis of continuous beams-Linear transformation-Concordant cable profile-Design of continuous beams.**Circular prestressing**: Introduction –Circumferential prestressing Design of Prestressed concrete tanks –vertical prestressing in tanks-Dome prestressing.

- 1. Prestressed Concrete by S. Krishna raju, TMH Pubilishers.
- 2. Prestressed Concrete by S. Ramamrutham, Dhanpati Rai Pubilicartions.
- 3. Prestressed concrete design by Praveen Nagarajan, Pearson Pubilications.
- 4. T.Y.Lin, Design of Prestressed Concrete Structures, Asian Publishing house, Bombay, 1953.
- 5. Y.Guyon, Prestressed Concrete, Vol.I&II, Wiley and Sons, 1960.
- 6. F.Leohhardt, Prestressed concrete Design and construction, Wilhelm Ernst and shon, Berlin, 1964.
- 7. C.E.Reynolds and J.C. Steedman, Reinforced concrete designers hand bood, A view point publication, 1989.
- 8. Edward P.Nawy, Prentise Hall Prestressed Concrete.
- 9. Prestressed Concrete by Raj Gopal, Narsoa Pubilications.

L P C 0 4 2

10. Subject Code:15D12104

M.TECH (COMPUTER AIDED STRUCTURAL ENGINEERING) I – SEMESTER

CAD LABORATORY – I

- 1. Simple Programs: Prime number, Factorial of a number, conversion of integers into words, swapping of two integers, addition and multiplication of matrices.
- 2. Functions : Inline functions, functions with parameters
- 3. Objects : Objects with arrays, counting of votes
- 4. Analysis of cantilever, simply supported beam, fixed beams, continuous beams for different loading conditions.
- 5. Design of R.C.C. beams, slabs, foundations.
- 6. Design of steel tension Members.

L	Р	С
4	0	4

Subject Code:15D11201 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II – Semester STRUCTURAL DYNAMICS

- 1. Theory of Vibrations: Introduction –Elements of a vibratory system degrees of freedom-continuous systems –lumped mass idealization –Oscillatory motion –Simple harmonic motion –pictorial representation of S.H.M free vibrations of single degree of Freedom (SDOF) systems –undamped and Damped –Critical damping –Logarithmic decrement –Forced vibrations of SDOF systems-Harmonic excitation –Dynamic magnification factor- Bandwidth.Fundamental objective of dynamic analysis-types of prescribed loading- Methods of discretization- Formulation of the equations of motion.
- Single degree of Freedom System: Formulation and solutions of the equation of motion

 free Vibration response –response to harmonic, periodic, Impulsive and general
 Dynamic loading –Duhamel integral
- 3. Multi Degree of Freedom System: selection of the degree of freedom –Evaluation of structural property matrices-Formulation of the MDOF equations of motion –Undamped free vibrations-Solution of Eigen value problem for natural frequencies and mode shapes-Analysis of dynamic response –Normal coordinates –Uncoupled equations of motion Orthogonal properties of normal modes-mode superposition procedure
- 4. **Practical vibration analysis:** Stodola method- Fundamental mode analysis –analysis of second and higher modes –Holzer's method –basic procedure –transfer matrix procedure
- **5.** Introduction to Earthquake analysis: Introduction –Excitation by rigid base translation –Lumped mass approach -SDOF and MDOF system- I.S code methods of analysis.Continuous system: Introduction –Flexural vibrations of beams- Elementary case-Equation of motion –Analysis of undamped free shapes of simple beams with different end conditions-principles of application to continuous beams.

- A.K.Chopra, "Structural Dynamics for Earthquake Engineering", Pearson Pubilications
- Dynamics of structures by Clough & Penziem
- Structural dynamics by Mario Paz
- I.S:1893(latest)" code of practice for earthquakes resistant design of stuctures"
- Anderson R.A fundamentals of vibration, Amerind Pulblishing Co., 1972.

L P C 4 0 4

M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING)

II – Semester FINITE ELEMENT ANALYSIS

- 1. Introduction-Concepts of FEM –steps involved –merits &demerits –energy principles Discretization –Rayleigh –Ritz method of functional approximation.Elastic formulations: Stress equations-strain displacement relationships in matrix form-plane stress, plane strain and Axi-symmetric bodies of revolution with axi symmetric loading
- 2. One Dimensional FEM-Stiffness Matrix for Beam and bar elements shape functions for ID elements –static condensation of global stiffness matrix-solution –Initial strain and temperature effects.
- **3. Two Dimensional FEM-**Different types of elements for plane stress and plane strain analysis –Displacement models –generalized coordinates-shape functions-convergent and compatibility requirements –Geometric Invariance –Natural coordinate system-area and volume coordinates-Generation of element stiffness and nodal load matrices –static condensation.
- **4. Isoparametric formulation**-Concept, Different isoparametric elements for 2d analysis-Formulation of 4-noded and 8-noded isoparametric quadrilateral elements –Lagrangian elements-serendipity elements.**Axi symmetric analysis** –bodies of revolution-axi symmetric modelling –strain displacement relationship-formulation of axi symmetric elements.
- 5. Three Dimensional FEM-Different 3-D elements, 3D strain –displacement relationship-formulation of hexahedral and isoparametric solid element.

- Finite Elements Methods in Engineering by Tirupati. R. Chandrnpatla and Ashok D. Belegundu Pearson Education Publications.
- Finite Element analysis Theory & Programming by C.S.Krishna Murthy- Tata Mc.Graw Hill Publishers Finite Elements Methods in Engineering by Tirupati. R. Chandrnpatla, Universities Press India Ltd. Hyderabad.
- Finite element method and its application by Desai, 2012, Pearson Pubilications.
- Finite element methods by Darrel W.Pepper, Vikas Pubilishers
- Finite element analysis and procedures in engineering by H.V.Lakshminaryana, 3rd edition, universities press, Hyderabad.
- Finite element analysis in Engineering Design by S.Rajasekharan, S.Chand Publications, New Delhi.
- Finite element analysis by S.S. Bhavakatti-New age international publishers

L	Р	С
4	0	4

Subject Code:15D12201 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II – Semester

ARTIFICIAL NEURAL NETWORKS

UNIT I:

INTRODUCTION: History Of Neural Networks, Structure And Functions Of Biological And Artificial Neuron, Neural Network Architectures, And Characteristics of ANN, Applications, And Basic Learning Rules: Hibbing Learning, Competitive Learning, And Boltzmann Learning.

UNIT-II

SUPERVISED LEARNING-1: Single Layer Neural Network and architecture, McCulloch-Pitts Neuron Model, Perception Model, Perception Convergence Theorem, ADALINE, Delta Learning Rule.

UNIT III:

SUPERVISED LEARNING-2: Multi Layer Neural Network and architecture, MADALINE, Back Propagation learning, Back Propagation Algorithm.

UNSUPERVISED LEARNING-1: Kohenen Self Organization Networks, Hamming Network and MAXNET, Learning Vector Quantization, Mexican hat.

UNIT IV:

UNSUPERVISED LEARNING-2: Counter Propagation Network, Forward Only Counter Propagation Network, Adaptive Resonance Theory (ART) -Architecture, Algorithms.

ASSOCIATIVE MEMORY NETWORKS : Introduction, Auto Associative Memory ,Hetero Associative Memory, Bidirectional Associative Memory(BAM) -Theory And Architecture, BAM Training Algorithm-Storage.

UNIT V:

HOPFIELD NETWORK: Introduction, Architecture Of Hopfield Network, Discrete And Continuous Hopfield Network, Iterative Auto Associative Memory Network (Linear Auto Associative Memory, Brain-In-The-Box Network), Temporal Associative Memory Architecture .

TEXT BOOKS:

- 1. Jacek M. Zurada, "Introduction to Artificial Neural Systems" Jaico Publishing, 2006.
- 2. S.N.Sivanandam, S.N.Deepa, "Introduction to Neural Networks using MATLAB 6.0", Tata McGraw-Hill Publications, 2006.

- 1. B.Yegnanarayana "Artificial Neural Networks "PHI, NewDelhi, 2005.
- 2. S.Rajasekaran and G.A.Vijayalakshmi Pai "Neural Networks. Fuzzy Logic and Genetic Algorithms", 2007.
- 3. James A Freeman and Davis Skapura" Neural Networks Algorithm, Applications and Programming Techniques ", Pearson Education, 2002.

L	Р	С
4	0	4

Subject Code:15D122002 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II – Semester CAD & COMPUTER APPLICATIONS IN STRUCTURAL ENGINEERING

- Introduction to computer aided design Reasons for implementing CAD Design process Applications of computers to design Benefits of computer Aided design.
 Principles of computer graphics Introduction, Graphic primitives, point plotting, drawing of lines, Bresenham's Algorithm, C program to draw a line, circle, ellipse using breasenham's algorithm.
- 2. **Transformation in Graphics** Coordinate system used lin graphics & windowing, view port, 2 D transformations, clipping, 3-D transformation; C-graphics.
- 3. **Stiffness Method** : Microsoft Excel procedure for stiffness method of analysis step by step procedure using Excel, examples using Excel.
- 4. **Analysis of beams using stiffness method** : Long hand solution of single span beams, continuous beams solution of single span beams, continuous beams using Excel.
- 5. **Database** : Introduction, concept of a database, objectives of databases, Design of data base, design consideration of data base.

TEXT / REFERENCE BOOKS :

- 1. C.S.Krishna Murthy & Rajiv S. Computer Aided Design, Software & Analytical tools Narasha publishing house India.
- 2. Computer Aided design in rainforced concrete Dr L.Shah-Structures Publishers Pune.
- 3. IS 456 -2000
- 4. Limit State Design A.Jain.
- 5. Computer application Boyd C.Panbou Mc Graw Hill 1997.
- 6. Raker D., and Rice H. Inside Aut CAD, BPD Publication, Delhi, 1986.
- 7. Nancy Andrews Windows the Official guide to Microsoft Operation Environment, Micro Soft, 1986.
- 8. Moshi, f., Rubinstein, Matrix computer analysis of Structures, Prentice Hall 1986.

L	Р	С
4	0	4

Subject Code:15D11204 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II- SEMESTER II – Semester

ANALYSIS OF SHELLS AND FOLDED PLATES (Ellective-III)

- **1. Equations of equilibrium :** Introduction, classification, derivation of stress Resultants, Principles of membrane theory and bending theory.
- 2. Cylindrical shells: Derivation of governing DKJ equation for bending theory, details of Schorer's theory, Applications to the analysis and design of short shells and long shells. Introduction of ASCE manual co-efficients for design.
- **3.** Introduction to shells of double curvature: (other than shells of revolution:) Geometry and analysis of elliptic paraboloid, rotational paraboloid and hyperbolic paraboloid shapes by membrane theory.
- **4. Folded Plates:** Folded plate theory, plate and slab action, Whitney's theory, Simpson's theory for the analysis of different types of folded plates (Design is not included)
- **5.** Shells of double Curvature-Surfaces of revolution .Derivation of equilibrium equations by membrane theory, Applications to spherical shell and rotational Hyperboloid

TEXT / REFERENCE BOOKS:

- 1. Design and construction of concrete shell roofs by G.S. Rama Swamy CBS Publishers & Distributors, 485, Jain Bhawan Bhola Nath Nagar, shahotra, Delhi.
- 2. Fundamentals of the analysis and design of shell structures by Vasant S.kelkar Robert T.Swell Prentice hall, Inc., Englewood cliffs, new Jersy -02632.
- 3. N.k.Bairagi, Shell analysis, Khanna Publishers, Delhi, 1990.
- 4. Billington, Ithin shell concrete structures, Mc Graw Hill Book company, New york, St. Louis, Sand Francisco, Toronto, London.
- 5. ASCE Manual of Engineering practice No.31, design of cylindrical concrete shell roofs ASC, Newyork.

L	Р	С
4	0	4

Subject Code:15D12203 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II- SEMESTER II – Semester

RELIABILITY BASED ENGINEERING DESIGN

(Elective-III)

- 1. Basic statistics and probability Concepts of structural safety Resistance parameters and distributions. Probabilistic analysis of loads live load & wind load
- 2. Determination of reliability, Monte Carlo study of structural safety.
- 3. Levels of reliability methods and their suitable adoption in structural engineering elements.
- 4. Level 2 reliability methods including advanced level 2 method.
- 5. Reliability analysis of structural components Reliability based design determination of partial safety factors, code calibration Reliability of structural systems application to steel & concrete structures, off shore structures.

TEXT / REFERENCE BOOKS :

- 1. PALLE THOFT CHRISTENSEN AND M.J.Baker Structural Reliability Theory and its application springer verlag, Berlon Haiderberg, newyork 1982.
- 2. R.E. Melchers, structural Reliability Analysis and prediction, Elles Harwood, Chisester, England, 1987.
- 3. A.H.S. Ang and W.H.Tang, Prbability concepts in Engineering planning and design volume II Jhon Wiley, Newyork 1984.
- 4. Palle Thoft Cristensen and Y.Murotsu applicantion of Structural systems, Reliability theory Springer Verlog, Berlin 1986.

L	Р	С
4	0	4

Subject Code:15D11207 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II – Semester

EARTHQUAKE RESISTANT STRUCTURES ELECTIVE – III

1. Engineering seismology :

Earthquake – causes of earthquake – earthquakes and seismic waves – scale and intensity of earthquakes – seismic activity – Measurements of earth quakes – seismometer- strong motion accelerograph / field observation of ground motion – analysis of earthquakes waves – earth quake motion – amplification of characteristics of surface layers – earthquake motion on the ground surface;

2. Vibration of structures under ground motion:

Elastic vibration of simple structures – modelling of structures and equations of motion – freevibrations of simple structures – steady state forced vibrations – Non steady state forced vibrations – response spectrum representations; Relation between the nature of the ground motion and structural damage.

3. **Design approaches:** Methods of analysis – selection of analysis – equivalent lateral force procedure seismic base shear – seismic design co-efficient - vertical distribution of seismic forces and horizontal shear – twisting moment - Over turning moment – vertical seismic load and orthogonal effects lateral deflection – P- Δ characteristics effect – soil structure Interaction

Seismic – Graphs study, earthquake records for design – factors affecting Accelerogram characteristics - artificial Accelerogram – zoning map.

Dynamic – analysis procedure: Model analysis – Inelastic – time history analysis Evaluation of the results.

4.. Earthquake – Resistant design of structural Components and systems:

Introduction – monolithic reinforced – concrete structures – precast concrete structures – Prestressed concrete structures – steel structures – composite – structures, masonry structures – Timber structures.

5. **Fundamentals of seismic planning:** Selection of materials and types of construction form of superstructure – framing systems and seismic units – devices for reducing. Earthquake loads.

TEXT / REFERENCE BOOKS:

- 1. Design of earthquake resistant structures by Minoru Wakabayashi.
- 2. A.K.Chopra, Strucutural Dynamics for Earthquake Engineering", Pearson Pubilications.
- 3. R.W.Clough and 'Dynamics of structures'. Mc Graw Hill, 2nd edition,1992.
- 4. N.M Newmark and E.Rosenblueth, Fundamentals of Earthquake Engineering' prentice hall,1971.
- 5. David Key, Earthquake design practice for buildings." Thomas telford, London, 1988
- 6. R.L. Wegel, Earthquake Engg; Prentice Hall 12nd edition 1989.
- 7. J.A. Blume, N.M. Newmark, L.H. Corning., Design of Multi –storied Buildings for Earthquake ground motions', Portland Cement Association, Chicago,1961
- 8. I.S.Codes No. 1893,4326,13920.
- 9. Earthquake Resistant Design by Pankaj Agarwal.

L P C 4 0 4

Subject Code:15D12204

M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II – Semester

MANAGEMENT INFORMATION SYSTEMS ELECTIVE – IV

- 1. Introduction to MIS Importance of information for management decisions systems approach and information System Development Information System Architecture Quantitative Techniques and Management Information Systems interfacing.
- 2. Physical design of computer sub-systems, database design, file design, input-output and procedure design and system security.
- **3.** MIS development process system development system life cycle method Structured development method, and prototype method Software development.
- **4.** Information systems Computers in Management MIS office automations decision support system Expert system.
- 5. Implementation, Evaluation and maintenance of MIS pitfalls in MIS development. System modeling for MIS system engineering methodology for MIS problem solving.

TEXT / REFERENCE BOOKS :

- 1. Suresh K.Basandra Computers To day, Glagotia Publishers.
- 2. R.G.Murdicks Information systems for management.
- 3. Elias M.Award System Analysis and Design
- 4. A.Senn Analysis and design information systems.
- 5. Jerome Kanter Managing with information, Prentice & Hall.
- 6. C.S.V.Murthy Management information systems Text & application
- 7. Himalaya Publishing house Mumbai.
- 8. Gordan Davis Management Information Systems, Mc Graw hill Publishers.

L	Р	С
4	0	4

Subject Code:15D11210 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II – Semester FRACTURE MECHANICS ELECTIVE-IV

1. Summary of basic problems and concepts:

Introduction - A crack in a structure - The stress at a crack tip - The Griffith criterion The crack opening displacement criterion - Crack Propagation - Closure

2. The elastic crack – tip stress field :

The Airy stress function - Complex stress functions - Solution to crack problems - The effect of finite size - Special cases - Elliptical cracks - Some useful expressions

3. **The crack tip plastic zone:**

The Irwin plastic zone correction - The Dugdale approach - The shape of the plastic zone - Plane stress versus plane strain - Plastic constraint factor - The thickness effect

4. The energy principle:

The energy release rate - The criterion for crack growth - The crack resistance (R curve) - Compliance , The J integral (Definitions only)

Plane strain fracture toughness:

The standard test - Size requirements - Non-Linearity - Applicability

Plane stress and transitional behaviour:

Introduction - An engineering concept of plane stress - The R curve concept

5. The crack opening displacement criterion:

Fracture beyond general yield - The crack tip opening displacement - The possible use of the CTOD criterion

Determination of stress intensity factors:

Introduction - Analytical and numerical methods - Finite element methods, Experimental methods (An Ariel views only)

REFERENCES;

- 1. Elementary engineering fracture mechanics David Broek, Battelle, columbus laboratories, columbus, Ohieo, USA
- Fracture and Fatigue Control in Structures john M.Barsom, Senior consultant United states Steel corporation & Stanley T.Rolfe, Ross H.Forney Professor of Engineering University of Kansas. &Stanley T.Rolfe, Ross H.forney Professor of Engineering, University of Kansas

L P C 4 0 4

Subject Code:15D11206 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II- SEMESTER

ADVANCED CONCRETE TECHNOLOGY

ELECTIVE-IV

- 1. **Cements and Admixtures**: Portland cement Chemical composition Hydration, setting and finenesses of cement structures of hydrated cement mechanical strength of cement gel water held in hydrate cement paste Heat of hydration of cement Influence of compound composition on properties of cement tests on physical properties of cement I.S. specifications Different types of cements Admixtures.
- 2. **Aggregates**: Classification of aggregate particle shape and texture Bond strength and other mechanical properties of aggregate specific gravity, Bulk density, porosity, absorption and moisture in aggregate soundness of aggregate Alkali aggregate reaction, Thermal properties sieve analysis Fineness modulus grading curves grading requirements practical grading Road note No.4 grading of fine and coarse aggregates gap graded aggregate maximum aggregate size.
- 3. Fresh concrete: Workability factors affecting workability measurement of workability by different tests Effect of time and temperature on workability segregation and bleeding mixing and vibration of concrete quality of mixing water. Hardened Concrete: Water/cement ratio-Abram's law Gel space ratio effective water in mix Nature of strength of concrete strength in tension and compression-Griffith's hypothesis factors affecting strength autogeneous healing –Relation between compression and tensile strength curing and maturity of concrete Influence of temperature on strength Steam curing testing of Hardened concrete compression tests tension tests factors affecting strength flexure tests splitting tests Non destructive testing methods.
- Elasticity, Shrinkage and Creep: Modulus of elasticity dynamic modulus of elasticity – poisson's ratio – Early volume changes – swelling – Draying shrinkage – Mechanism of shrinkage – factors affecting shrinkage – Differential shrinkage – moisture movement carbonation shrinkage-creep of concrete – factors influencing creep – relation between creep and time – Nature of creep – Effect of creep.
- 5. Mix Design: Proportioning of concrete mixes by various methods fineness modulus, trial and error, mix density, Road Note. No. 4, ACI and ISI code methods factors in the choice of mix proportions Durability of concrete quality control of concrete Statistical methods High strength concrete mix design. Special concrete's: Light weight concretes –light weight aggregate concrete- Mix design Cellular concrete No fines concrete High density concrete Fiber reinforced concrete Different types of fibers factories affecting properties of FRC Applications polymer concrete types of polymer concrete properties of polymer concrete applications

TEXT/ REFERENCE BOOKS:

- 1. Properties of Concrete by A.M.Neville Pearson publication 4th edition
- 2. Concrete Technology by M.S.Shetty. S.Chand & Co.; 2004
- 3. Design of Concrete Mix by Krishna Raju, CBS pubilishers.
- 4. Concrete: Micro structure, Properties and Materials P.K.Mehta and J.M.Monteiro, Mc-Graw Hill Publishers
- 5. Concrete Technology by A.R. Santha Kumar, Oxford university Press, New Delhi
- 6. Concrete Technology by A.M.Neville Pearson publication
- 7. Concrete Technology by M.L. Gambhir. Tata Mc. Graw Hill Publishers, New Delhi
- 8. Non-Destructive Test and Evaluation of materials by J.Prasad & C.G.K. Nair, Tata Mcgraw hill Publishers, New Delhi

L P C 0 4 2

Subject Code:15D54201 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING) II- SEMESTER

RESEARCH METHODOLOGY (Audit Course)

(Audit Course For M.Tech. –II Semester Program from 2015 admitted batches onwards)

<u>UNIT I</u>

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

<u>UNIT II</u>

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation.

Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

<u>UNIT III</u>

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

UNIT IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Co-variance – Multi-variate Analysis.

UNIT V

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Text books:

- 1. Research Methodology:Methods and Techniques C.R.Kothari, 2nd Edition,New Age International Publishers.
- 2. Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf on internet)
- **3.** Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1st Edition,Excel Books,New Delhi.

REFERENCES:

1. Scientists must Write - Robert Barrass (Available as pdf on internet)

2. Crafting Your Research Future –Charles X. Ling and Quiang Yang (Available as pdf on internet)

L P C 0 4 2

Subject Code:15D12205 M.Tech (COMPUTER AIDED STRUCTURAL ENGINEERING)

II- SEMESTER

CAD LABORATORY – II

- 1. To draw a line using Bresenhams line algorithm
- 2. To draw a circle, Ellipse using Bresenhams line algorithm,
- 3. Reinforcement detailing in beam using graphics.
- 4. Reinforcement detailing in slabs using graphics.
- 5. Reinforcement detailing in foundation using graphics.

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF CIVIL ENGINEERING

COMPUTER AIDED STRUCTURAL ENGINEERING

I SEMESTER

S.No.	Course Code	Subject Name	Cate	-	Hours Per Week		Credits		
	Code	-	Gory	L	Т	Ρ			
1	21D12101	Matrix Methods of Structural Engineering	PC	3	0	0	3		
2	21D11102	Advanced Concrete Technology	PC	3	0	0	3		
3	Profession	al Elective - II							
	21D12102	Computer Aided Numerical Methods							
	21D12103	C++ and Data Structures	PE	PE	PE	3	0	0	3
	21D11105	Theory of Elasticity							
4	Profession	al Elective - II							
	21D11106	Experimental Stress Analysis							
	21D12104	Modeling Simulation and Computer Applications	PE	3	0	0	3		
	21D12105	Structural Health Monitoring	-						
5	21D11109	Research Methodology and IPR	MC	2	0	0	2		
6	21D11110	English for Research Paper Writing							
	21D11111	Value Education	AC	2	0	0	0		
	21D11112	Pedagogy Studies	1						
7	21D11113	Advanced Concrete Laboratory – I	PC	0	0	4	2		
8	21D11114	Computer Aided Design Laboratory – I	PC	0	0	4	2		
	1	Total	1	16	00	08	18		

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF CIVIL ENGINEERING

COMPUTER AIDED STRUCTURAL ENGINEERING

II SEMESTER

S.No.	Course Code	Subject Name	Cate	-	Hours Per Week		Credits	
	Code		Gory	L	Т	Ρ		
1	21D11201	Structural Dynamics	PC	3	0	0	3	
2	21D12201	Finite Element Analysis	PC	3	0	0	3	
3	Profession	al Elective - III						
	21D11204	Design of Prestressed Concrete						
	21D12202	Management Information Systems	PE	PE	3	0	0	3
	21D12203	Reliability Based Engineering Design						
4	Profession	al Elective - IV						
	21D11206	Stability of Structures						
	21D11207	Advanced Steel Design	PE	3	0	0	3	
	21D12204	Artificial Neural Networks						
5	21D11209	Technical Seminar	PR	2	0	0	2	
6	21D11210	Disaster Management						
	21D11211	Constitution of India	AC	2	0	0	0	
	21D11212	Stress Management by Yoga						
7	21D11213	Advanced Concrete Laboratory – II	PC	0	0	4	2	
8	21D11214	Computer Aided Design Laboratory – II	PC	0	0	4	2	
	1	Total	<u> </u>	14	00	12	18	

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF CIVIL ENGINEERING

COMPUTER AIDED STRUCTURAL ENGINEERING

III SEMESTER

S.No.	Course Code	Subject Name	Cate	_	urs 1 Weel	-	Credits
	Coue		gory	L	Т	Ρ	
1	Profession	al Elective – V					
	21D12301	Optimization in Structural Design					
	21D12302	CAD and Computer Applications in					
		Structural Engineering	PE	3	0	0	3
	21D12303	Cost Effective Housing Techniques					
2	Open Elect	ive	•				•
	21D10301	Green Buildings	OE	3	0	0	3
3	21D12304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
	Total					20	18

IV SEMESTER

S.No.	Subject Name		Cate		urs Weel		Credits
	Coue		gory	L	Т	Ρ	
1	21D12401	Dissertation Phase – II	PR	0	0	32	16
	Total				00	32	16

Course Code	21D12101	MATRIX METHODS OF STRUCTURAL	L	T	Р	C
Semester	Ι	ANALYSIS	3	0	0	3
		Course Will Enable Students:				
		e static and kinematic indeterminacy of the structure				
		concepts of matrix methods of analysis of structure	es			
		e analysis of continuous beams.				
		analysis of rigid and pin jointed frames				
	. ,	: Student will be able to				
	-	minate and indeterminate structures.				
		od of analysis for indeterminate structures.				
	-	thods of analysis for continuous beams.				
	ly matrix me	thods of analysis for rigid and pin jointed frames.	T 4		TT	10
UNIT - I			Lect			
		terminacy-Determination of static and kinematic in				
		ee-dimensional portal frames, pin jointed trusses an				
		ctural idealization. Introduction To Matrix Metho matrices-Force displacement relationships for axi				
		ness method of analysis and flexibility method of an			cou	ле,
UNIT - II	1100000000000000000000000000000000000		Lect		Inc.	10
	OF CONT	INUOUS BEAMS- stiffness method and flexib				
		ams of two and three spans with different end co				
hinges.	intiliuous bee	and of two and three spans with different end co	nun	0115 1	mer	nai
UNIT - III			Lect	ure l	Hrs:	10
	OF TWO D	IMENSIONAL PORTAL FRAMES & PINJOINT				
		method of analysis of 2D portal frames wit				
		ending moment diagrams. Computation of joint d				
-	0	inted trusses.	F			
UNIT - IV	1 5		Leo	cture	Hr	s:9
TRANSFOR	MATION (OF CO-ORDINATES - Local and Global co-or				
		es from local to global coordinates of element stiffn				
		lysis-assembly of global stiffness matrix from e				
matricessta	atic condensa	ition-sub-structuring.				
UNIT - V		· · · · ·	Leo	cture	Hr	s:9
EQUATION	SOLVERS	-solution of system of linear algebraic equations	-dire	ct in	vers	ion
method-gaus	ss eliminati	on method-Cholesky method-banded equation	sol	vers	-fror	ıtal
solution tech	nique.			<u> </u>		
Textbooks:						
	ix Analysis publications	of Frames structures by William Weaver J.R and	Jam	nes N	4.Ge	ere,
	-	Iral Analysis by Ashok.K.Jain, New Channel Brothe	ers			
		Structural Analysis by Pandit & Gupta				
J. Math		Statutata marjois of Fanar & Supra				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Reference Books:

- 1. Matrix Structural Analysis by Madhu B. Kanchi.
- 2. Matrix Methods of Structural Analysis by J.Meek.
- 3. Structural Analysis by Ghali and Neyveli.
- 4. Structural Analysis by Devdas Menon, Narosa Publishing Housing Pvt Ltd.

Course Code	21D11102	ADVANCED CONCRETE TECHNOLOGY	L	Т	Р	С
Semester	Ι		3	0	0	3
Course Ob	ojectives: Th	is Course Will Enable Students:				
1. To	study the pro	operties of concrete making materials				
2. To	do mix desig	yn				
3. Fai	niliar with th	e methods of concrete				
		ut advance tests on concrete				
): Student will be able to				
		th the properties of concrete making materials				
	•	ence and compatibility of chemcial, mineral admixtur	es in	con	crete	
-		ledge on recent advances in special concretes.				
		ous methods of concrete				
	lyse the perfo	ormance of concrete structure through microstructure				
UNIT - I			Lect			
		ires : Portland Cement – Chemical Composition - H				
		nent – Structures of Hydrated Cement – Mechan			<u> </u>	
		Held in Hydrate Cement Paste – Heat of Hydratic				
	-	Composition on Properties of Cement – Tests on Ph	ysica	al Pro	opert	ies
	– 1.5. Specifi	ications – Different Types of Cements – Admixtures	T 4		TT	10
UNIT - II	<u> </u>		Lect			
00 0		tion of Aggregate – Particle Shape and Texture – Bo operties of Aggregate Specific Gravity, Bulk De			<u> </u>	
		ire in Aggregate – Soundness of Aggregate – Alk				
		perties – Sieve Analysis – Fineness Modulus – G				
		– Practical Grading – Road Note No.4 Grading of				
-	-	Aggregate – Maximum Aggregate Size.	I IIIC	anu	Coa	150
UNIT - III			Lect	ure	Hrs:	10
		rkability – Factors Affecting Workability – M				
		ent Tests – Effect of Time and Temperature or				
		ng – Mixing and Vibration of Concrete – Quality of M				
		Water/Cement Ratio-Abram's Law – Gel Space R				
		e of Strength of Concrete – Strength in Tension ar				
		- Factors Affecting Strength - Autogeneous He		-		
	• •	and Tensile Strength – Curing and Maturity of Conc		-		
Temperatu	re on Streng	th - Steam Curing - Testing of Hardened Concrete	e – C	Comp	oress	ion
Tests – Te	nsion Tests -	- Factors Affecting Strength - Flexure Tests - Splitt	ing '	Tests	s - N	lon
Destructive	e Testing Me	thods.				
UNIT - IV			Lect			
		and Creep: Modulus of Elasticity – Dynamic Modul				
	•	Volume Changes – Swelling – Drying Shrinkage				
		ffecting Shrinkage – Differential Shrinkage – Moi				
	-	-Creep of Concrete – Factors Influencing Creep – R	elati	on B	etwo	en
Creep and	11me – Natu	re of Creep – Effect of Creep				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

UNIT - V Lecture Hrs:9
Mix Design: Proportioning of Concrete Mixes by Various Methods - Fineness Modulus,
Trial and Error, Mix Density, Road Note. No. 4, ACI and ISI Code Methods - Factors in
The Choice of Mix Proportions - Quality Control of Concrete - Statistical Methods - High
Strength Concrete Mix Design.
Special Concretes: Light Weight Concretes -Light Weight Aggregate Concrete No Fines
Concrete - High Density Concrete - Fiber Reinforced Concrete - Different Types of Fibers -
Factors Affecting Properties of FRC - Geo-polymer Concrete-Polymerization Process for
strength gain-Applications of geo-polymer Concrete - Self Compacting Concrete- Mix
design Philosophy- Slump Flow, V-Funnel, L-box and U-box tests-Advantages and
disadvantages of SCC
Textbooks:
1. Properties of Concrete by A.M.Neville – Pearson Publication – 4th Edition
2. Concrete Technology by M.S.Shetty. – S.Chand & Co. ; 2004
3. Concrete Technology by A.R. Santhakumar, Oxford University Press, New Delhi
Reference Books:
1. Concrete: Micro Structure, Properties and Materials – P.K.Mehta and J.M.Monteiro,
Mc-Graw Hill Publishers
2. Design of Concrete Mix by Krishna Raju, CBS Pubilishers.
3. Concrete Technology by A.M.Neville – Pearson Publication
4. Concrete Technology by M.L. Gambhir Tata Mc. Graw Hill Publishers, New
Delhi

5. Non-Destructive Test and Evaluation of Materials by J.Prasad & C.G.K. Nair, Tata Mcgraw Hill Publishers, New Delhi

Course	21D12102	COMPUTER AIDED NUMERICAL	L	Τ	P	C
Code		METHODS		-		<u> </u>
Semester	ester I (PE-I)		3	0	0	3
C O	• •				1	
Course Ob	•): Student will be able to				
UNIT - I). Student will be able to	Ie	otur	e H	rc.
	F Non-linear I	Equations: Newton-Raphson method, Von-mises for				
		od- Comparative study-solution of cubic equation an)
		tegration: Newton-Cotes integration formulas- Trape			10	
					ie-	
		Simpson's rule – Gaussian quadrature – Errors in int	egrai	1011		
UNIT - II		egration with variable limits.	Le	etur	e H	rs•
	Esystem of ea	quations: Gauss elimination method- gauss-Jordan m	-		-	13.
		in the solution- iterative methods – solution of sets of				
equations.	1011 - EI1018	in the solution- iterative methods – solution of sets (л по	1 1110	ear	
	Valua Drahla	ma and Characteristics Value problems, Chasting	math	~ d	~ _ 1	tion
		ms and Characteristics – Value problems: Shooting				
		ons – Derivative boundary conditions – characteristi	c vai	ue p	rodie	ems
		x by iteration.	T	4	тт	
UNIT - III			-		e H	
		Elliptical partial differential Equations: Equilibrium	-			
		f steady state heat flow – Laplace equation on rect	angu	lar r	egio	n –
		vative boundary conditions.	•			
UNIT - IV					e H	
		parabolic partial Differential equations: Explicit				
		- Nicolson method- Derivative boundary condition	s - s	stabi	lity	and
convergence	ce criteria - E	Equations in two dimensions.				
UNIT - V			Le	ectur	e H	rs:
	nent method	l – weighted Residual methods, least square me				
		ts – Interpolating over the whole domain – Finite ele	,			
	y value probl			" upp	mea	.1011
	& Reference					
		for Engineers by Steven C.Chapra and Raymond P.	Cana	1_N	Ic G	raw
	ok company.	Tor Engineers by Steven C.Chapra and Raymond I.	Cuna	I IV.		uvv
	1 •	Analysis by Curtis.F.Gerald-Addition-Wesley Publis	hing	com	nanv	7
		merical Methods by C.Xavier-New age international				•
-	-	the finite element method, J.N.Reddy, McGraw. Hill,		nsne	43	
н. An IIII		ie mine element memou, J.N.Keuuy, McOldw. Hill,	шс			

Course Code	21D12103	C++ and Data Structures	L	Τ	P	C
Semester	Ι	(PE-I)	3	0	0	3
			· · ·			
Course Object	ives:					
Course Outcon	mes (CO): St	udent will be able to				
UNIT - I			L	ectur	e Hı	s:
Object oriente	d programm	ing :- Procedure - oriented programmin	ıg, obj	ect d	orien	ted
programming p	aradigm, bas	ic concepts of oop, benefits of opp. Basics	of C++	, key	wor	ds,
		ns in C++, classes and objects. Concepts of				
-		copy constructor, destructors, Inheritance	– single	, mu	ltilev	vel,
multiple, Hiera	rchical, Hybr	d, parameter passing methods.				
UNIT - II				ectur		
-		on sort, Insertion sort, Quick sort, Merge so	rt, Heap	o sort	t, Ra	d1X
	Binary Sear	ch, Linear Search.	T	ectur	. II.	
UNIT - III	Single Lin	ked List, Circular Linked List, Double Li			-	
	0	to and deletion from linked list.	likeu L	181, 0		llai
UNIT - IV		o and deletion from miked list.	T	ectur	o H	•
	uction Imple	nentation using arrays and linked lists, appl				
		of Recursion, Towers of Hanoi,. Qu				
-	-	and linked lists, Types of queues, Application		muot	JUCTI	on,
UNIT - V	i using unujs			ectur	e Hı	s:
	trees. repre	senting binary trees in memory, Operation				
Types of trees	, I			5		,
Textbooks:						
1. Object orie	nted program	ming with C++, "Balaguru Swamy", Tata M	cGraw	Hill.		
		"D. Samantha", PHI Learning Pvt. Ltd				
3. Data struct	ures, Algorith	ms and Applications in C++, S. Sahni, Uni	versity]	Press	(Inc	lia)
Pvt.Ltd, 2n	d edition, Un	versities Press.				
Reference Boo						
		orithms in C++, Michael T.Goodrich, R.Ta	ımassia	and	Μοι	ınt,
2	,	hn Wiley and Sons.				
	-	orithm Analysis in C++, Mark Allen Weiss,	Pearson	n Edu	ucati	on.
Ltd., Secon			TI			
	0	ithms in C++, 3rd Edition, Adam Drozdek, '				
	-	and C++, Langsam, Augenstein and Tanenba			~	
	-	+, The OOP, Fourth edition, W.Savitch, Pea		ucati	011.	
		C++, D.S. Malik, Cengage Learning, India E	anion.			
Online Learni	ng Resource).				

Course Code	21D11105	THEORY OF ELASTICITY	L	Т	P	C
Semester	I	(PE-I)	3	0	0	3
~				-	-	
Course Object	ives: This Co	ourse Will Enable Students:				
1. To mak	e students un	derstand the principles of elasticity.				
		ts with basic equations of elasticity.				
3. To expo	ose students to	o two dimensional problems in Cartesian and p	olar co	oord	inate	s.
4. To mak	e students un	derstand the principle of torsion of prismatic ba	rs.			
Course Outcon	mes (CO): St	udent will be able to				
1. To appl	y elastic anal	ysis to study the fracture mechanics.				
2. To appl	y linear elas	sticity in the design and analysis of structure	s sucl	ı as	beau	ms,
		dwich composites.				
3. To appl	y hyper elast	icity to determine the response of elastomer-bas	ed ob	jects	5.	
		ural sections subjected to torsion.		0		
UNIT - I	-	× · · · · · · · · · · · · · · · · · · ·	Lect	ure	Hrs:	10
INTRODUCT	ION TO PL	ANE STRESS and PLANE STRAIN ANAL	SIS:			
Elasticity –Not	ation for For	ces and Stresses-Components of Stresses -Con	pone	nts o	f Str	ain
•		s-Plane Strain-Differential Equations of Equili	+			
		quations-Stress Function-Boundary Conditions				•
UNIT - II		-	Lectu	ıre I	Irs:1	10
TWO DIMEN	SIONAL PR	COBLEMS in RECTANGULAR COORDIN	ATES	5:		
Solution by Po	lynomials-Sa	int Venant's Principle-Determination of Displa	ceme	nts-H	Bend	ing
of Simple Bear	ms-Applicati	on of Fourier Series for Two Dimensional Pr	oblen	ns -	Grav	ity
Loading.						•
UNIT - III			Lectu	ire I	Irs:1	10
TWO DIMEN	SIONAL PF	COBLEMS in POLAR COORDINATES :				
General Equati	on in Polar C	Co-Ordinates - Stress Distribution Symmetrical	Abou	t An	Axi	s –
Pure Bending of	of Curved Ba	rs- Strain Components in Polar Coordinates-I	Displa	cem	ents	for
Symmetrical S	tress Distrib	utions-Simple Symmetric and Asymmetric	Proble	ms-	Gene	eral
Solution of Tv	vo Dimensio	nal Problem in Polar Coordinates-Application	of 7	The	Gene	eral
Solution of Tv	vo Dimensio	nal Problem in Polar Coordinates-Application	of 7	The	Gene	eral
Solution in Pol	ar Coordinate	es.				
UNIT - IV			Lect	ure	Hrs:	9
ANALYSIS O	F STRESS	AND STRAIN IN THREE DIMENSIONS:	Princ	iple	Stres	SS -
Ellipsoid and S	tress-Directo	r Surface-Determination of Principle Stresses-	Max	imur	n Sh	ear
Stresses-Homo	geneous Defe	ormation-Principle Axis of Strain Rotation.				
General Theorem	rems: Baland	ce Laws - Differential Equations of Equilibriu	m- C	ondi	tions	of
Compatibility	- Determina	tion of Displacement-Equations of Equilibri	um ii	n Te	erms	of
	Principle of	f Superposition-Uniqueness of Solution -	-The	Ree	cipro	cal
Theorem.						
UNIT - V			Lect	ure	Hrs:	9
TORSION OF	PRISMAT	IC BARS:				
		Elliptical Cross Section-Other Elementary Sol				
	n of Dooton	gular Bars-Solution of Torsional Problems by	Ener	av N	A ath	od-

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Use of Soap Films in Solving Torsional Problems-Hydra Dynamical Analogies-Torsion of Shafts, Tubes and Bars.

Textbooks:

- 1. Theory of Elasticity and Plasticity by Timoshenko, S., MC Graw Hill Book company.
- 2. Advanced Strength of materials by Papoov, MC Graw Hill Book company.
- 3. Theory of Elasticity and Plasticity by Sadhu Singh. Khanna Publishers.

- 1. Plasticity for structural Engineers- Chen, W.F. and Han, D.J., Springer Verlag, New York.
- 2. Plasticity theory, Lubliner, J., Mc Millan Publishing Co., New York.
- 3. Foundations of Solid Mechanics by Y.C.Fung, PHI Publications.
- 4. Advanced Mechanics of Solids by L.S. Srinath, Tata MC Graw Hill Book company.

Course Code	21D11106	EXPERIMENTAL STRESS ANALYSIS	L	Т	P	C
Semester	Ι	(PE-II)	3	0	0	3
Course Object	ives: This Co	ourse Will Enable Students:				
1. To perfe	orm NDT tes	t and interpret the results				
2. To unde	erstand the sc	ience behind working of strain gauge				
3. Underst	and the pract	ical applications of strain gauge				
4. To dete	rmine the str	ess distribution in an acrylic block using the	conce	pt of	pho	oto-
elasticit	2					
Course Outcon	mes (CO): St	tudent will be able to				
1. To unde	erstand the m	echanical properties of strain gauges and applic	ations	5		
2. To unde	erstand the de	sign and performance of strain gauges				
3. To unde	erstand the m	ethods of Non-destructive testing				
4. To unde	erstand the m	ethods of photo elasticity and models				
UNIT - I			Lectu	re H	rs: 1	10
PRINCIPLES	OFEXPER	IMENTAL APPROACH				
Merits of Exp	perimental A	nalysis Introduction, Uses of Experimental	Stre	ss A	naly	sis
Advantages of	f Experimen	tal Stress Analysis, Different Methods -S	Simpl	ifica	tion	of
Problems.						
UNIT - II]	Lectu	re H	rs: 1	10
STRAIN MEA	SUREMEN	T USING STRAIN GAUGES :-				
Definition of S	train and Its	Relation of Experimental Determinations Pro	pertie	es of	Stra	uin-
Gauge System	ns-Types of	Strain Gauges -Mechanical, Acoustic and	l Op	tical	Str	ain
Gauges. Introd	uction To E	lectrical Strain Gauges - Inductance Strain Ga	auges	– L	VD	Γ –
Resistance Stra	in Gauges –	Various Types –Gauge Factor – Materials of Ac	lhesio	on Ba	use.	
UNIT - III			Lectu	-		-
STRAIN ROS	SSETTES a	nd NON – DESTRUCTIVE TESTING of	CO	NCI	RET	E:-
		ements Rectangular Rosette - The Delta Roset				
Transverse Str	ain Gauge.	Ultrasonic Pulse Velocity Method –Applicati	on T	o Co	oncre	ete.
Hammer Test -	- Application	To Concrete.				
UNIT - IV			Lect	ure	Hrs:	: 9
THEORY OF	PHOTO EL	ASTICITY :-				
Introduction –	Гетрогату D	ouble Refraction – The Stress Optic Law –E	ffects	of S	Stres	sed
Model in A Po	lariscope for	Various Arrangements – Fringe Sharpening.	Brew	ster'	s Str	ess
Optic Law.						
UNIT - V			Lect	ure	Hrs	9
TWO DIMEN	SIONAL PH	IOTOELASTICITY :-				
Introduction -	Isochromati	c Fringe Patterns- Isoclinic Fringe Patterns	Passa	ge o	f Li	ght
Through Plan	e Polariscoj	pe and Circular Polariscope Isoclinic Fr	nge	Patt	erns	—
Compensation	Techniques –	Calibration Methods – Separation Methods –	Scalir	g M	odel	То
Prototype Stres	ses – Materia	ls for Photoelasticity- Properties of Photoelasti	c Mat	erial	s.	

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Textbooks:

- 1. Experimental Stress Analysis by J.W.Dally and W.F.Riley, College House Enterprises
- 2. Experimental Stress Analysis by Dr.Sadhu Singh.Khanna Publishers
- 3. Abdul Mubeen, "Experimental Stress Analysis", Dhanpat Rai and Sons, 2001.

- 1. Experimental Stress Analysis by U.C.Jindal, Pearson Publications.
- 2. Experimental Stress Analysis by L.S.Srinath, MC.Graw Hill Company Publishers.
- 3. Moire Fringes in Strain Analysis, PS Theocaris, Pergammon Press, 2002.

Course Code	21D12104	MODELLING SIMULATION AND	L	Т	P	С
Semester	Ι	COMPUTER APPLICATIONS	3	0	0	3
		(PE-II)				
Course Object	t ives: This co	urse will enable students:				
1. Define	the basics of	simulation modeling and replicating the practic	cal s	situat	tions	in
organiz	ations					
		mbers and random variates using different techni-	ques	•		
	L	model using heuristic methods.				
•		on models using input analyzer, and output analy	zer			
_		and Validation of simulation model.				
		tudent will be able to				
		important elements of discrete event simulatio	n an	d m	odel	ing
paradig						
-		world situations related to systems developed	ment	t de	cisio	ns,
		rce requirements and goals.				
		pply simulation software to construct and exec	ute	goal	-driv	ven
	models.					
-		and apply the results to resolve critical issues	in a	rea	l wo	rld
environ	ment.				T 4	0
UNIT - I				ure H		
		cepts, Continues and Discrete Systems, System M	/lode	eling	, Ty	pes
		porate Model, and System Study.	1	•	1	1
		Techniques, Comparison of Simulation	and	An	aiyti	cal
Methods, Type	s of Simulation	on, Distributed Log Models, Cobweb Models.				
UNIT - II			ect	ure H	Irc·1	0
	IS SYSTEM	SIMULATION: Numeric Solution of Differe				
		Computers, Continuous System Simulation La		-		
		odels, Logistic Curves.	1540	.500	CDI	,
UNIT - III			Lect	ure H	Irs:1	0
	Y CONCE	PTS IN SIMULATION: Monte Carlo Technic				
		ions, Random Number Generation Algorithms.	-			
	-	_				
UNIT - IV]	Lect	ure F	Irs:9)
QUEUING 7	THEORY:	Arrival Pattern Distributions, Servicing T	imes	s, Ç	Jueu	ing
Disciplines, Me	easure of Que	eues, Mathematical Solutions to Queuing Problem	ns.			-
DISCRETE	SYSTEM S	SIMULATION: Events, Generation of A	rriva	ıl P	atter	ms,
Simulation Pro	<u>gramming Ta</u>	asks, Analysis of Simulation Output.		<u>.</u>		
UNIT - V			Lect	ure H	Irs:9)
	SIMSCRIPT			ogra		-
		es, Implementation of Activities, Events and	Que	eues,	Ev	ent
Scanning, Simu	ulation Algor	ithms in GPSS and SIMSCRIPT.				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Textbooks:

- 1. System Simulation, Geoffrey Gordon: PHI.
- 2. Computer Simulation Experiments With Models of Economic Systems, Naylor, Thomas, H John Wiley and Sons, 1971.
- 3. Discrete Event system Simulation, Jerry Banks, John S Carson, II, Berry L Nelson, David M Nicol, Pearson Education,

- 1. Introduction to Urban Dynamics, Louis Wdward Alfeld and Alan K.Graham, Wright Allen Press Inc., Massachusetts, 1976.
- 2. Models in Geography, Richard J.Chorley and Peter Haggett, Methuen & Co.Ltd., 1977.
- 3. Operations Research An Introduction, Hamdy A.Taha, Macmillan Company, New York, 1987.
- 4. Environmental Facilities and Urban Development in India-A System Dynamic Model for Developing Countries, Thirumurthy.A.M. Academic Foundations, India.

Course	21D12105	STRUCTURAL HEALTH MONITORING	L	Т	Р	С
Code		(PE-II)				
Semester	Ι	(1 2-11)	3	0	0	3
		course will enable students:				
		structural health monitoring for structures.				
		ne conditional assessment & techniques for st	rengt	heni	ng a	ınd
	fitting of stru					
		Student will be able to				
-	·	ress in the structure by understanding the causes an	nd fac	ctors		
		of structure using static field methods.				
		of structure using dynamic field tests				
	yout repairs a	and rehabilitation measures of the structure				
UNIT - I			Lectu	ıre H	Irs:	10
		al Health Monitoring (SHM) :				
Definition &	Motivation f	for SHM, SHM - A Way for Smart Materials and S	Struct	ures	, SH	Μ
and Bio Min	netic - Analo	g Between The Nervous System of A Man and A	Stru	cture	e Wi	th
SHM;						
SHM As A	Part of Sys	stem Management, Passive and Active SHM, N	JDE,	SH	M a	nd
NDECS, Bas	sic Componer	nts of SHM, Materials for Sensor Design.				
UNIT - II			Lectu			
Application	of SHM	in Civil Engineering: Introduction to Capa	acitive	e Me	thod	ls,
Capacitive F	robe for Cov	ver Concrete, SHM of A Bridge, Applications for	or Ex	terna	l Po	ost
Tensioned C	ables, Monito	oring Historical Buildings.				
UNIT - III			Lectu	ıre H	Irs:	10
Non Destru	ctive Testing	g of Concrete Structures: Introduction to NDT	- Sit	uatic	ons a	and
Contexts, W	here NDT Is	s Needed, Classification of NDT Procedures, V	<i>'</i> isual	Insp	oecti	on,
Half-Cell E	lectrical Pot	ential Methods, Schmidt Rebound Hammer	Test,	Res	sistiv	'ity
Measuremen	t, Electroma	gnetic Methods, Radiographic Testing, Ultrasoni	c Tes	sting	, Inf	ra-
	graphy, Grou	nd Penetrating Radar, Radio Isotope Gauges, Othe	er Me	thod	s	
UNIT - IV			Lectu	ıre H	Irs:)
Condition S	urvey & ND	E of Concrete Structure:				
a) Defin	nition and C	Dbjective of Condition Survey, Stages of Co	onditio	on S	Surv	ey
(Preli	iminary, Plan	ning, Inspection and Testing Stages)				
b) Possi	ble Defects i	in Concrete Structures, Quality Control of Concr	rete S	struc	tures	; -
Defin	ition and Ne	ed, Quality Control Applications in Concrete Stru	cture	s, Nl	DT A	As
An C	Option for N	on-Destructive Evaluation (NDE) of Concrete S	Struct	ures	, Ca	se
Studi	es of A Few	NDT Procedures On Concrete Structures.				
UNIT - V			Lectu	ıre H	Irs:)
		ofitting of Concrete Structure :				
· •		ion & Retrofitting of Structures, Damage Assessm	nent (of Co	oncre	ete
		als and Methods for Repairs and Rehabilitation.				
		paired Composite Structure, Structural Analysis			-	-
Impo	rtance of re-A	Analysis, Execution of Rehabilitation Strategy, Cas	se Stu	dies		

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Textbooks:

- 1. Daniel Balageas, Claus Peter Fritzenami Alfredo Guemes, Structural Health Monitoring, Published By Iste Ltd., U.K. 2006.
- 2. Guide Book On Non-Destructive Testing of Concrete Structures, Training Course Series No.17, International Atomic Energy Agency, Vienna, 2002.
- 3. Structural Health Monitoring: Current Status and Perspectives, Fu Ko Chang

- 1. Hand Book On "Repair and Rehabilitation of Rcc Buildings", Published By Director General, Cpwd, Govt. of India, 2002.
- 2. Hand Book On Seismic Retrofitting of Buildings, Published By Cpwd & Indian Building Congress in Association With Iit, Madras, Narosa Publishing House, 2008
- 3. Smart Materials and Structures, Gandhi and Thompson

Course Code	21D11109		L	Т	Р	C
Semester	Ι	RESEARCH METHODOLOGY AND IPR	2	0	0	$\frac{c}{2}$
	-			v	v	
Course Object	tives: This C	ourse Will Enable Students:				
Course Outco	mes (CO): S	tudent will be able to				
At the end of th	nis course, stu	idents will be able to				
1. Understar	d research pr	oblem formulation.				
2. Analyze r	esearch relate	ed information				
3. Follow rea	search ethics					
	•	s world is controlled by Computer, Information				
		row world will be ruled by ideas, concept, and c		•		
	0	en IPR would take such important place in grow				
		to emphasis the need of information about Inte			rope	rty
-	-	mong students in general & engineering in parti-				
	-	rotection provides an incentive to inventors for				
		n R & D, which leads to creation of new and bet	ter p	rodu	cts, a	ind
	ngs about, ec	conomic growth and social benefits.				
UNIT - I			Lectu			
U	1	em, Sources of research problem, Criteria Cha				
		rors in selecting a research problem, Scope a				
-		ches of investigation of solutions for research	h pro	oblei	n, d	ata
	ysis, interpre	tation, Necessary instrumentations				
UNIT - II	· · · · · · · · · · · · · · · · · · ·		Lectu	re H	rs:	
	ture studies a	pproaches, analysis Plagiarism, Research ethics,	T	4	TT	
UNIT - III	• 1 •				Hrs:	1
		how to write report, Paper Developing a Re			ropos	sai,
UNIT - IV	arch proposal	, a presentation and assessment by a review com			Hrs:	
	la struct Duoma	rten Detente Designe Trade and Consumable Dra				
	-	rty: Patents, Designs, Trade and Copyright. Pro-				-
-		gical research, innovation, patenting, development				
Patenting under	-	peration on Intellectual Property. Procedure for g	31 and	5 01	pater	ns,
UNIT - V			Ιo	otur	e Hrs	
	Scope of	Patent Rights. Licensing and transfer of tec				
-	-	s. Geographical Indications. New Develop				
		stem. New developments in IPR; IPR of Bio				
		ditional knowledge Case Studies, IPR and IITs.	iogic	a D	yster	113,
Textbooks:						
	ral Dynamics	for Earthquake Engineering, A.K.Chopra, Pearso	n Pu	bilic	atior	IS
	-	res by Clough & Penziem				~~
-		by Roy. R. Craig John willy & fours.				
~uaeta		· · · · · · · · · · · · · · · · · · ·				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

- 1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students""
- 2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide• for beginners"
- 4. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 5. Mayall, "Industrial Design", McGraw Hill, 1992.
- 6. Niebel, "Product Design", McGraw Hill, 1974.
- 7. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 8. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 9. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Semester I WRITING 2 0 0 Course Objectives: This Course Will Enable Students: Course Outcomes (CO): Student will be able to At the end of this course, students will be able to 1. Understand that how to improve your writing skills and level of readability 2. Learn about what to write in each section 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Key skills are needed when writing an Introduction, skills needed when writing a Abstract, key skills are needed when writing the Methods, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks	Course Code	21D11110	ENGLISH FOR RES	EARCH PAPER	L	Т	Р	C
Course Outcomes (CO): Student will be able to At the end of this course, students will be able to 1. Understand that how to improve your writing skills and level of readability 2. Learn about what to write in each section 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing a Review of the Literature UNIT - IV Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing a Review of the Literat	Semester	Ι	WRITI	NG	2	0	0	0
Course Outcomes (CO): Student will be able to At the end of this course, students will be able to 1. Understand that how to improve your writing skills and level of readability 2. Learn about what to write in each section 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing a Review of the Literature UNIT - IV Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing a Review of the Literat								
At the end of this course, students will be able to 1. Understand that how to improve your writing skills and level of readability 2. Learn about what to write in each section 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing the Methods, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Fextbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook	Course Object	tives: This Co	urse Will Enable Students	:				
At the end of this course, students will be able to 1. Understand that how to improve your writing skills and level of readability 2. Learn about what to write in each section 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing the Methods, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Fextbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook								
 Understand that how to improve your writing skills and level of readability Learn about what to write in each section Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing the Methods, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	Course Outcom	mes (CO): St	udent will be able to					
 2. Learn about what to write in each section 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing the Methods, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 		,						
 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 				and level of readabi	lity			
first-time submission UNIT - I Lecture Hrs: Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature Lecture Hrs: UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Siama N (Ifor the Wathematical Sciences, SIAM. Highman'sbook								
UNIT - ILecture Hrs:Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and VaguenessUNIT - IILecture Hrs:Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4UNIT - IIILecture Hrs:Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.UNIT - IVLecture Hrs:Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the LiteratureUNIT - VLecture Hrs:Skills are needed when writing the Methods, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	3. Understand t	he skills need	ed when writing a Title E	nsure the good qual	ity of p	aper	at v	ery
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. Lecture Hrs: Review of the Literature are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature Lecture Hrs: UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht </td <td></td> <td>ission</td> <th></th> <th></th> <td></td> <th></th> <td></td> <td></td>		ission						
and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	UNIT - I				Lectu	ire H	Irs:	
Vagueness Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 Lecture Hrs: Qunit - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature Lecture Hrs: WINT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht								
UNIT - II Lecture Hrs: Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 Lecture Hrs: Qunit - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. Lecture Hrs: WINT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	and Sentences	, Being Con	cise and Removing Rec	lundancy, Avoidin	g Am	bigui	ity a	ınd
Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticising, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	Vagueness							
Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction 4 UNIT - III Lecture Hrs: Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht								
UNIT - IIILecture Hrs:Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check.UNIT - IVLecture Hrs:Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the LiteratureUNIT - VLecture Hrs:Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submissionTextbooks:I1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	Clarifying Wh	no Did Wh	at, Highlighting Your	Findings, Hedging	and	Crit	icisi	ng,
Review of the Literature, Methods, Results, Discussion, Conclusions, The Final Check. UNIT - IV Lecture Hrs: Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	Paraphrasing an	nd Plagiarism	, Sections of a Paper, Abst	racts. Introduction	4			
UNIT - IVLecture Hrs:Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the LiteratureUNIT - VLecture Hrs:Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submissionTextbooks:1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press1. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbookSience, Papers, Springer New York Dordrecht	UNIT - III				Lec	ture	Hrs	:
Key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	Review of the I	Literature, Me	thods, Results, Discussion	, Conclusions, The				
 key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 								
the Literature Lecture Hrs: UNIT - V Lecture Hrs: Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: I. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Siama Wallwork , English for Writing Research Papers, Springer New York Dordrecht	Key skills are 1	needed when	writing a Title, key skills	are needed when w	riting	an A	bstra	ict,
UNIT - VLecture Hrs:Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submissionTextbooks:1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	•	eeded when	vriting an Introduction, sk	ills needed when w	riting a	a Re	view	of
 Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 								
 are needed when writing the Discussion, skills are needed when writing the Conclusions. useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	UNIT - V				Le	ctur	e Hr	's:
 useful phrases, how to ensure paper is as good as it could possibly be the first- time submission Textbooks: Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 			0	0				
 submission Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	are needed wh	en writing th	e Discussion, skills are no	eeded when writing	g the C	Conc	lusio	ns.
 Textbooks: 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	-	, how to ens	ure paper is as good as	it could possibly	be the	firs	st- ti	me
 Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	submission							
 Books) 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press 2. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook 3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	Textbooks:							
 University Press Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	1. Goldbort F	R (2006) Wri	ting for Science, Yale U	niversity Press (av	ailable	on	Goo	gle
 Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht 	Books) 2.	Day R (200	6) How to Write and Pu	blish a Scientific	Paper,	Car	nbric	lge
Highman'sbook3. Adrian Wallwork , English for Writing Research Papers, Springer New York Dordrecht	•							
3. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht	-		andbook of Writing for	the Mathematical	Scien	ces,	SIA	M.
	U							
		-	-	Papers, Springer Ne	w Yor	k Do	ordre	cht

Course Code	21D11111		L	Т	Р	C
Semester	Ι	VALUE EDUCATION	2	0	0	0
Course Object	t ives: This Co	ourse Will Enable Students:				
Course Outco	mes (CO): St	tudent will be able to				
1. Understa	nd value of e	ducation and self- development				
2. Imbibe g	ood values in	students				
3. Let the sh	nould know a	bout the importance of character				
UNIT - I			Lectu	-		
		nt -Social values and individual attitudes, W				
	anism. Mora	al and non- moral valuation. Standards and	princ	iples	.,Va	lue
judgements						
UNIT - II			Lectu	-		
-		of values., Sense of duty. Devotion, Self-relia				-
		s, Cleanliness. Honesty, Humanity. Power of	of fait	h, N	Jatio	nal
	sm. Love for	nature ,Discipline				
UNIT - III					Hrs	-
		Development - Soul and Scientific attitude, F				
		inctuality, Love and Kindness. Avoid fault Th	inking	;. Fre	e fr	om
	of labour., Ui	niversal brotherhood and religious tolerance.				
UNIT - IV					Hrs	
		Vs suffering, love for truth. Aware of self-	lestruc	ctive	hab	its.
Association and	d Cooperation	n. Doing best for saving nature				
UNIT - V			Le	ctur	e Hr	s:
Character and	Competence	-Holy books vs Blind faith. Self-management	and C	bood	hea	lth.
	1	quality, Nonviolence, Humility, Role of Won				
		ur Mind, Self-control. Honesty, Studying effec			C	
Textbooks:	- •	· · · ·				
	•	"Values and Ethics for organizations Theorem	ry and	1 pr	actic	e",
Oxford	University Pr	ress, New Delhi				

Course Code	21D11112		L	Т	Р	C
Semester	I	PEDAGOGY STUDIES	2	0	0	0
Course Objecti	ves: This Co	urse Will Enable Students:				
1. Review e	xisting evide	nce on the review topic to inform programme	e desig	n and	d pol	icy
making u	ndertaken by	the DfID, other agencies and researchers.				-
2. Identify c	ritical evider	nce gaps to guide the development				
Course Outcom	nes (CO): Stu	ident will be able to				
UNIT - I			Lectu	re H	rs:	
Introduction an	d Methodol	ogy, Aims and rationale, Policy backgr	ound,	Cor	ncept	ual
		y Theories of learning, Curriculum, T				on.
Conceptual fram	nework, Resea	arch questions, Overview of methodology an	d Sear	hing	z .	
UNIT - II			Lectu	re H	rs:	
		ical practices are being used by teachers in fe	ormal a	ind i	nfori	nal
	veloping cou	intries. Curriculum, Teacher education.				
UNIT - III			Lec	ture	Hrs	:
Evidence on the	effectivenes	s of pedagogical practices, Methodology for	the in	dept	h sta	ge:
quality assessm	ent of inclu	ded studies. How can teacher education	n (curi	iculı	ım a	and
practicum) and	the school,	curriculum and guidance materials best	suppo	ort e	ffect	ive
pedagogy? The	ory of change	e. Strength and nature of the body of evid	lence i	for e	ffect	ive
pedagogical, pra	actices. Peda	gogic theory and pedagogical approaches.	Teache	rs' a	ttitu	des
and beliefs and l	Pedagogic str	ategies				
UNIT - IV			Lec			
		lignment with classroom practices and follo				
support Suppor	rt from the h	ead teacher and the community. Curriculu	m and	asse	essm	ent
	ing: limited r	esources and large class sizes				
UNIT - V					e Hr	
Research gaps a	nd future dir	ections Research design Contexts Pedagogy	Teach	er ed	lucat	ion
Curriculum and	assessment D	Dissemination and research impact.				
Textbooks:						
1. Ackers J,	Hardman F	F (2001) Classroom interaction in Kenyan	prim	ary s	schoo	ols,
	31 (2): 245-2					
		ricular reform in schools: The importance of	evalua	ion,	Jour	nal
		36 (3): 361-379.				
• •	-) Teacher training in Ghana - does it count?		-site	teac	her
		ect (MUSTER) country report 1. London: DI				
• •	-	ier K, Pryor J, Westbrook J (2013) Impro	-		-	
0		hs and reading in Africa: Does teacher j	prepara	tion	cou	nt?
		ducational Development, 33 (3): 272–282.				
	· · ·	Culture and pedagogy: International compa	arisons	in	prim	ary
		Boston: Blackwell.				
	· /	India: A mass scale, rapid, 'learning to read	-	aign.		
7. www.prat	ham org/imag	ges/resource%20working%20paper%202.pdf				

Course Code	21D11113	ADVANCED CONCRETE	L	Τ	Р	С
Semester	Ι	LABORATORY – I	0	0	4	2
Course Objectiv						
1. Mix design an						
		Split Tensile Strength.				
3. Mix design an						
4. Flexural Stren		s of Metakaolin				
Course Outcom	. ,					
ē	0	sign and Fresh Properties of Fly ash.				
		ession Strength and Split Tensile Strength	1.			
		sign and Fresh Properties of GGBS.				
<u> </u>	<u> </u>	l Strength Properties of Metakaolin				
List of Experim						
		Properties of Fly ash based M40 Grade Co				
		and Split Tensile Strength Properties o	f Fly as	h ba	sed 1	M40
Grade Co						
	U 1	erties of Fly ash based M40 Grade Concre				
		Properties of GGBS based M40 Grade Co		a 1		
		and Split Tensile Strength Properties of	of GGB	S ba	sed	M40
Grade Co		the of CCDS have 1 M40 Consta Commen	4 -			
		erties of GGBS based M40 Grade Concre				
		Properties of Silica Fume based M40 Grad and Split Tensile Strength Properties			na h	anad
	le Concrete.	and spint relishe strength rioperties (JI SIIIca	l I'ul	ne u	aseu
		erties of Silica Fume based M40 Grade C	oncrete			
	U 1	properties of Metakaolin based M40 Grade C		ete		
		and Split Tensile Strength Properties of N			ased]	M40
Grade Co	0	and opine rensite Strength ripperties of r	-ieturd01			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		erties of Metakaolin based M40 Grade Co	oncrete			
References:						
itererenees.						

Cours	e Code	21D11114	COMPUTER AIDED DESIGN	L	Т	Р	С	
Sem	ester	Ι	LABORATORY - I	0	0	4	2	
Course	e Objecti	ves: The stud	ents will acquire knowledge about					
1.	Demonst	trate the desig	n of reinforced concrete structural elements.					
2.	Explain	earthquake re	sistant design					
			building for wind loading.					
4.	Demonst	trate the meth	od of analysis of truss.					
Course	e Outcon	nes (CO): At	the end of the course, students will be able to:					
2.	Analyze	and design th	e structural components like beams, slabs and o	colu	mns,	,		
3.	•		taining wall and shear wall.					
4.	Analyze	e for earthqual	ke loading & wind loading of framed buildings.	•				
5.	Analyze and design pin jointed, rigid jointed plane structures.							
List of	Experin	nents:						
	0	0.	forced concrete beam					
	0	•	nforced concrete beam					
			concrete column subjected to biaxial bending					
	0	•	einforced concrete slab					
			einforced concrete slab					
	0		concrete retaining wall (cantilever type)					
	0		concrete shear wall					
			ilding due to an earthquake using equivalent sta	tic 1	neth	od		
			ilding due to wind					
			ed plane frames					
			pported/cantilever beam					
		of plane trus	s and Design of Steel Tension Members.					
Refere								
			inners, T.S Sarma, Notion Press; (2014).					
2.	-	•	ad.Pro V8i for Structural Analysis, Sham Tickoo	o Di	eam	tech		
3.	press (20 Technica	,	Manual for STAAD, Bentley					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Course Code	21D11201	STRUCTURAL DYNAMICS	L	Т	P	С
Semester	II	STRUCTURAL DINAMICS	3	0	0	3
· · · ·		ourse Will Enable Students:				
2. Determin	e vibration cl	haracteristics of structures like frequency, amp	litude	, imp	oedai	nce
and time	L					
	-	nse of single and multi-degree of freedom syste				
	-	e of structures for pulse excitation like blast loa	ad			
		nse of Multi Degree of Freedom systems				
Course Outcon	mes (CO): S	tudent will be able to				
1. Write equ	ation of moti	ion for single and multi-degree of freedom syst	ems			
		t of damping on charecterstics of vibrating syste	em			
		t arbitrary and pulse excitation				
		ns of Numerical methods in dynamics				
5. Analyze i	n various the	ories of failure and plasticity				
UNIT - I			Lectu			
Theory of Vi	brations: In	troduction -Elements of A Vibratory Syste	- m	Deg	rees	of
Freedom-Conti	nuous Syste	ms -Lumped Mass Idealization -Oscillatory	Moti	on -	-Sim	ple
Harmonic Mot	ion –Pictoria	l Representation of S.H.M - Free Vibrations of	f Singl	le De	egree	of
		- Undamped and Damped -Critical Damp				
		ations of SDOF Systems-Harmonic Exci				
		dwidth. Fundamental Objective of Dynamic A				
	ding- Methoo	ds of Discretization- Formulation of The Equation	ons of	f Mo	tion.	
UNIT - II			Lectu			-
		System: Formulation and Solutions of The Equ				
	-	-Response To Harmonic, Periodic, Impuls	sive a	nd	Gene	eral
Dynamic Load	ing –Duhame	el Integral				
UNIT - III			Lectu			
-		System: Selection of The Degree of Freedo				
-	-	s-Formulation of The MDOF Equations of M			-	-
		of Eigen Value Problem for Natural Freque				
	•	mic Response –Normal Coordinates –Uncouj	-	-	ions	of
	gonal Proper	ties of Normal Modes-Mode Superposition Pro	1			
UNIT - IV			Lect	ure l	Hrs:	9
	•	sis: Stodola Method- Fundamental Mode Ana	•		•	
Second and Hig	gher Modes –	-Holzer's Method –Basic Procedure –Transfer	Matrix	ro Pro	cedu	re
UNIT - V				ture		
	-	ke Analysis: Introduction –Excitation by Rigid				ion
-Lumped Mass	Approach -S	SDOF and MDOF System- I.S Code Methods of	of Ana	lysis	•	
Continueros	Tat	advation Flowing Witness of D				~ ~
	•	oduction –Flexural Vibrations of Beams- I		•		
Equation of M		vsis of Undamped Free Shapes of Simple Beau	115 VV1	ui D	mer	ent

End Conditions-Principles of Application To Continuous Beams.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Textbooks:

- 1. Structural Dynamics for Earthquake Engineering, A.K.Chopra, Pearson Pubilications
- 2. Dynamics of Structures by Clough & Penziem
- 3. Structural Dynamics by Roy. R. Craig John willy & fours.

- 1. Structural Dynamics by Mario Paz
- 2. I.S:1893(Part 1):2016 Code of Practice for Earthquakes Resistant Design of Stuctures.
- 3. Fundamentals of Vibration, Anderson R.A, Amerind Pulblishing Co., 1972.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

	1							
Course Code	21D12201	FINITE ELEMENT ANALYSIS	L	Т	P	C		
Semester	II	FINITE ELEMENT ANALISIS	3	0	0	3		
Course Objec	tives: This Co	ourse Will Enable Students:						
1 To provide	an overview	and basic fundamentals of Finite Element Analy	sis.					
		ects of finite element theory, including domai		scret	izati	on,		
		n of boundary conditions, assembly of global arr						
-	ting algebraic							
	0 0	ng concepts behind variational methods and w	veight	ted 1	resid	ual		
methods in	FEM.		-					
4 Formulate	simple structu	ral problems in to finite elements						
Course Outcomes (CO): Student will be able to								
-	, ,	models for various Engineering problems.						
		mation requirements and sources for analysi	is ,	desi	gn a	and		
evaluation	5	1			U			
3 Use profes	sional-level fi	nite element software to solve engineering probl	ems.					
		from FEA software solutions, not only in term		cond	lusi	ons		
_	areness of lin							
UNIT - I			Lect	ure	Hrs:	10		
Introduction-	Concepts of I	FEM –Steps Involved –Merits &Demerits –Ene	rgv	Prind	ciple	s –		
Discretization		-Ritz Method of Functional Approxim			Elas			
	• •	tions-Strain Displacement Relationships in Ma						
		-Symmetric Bodies of Revolution With Axi Syn						
			T 4			10		
UNIT - II			Lectu					
UNIT - III			Lectu			-		
		ifferent Types of Elements for Plane Stress a						
		Iodels –Generalized Coordinates-Shape Funct						
-	• •	nents -Geometric Invariance -Natural Coordin		-				
	oordinates-G	eneration of Element Stiffness and Nodal Load	Matr	rices	–Sta	atic		
Condensation.								
UNIT - IV			Lecti	uro 1	Hree	0		
	. Formulatio							
-		n -Concept, Different Isoparametric Elements f			•			
		nd 8-Noded Isoparametric Quadrilateral Eleme ents. Axi Symmetric Analysis –Bodies of						
		· ·						
Elements.	Juening –stra	ain Displacement Relationship-Formulation of	AXI	Syl	mile	.110		
Liements.								
UNIT - V			Lect	Ire	Hree	9		
	ional FFM_1	Different 3-D Elements, 3D Strain –Displaceme						
		University of the state of the	ли К	ciall	UIISI	-4r		

Formulation of Hexahedral and Isoparametric Solid Element.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Textbooks:

- 1. Finite Elements Methods in Engineering by Tirupati. R. Chandrnpatla and Ashok D. Belegundu Pearson Education Publications.
- 2. Finite Element Analysis Theory & Programming by C.S.Krishna Murthy- Tata Mc.Graw Hill Publishers
- 3. Finite Element Analysis by S.S. Bhavakatti-New Age International Publishers

- 1. Finite Element Method and Its Application by Desai ,2012, Pearson Pubilications.
- 2. finite Element Methods by Darrel W.Pepper, Vikas Pubilishers
- 3. Finite Element Analysis and Procedures in Engineering by H.V.Lakshminaryana, 3rd Edition, Universities Press, Hyderabad.
- 4. Finite Element Analysis in Engineering Design by S.Rajasekharan, S.Chand Publications, New Delhi.
- 5. Finite Element Analysis by P Seshu-PHI Learning Publications.

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D11204	DESIGN OF PRESTRESSED CONCRETE	L	T	P	C
Semester	II	(PE-III)	3	0	0	3
			•			
Course Ob	jectives: Thi	is Course Will Enable Students:				
1. Fai	miliarize stuc	lents with concret of prestressing and analysis of pro-	estress	5		
2. De	sign and ana	lysis of pretension and post tensioned concrete men	nbers			
3. De	termination of	of deflections of prestressed members				
4. To	calculate the	e losses of prestress, creep and shrinkage.				
): Student will be able to				
1. To	understand th	ne basic concepts about prestressed concrete and ana	alysis	of pi	estre	ess
2. Est	imate the effe	ective losses in prestress	•	-		
3. Ana	alyse the effe	ct of prestressing force in the beahviour of beams in	n flexu	re		
4. To	design shear,	torsion and transmission length in prestressed conc	rete n	nemt	bers	
5. Des	sign of comp	ression and tension members as per codes of practic	e			
UNIT - I			Lect	ure	Hrs:	10
Introducti	on: Develop	ment of Prestressed Concrete -Advantages and	Disad	vant	ages	of
PSC Over	RCC –Gener	al Principles of Pre-Stressing-Pre Tensioning and	Post T	ensi	onin	g –
Materials	Used in PS	C-High Strength Concrete –High Tension Steel	l-Diffe	erent	Ty	pes
/Methods/S	systems of P	restressing. Analysis of Sections for Flexure in	Accor	danc	e W	<i>ith</i>
Elastic The	eory-Allowat	ble Stresses-Design Criteria As Per I.S Code of	Pract	ice -	-Ela	stic
Design of	Beams (Rec	ctangular, I and T Sections) for Flexure -Introd	uction	То	Par	tial
Prestressing	g					
UNIT - II			Lectu	ure l	Hrs:	10
Losses of	Prestress: E	Estimation of The Loss of Prestress Due To Var	ious (Cause	es L	ike
Elastic Sho	ortening of C	Concrete ,Creep of Concrete, Shrinkage of Concre	ete, R	elaxa	ation	of
Steel, Slip	in Anchorage	e and Friction				
UNIT - III			Lectu	ure l	Hrs:	10
Deflections	s: Introducti	on-Factors Influencing Deflections-Short Term	and	Long	g Te	erm
Deflections	s of Un-crack	ked members- Short Term and Long Term Deflect	ctions	of C	Cracl	ced
Members.						
Shear: She	ear in PSC E	Beams -Principal Stresses -Conventional Elastic I	Desigr	n for	She	ar-
Transfer of	Prestress in	Pre-tensioned Members				
UNIT - IV			Lect	ure l	Hrs:	10
End blocks	s: Transmissi	on length -Bond stresses-bearing at anchorage -An	chorag	ge zo	one	
stresses in	post-tensione	d members-Analysis and design of end blocks by G	uyon,	Mag	gnel	
and approx	imate method	ds –Anchorage zone reinforcements.				
UNIT - V			Lect	ure l	Hrs:	10
Statically	Indetermina	ate Structures: Introduction –Advantages and	Disady	vanta	ages	of
Continuity	-Layouts for	Continuous Beams-Primary				ľ
	•	ts -Elastic Analysis of Continuous Beams-Linear	r Tran	sfor	mati	on-
Concordant	t Cable Profil	le-Design of Continuous Beams				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> COMPUTER AIDED STRUCTURAL ENGINEERING

Textbooks:

- 1. Prestressed Concrete by N. Krishna Raju, 6th Edition, TMH Pubilishers.
- 2. Prestressed Concrete by K.U.Muthu, PHI Learning Private Limited.
- 3. Prestressed Concrete Design by Praveen Nagarajan, Pearson Pubilications.

- 1. Design of Prestressed Concrete Structures, T.Y.Lin and Ned H. Burns, Wiley Publishing House.
- 2. Prestressed Concrete, Vol.I&II, Y.Guyon, Wiley and Sons, 1960.
- 3. Prestressed Concrete, Edward P.Nawy, Prentice Hall -.
- 4. Prestressed Concrete by N. Rajagopalan, Narosa Pubilishing House

Course Code	21D12202	MANAGEMENT INFORMATION SYSTEMS	L	Т	Р	C
Semester	II	(PE-III)	3	0	0	3
-						
Course Ol	bjectives: Th	is course will enable students:				
Course Ou	utcomes (CO): Student will be able to				
			Ŧ			
UNIT - I	an to MIC	Importance of Information for Management Desi			e Hi	
		- Importance of Information for Management Decisition – System Development – Information System				
		s and Management Information Systems Interfacing.			ciur	5 —
UNIT - II		s and management miormation bystems metraeme.	Le	ctur	e H	rs:
	besign of Con	nputer Sub-Systems, Database Design, File Design, I	-		-	
•	0	ystem Security.	I		1	
UNIT - II		· · · · ·	Le	ctur	e H	rs:
MIS Deve	elopment – l	Process – System Development – System Life C	ycle	Me	ethod	1 –
Structured	Developmen	t Method, and Prototype Method – Software Develop	men	t.		
UNIT - IV			-		e Hi	
	•	Computers in Management - MIS Office Autom	atio	ns D	Decis	ion
Support Sy	vstem – Exper	rt System.				
UNIT - V			Ιρ	otur	e Hı	
	ation Evalu	ation and Maintenance of MIS – Pitfalls in MIS				
1	,	IS System Engineering Methodology for MIS Proble			1	
Textbooks					0	
1. Co	mputers to Da	ay, Suresh K.Basandra – Glagotia Publishers.				
		tems for Management- R.G.Murdicks.				
		and Design- Elias M.Award				
Reference						
	•	sign Information SystemsA.Senn .				
		Information, Jerome Kanter, Prentice & Hall.				
	-	Formation Systems Text & Application C.S.V.Murthy	•			
	•	hing House – Mumbai.)l. 1	a l a a		
5. Ma	nagement Inf	Formation Systems, Gordan Davis – Mc Graw – Hill I	ubli	sner	s.	

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D12203	RELIABILITY BASED ENGINEERING DESIGN	L	T	Р	C
Semester	II	(PE-III)	3	0	0	3
Bennester	п		0	U	U	5
Course Objec	tives: This course w	vill enable students:				
1. Demon	strate the approach	es and techniques to assess and improve	e pro	cess	and	l/or
produc	t quality and reliabil	lity.				
2. Introdu	ice the principles	and techniques of Statistical Quality C	ontro	ol an	d th	neir
		nd/or process design and monitoring				
3. Illustra	te the basic concept	s and techniques of modern reliability eng	neer	ing t	ools	
Course Outco	mes (CO): Student	will be able to				
1. Attain	the basic techniqu	es of quality improvement, fundamenta	l kn	owle	edge	of
	es and probability					
2. Use co	ntrol charts to analy	ze for improving the process quality.				
3. Descrit	be different samplin	g plans				
4. Acquir	e basic knowledge o	of total quality management				
5. Unders	stand the concepts of	f reliability and maintainability				
UNIT - I			Lect	ture	Hrs	:10
Basic Statistics	s and Probability – (Concepts of Structural Safety – Resistance	Para	mete	ers a	nd
Distributions.	Probabilistic Analys	sis of Loads Live Load & Wind Load				
UNIT - II			Lect	ture	Hrs	:10
Determination	of Reliability, Mon	te Carlo Study of Structural Safety.				
UNIT - III			Lect	ture	Hrs	:10
Levels of Re	liability Methods a	and Their Suitable Adoption in Structu	ral	Engi	neer	ing
Elements.						
UNIT - IV				ture		
UNIT - V			Lect	ture	Hrs	:9
		Components - Reliability Based Design I				
		bration – Reliability of Structural System	s Ap	plica	ation	to
Steel & Concr	ete Structures, Off S	Shore Structures.				
Textbooks:						
	•	ry and Its Application Springer – Palle Th	oft C	hrist	ense	n
		Berlon Haiderberg, Newyork 1982.				
	•	ysis and Prediction, R.E. Melchers, Elles H	Iarw	ood,		
	ter, England, 1987					
		esign of Structures, Ranganathan, R., McC	raw	Hill	, Ne	W
Delhi,						
Reference Bo						
	v 1	igineering Planning and Design Volume II	A.F	I.S. A	Ang	
	H.Tang, Jhon Wiley					
		E.Bala Guruswamy, Tata McGraw Hill, 1		_		
3. Reliabi	lity Engineering, (3	rdEdition), by LS Srinath, Affiliated East	West	Pvt	Ltd,	

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u>

COMPUTER AIDED STRUCTURAL ENGINEERING

Course Code	21D11206	STABILITY OF STRUCTURES	L	Τ	Р	C		
Semester	II	(PE-IV)	3	0	0	3		
Semester			5	U	U	5		
Course Object	tives: This Co	ourse Will Enable Students:						
1. Determ	1. Determine stability of columns and frames							
2. Determ	ine stability c	f beams and plates						
3. Use stal	bility criteria	and concepts for analyzing discrete and conti	nuous s	syster	ms,			
		equations for plate buckling						
Course Outco	mes (CO): St	udent will be able to						
1. Apply th	e torisonal bi	ckling and plates for buckling concept						
2. Apply the	he inelastic	behaviour of materials and analyse the ine	elastic	chara	acter	of		
column								
3. Analyse	the frame str	uctures						
4. Analyse	the plate stru	ctures						
UNIT - I			Lec	ture	Hrs:	10		
Formulations	Related To]	Beam Columns : Concept of Stability, Differ	rential	Equa	tion	for		
Beam Column	s –Beam Co	lumn With Concentrated Loads -Continuo	us Lat	eral	Load	1 –		
Couples -Bear	n Column V	Vith Built in Ends –Continuous Beams W	/ith A:	xial	Load	l –		
Application of	Trignometric	Series –Determination of Allowable Stresses	•					
UNIT - II			Lec	ture	Hrs:	10		
Elastic Buckli	ng of Bars: I	Elastic Buckling of Straight Columns –Effect	of Sho	ear St	tress	on		
Buckling-Eccer	ntrically and	Laterally Loaded Columns - Energy Metho	ds –Bu	ıcklir	ig of	A		
		Buckling of A Bar With Intermediate Comp						
		uckling of Bars With Change in Cross Section	on –Eff	fect o	of Sh	ear		
Force on Critic	al Load –Bui	It Up Columns						
UNIT - III			Lec	ture	Hrs:	10		
	0	rsional Buckling : Buckling of Straight Ba						
		Theory. Pure Torsion of Thin Walled Bar of C						
Non –Uniform	Torsion of	Thin Walled Bars of Open Cross Section-To	orsional	Buc	klin	g –		
Buckling Unde	r Torsion and	l Flexure.						
UNIT - IV				ture				
		of Stability Problems: Buckling Prob	lem C	orthog	gonal	lity		
	Method-Time	oshenko Method, Galerkin Method						
UNIT - V			Lectu	ire H	irs:9			
	0	ply Supported Beams and Rectangular						
-		a Subjected for Pure Bending. Derivation		-				
-	late Subject	ed To Constant Compression in Two D	irectior	ns ar	nd C)ne		
Direction.								
Textbooks:								
		Structure by Bleich –Mc Graw Hill						
•		umns Vol I by Chen & Atsuta Mc.Graw Hill						
		tability, Timoshenko, S., and Gere., M	c Grav	v Hil	1 Bo	ok		
Compar	ny, 1973.							

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

- 1. Elastic Stability of Structures, Smitses, Prentice Hall, 1973.
- 2. Buckling of Bars Plates and Shells, Brush and Almorth., Mc Graw Hill Book Company ,1975.
- 3. Principles of Structural Stability Theory, Chajes, A., Prentice Hall, 1974
- 4. Stability Theory of Structures, Ashwini Kumar, TATA Mc Graw Hill Publishing Company Ltd, New Delhi, 1985.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Course Code	21D11207	ADVANCED STEEL DESIGN	L	Т	Р	C
Semester	II	(PE-IV)	3	0	0	3
		()		Ū	Ū	
Course Object	tives: This Co	ourse Will Enable Students:				
		al steel fasteners like welding and bolting				
2. To intro	oduce steel s	tructures and its basic components like ecce	ntric a	und r	nom	ent
connect	tions	-				
3. To intro	duce the stru	ctural steel components of industrial building.				
		members, compression members, beams and b	beam-c	colun	nns	
		damental of steel structures and calculate the				of
differen	t cross-sectio	ons				
Course Outcon	mes (CO): St	tudent will be able to				
1. Learn th	ne fundament	als of structural steel fasteners				
2. Learn th	ne basic elem	ents of a steel structure				
3. Classify	and design t	he structural steel components of industrial but	ilding.			
	0	on members, compression members, beams and	0		amns	5
	-	ental of steel structures and calculate the p				
1	t cross-sectio	±				
UNIT - I			Lect	ure I	Irs:	10
 Failure of Bo Tensile Streng Tension – Slip Slip-Critical Co Intermittent Fil 	olted Joints – th of Plate – o-Critical con onnections. I	l Connections – Bolted Connections –Load Tr. Specifications for Bolted Joints – Bearing – Tr - Strength and Efficiency of the Joint – Cor- nections – Prying Action – Combined Shear Design of Groove Welds - Design of Fillet W Failure of Welds.	ype Co nbineo r and Velds	onneo d She Tens – De	ction ear a sion esign	s – and for of
UNIT - II		MENT CONNECTIONS : Introduction –	Lect			
		Subjected to Eccentric Shear – Bolted Fram				
		Bolted Bracket Connections. Bolted Mome				
		ions- Welded Bracket Connections – N				
Connections.	eu connect	ions- wended bracket connections = w	Iomen	i K	Corst	am
UNIT - III			Lect	ure I	Tree	10
	L ND DESIGN	OF INDUSTRIAL BUILDINGS:	Lett		11.5•1	
		wind loads on roofs. Design wind speed at	nd nre	essure	e w	ind
		ct on cladding and louvers; Design of angular	-			
1		tform. Design of purlins for roofs, design of bu				
	• 1	s and stanchions. Design of bracings.	int up	Puin	, c	ina
UNIT - IV		s and statements. Design of statings.	Lect	nre I	Trs:	9
Design of steel	truss girder	· bridges:				
0	0	ponent parts of a truss bridge, economic Prop	ortion	s of	truss	es.
		design of bridge Compression members, tensio				
		wind effect on top lateral bracing; bottom late				
		whice creek on top fateral braching, boltoff fate		ung	, por	ıaı

Bracing; sway bracing Design of Lacing.

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF CIVIL ENGINEERING COMPUTER AIDED STRUCTURAL ENGINEERING

UNIT - V		Lecture Hrs:9
Plastic Analys	is and Design :	
Introduction -	Plastic Theory - Plastic neutral Axis plastic moment,	Elastic & Plastic
Section modul	i shape factors plastic Hinge – Fundamental condition co	nditions in plastic
analysis, metho	ods of plastic analysis - collapse load - simply supported, j	propped cantilever
beam, fixed be	ams continuous beams, portal frame single bay single stor	ey portal frame at
different level	subjected to vertical and horizontal loads, Method of ins	stantaneous center
U	Trial and effort method - plastic moment distribution me	
•	-single story portal frame – Deflections and ultimate load p	
	am minimum weight design continuous beams and single	bay-single storey
portal frame.		
Textbooks:		
1. Plastic	Analysis of Structures by B.G.Neal	
	keleton V.I and II by Baker	
3. Design	of Steel Structures by Vazarani and Ratwani	
Reference Boo	ks:	

Reference Books:

- 1. Strength of Materials (Vol-II)) by Timoshenko.
- 2. Analysis of Steel Structure by Manohar.
- 3. Analysis of Steel Structure by Pinfold
- 4. Analysis of Steel Structure by Arya & Azmani
- 5. Analysis of Steel Structure by Relevant IS Codes.
- 6. Analysis of Steel Structure by Punmia, B.C.

Course Code	21D12204	ARTIFICIAL NEURAL NETWORKS	L	Т	P	C
Semester	II	(PE-IV)	3	0	0	3
bemester			0	v	U	5
Course Object	t ives: This co	urse will enable students:				
		Network and model a Neuron and Expre	ess bo	th A	rtific	cial
	e and Neural I	-				
•		, Error correction learning, Memory-based	learnii	ng, F	Iebb	ian
		arning and Boltzmann learning		0,		
		ception, Perception learning algorithm, M	odified	Per	cept	ion
		Adaptive linear combiner, Continuous perc				
	perception.		•		U	
4. Analyze th	e limitation	of Single layer Perceptron and Develop M	LP wi	th 2	hide	len
layers, Dev	velop Delta l	earning rule of the output layer and Multil	layer f	eed f	forw	ard
		tinuous perceptions.	-			
Course Outco	mes (CO): St	udent will be able to				
1. Model Neu	ron and Neur	al Network, and to analyze ANN learning, and	d its ap	plica	tions	3
2. Perform Pa	ttern Recogni	tion, Linear classification.				
3. Develop di	fferent single	layer/multiple layer Perception learning algor	ithms			
	nother class of	of layered networks using deep learning princi	ples			
UNIT - I				ure		
	•	y of Neural Networks, Structure and Function		0		
		etwork Architectures, and Characteristics of				
	arning Rules	: Hibbing Learning, Competitive Learning	g, and	Bol	tzma	inn
Learning.			<u> </u>			
UNIT - II			Lect			
		NG-1: Single Layer Neural Network				
		Iodel, Perception Model, Perception Conv	ergenc	e Tr	ieore	em,
Adaline, Delta			•			
		G-2: Multi-Layer Neural Network and Arch	itecture	e, Ma	adalı	ne,
	on Learning,	Back Propagation Algorithm	T		11	
UNIT - III			Lectu			
		NING-1: Kohenen Self Organization Ne	tworks	, на	imm	ing
	,	ing Vector Quantization, Mexican Hat.		1	<u>م</u>	
		NING-2: CounterPropagation Network, Forv		•	Joun	iter
	work, Adap	tive Resonance Theory (Art) -Architecture, A	T		T	0
UNIT - IV			Lect			
		RY NETWORKS :Introduction, Auto As				
		bry, Bidirectional Associative Memory(BA	1VI) -	1 neo	1 y 2	ına
	And Training	g Algorithm-Storage.	Lect		Incel	0
UNIT - V		Introduction Architecture of Hanfield Net				
		Introduction, Architecture of Hopfield Network, Iterative Auto Associative Memory Network				
	-	ain-In-The-Box Network), Temporal Ass				
Associative N Architecture.	femory, bra	ani-in-fine-box incluoik), femporal Ass	ociativ	e N	101110	лу
Arcintecture.						

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

Textbooks:

- 1. Introduction to Artificial Neural Systems- Jacek M. Zurada Jaico Publishing, 2006.
- 2. Introduction to Neural Networks Using Matlab 6.0, S.N.Sivanandam , S.N.Deepa, Tata McGraw- Hill Publications, 2006.
- 3. Fuzzy Logic with Engineering applications-Timothy J Ross-Wiley Publishers.

- 1. Artificial Neural Networks, B.Yegnanarayana Phi, Newdelhi, 2005.
- 2. Neural Networks. Fuzzy Logic and G.A.Vijayalakshmi Pai 2007. Genetic Algorithms, S.Rajasekaran and
- 3. Neural Networks Algorithm, Applications and Programming Techniques, James A Freeman and Davis Skapura ,Pearson Education, 2002.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>Audit Subjects for All Specializations</u>

Course Code			L	Т	Р	С	
Semester	II	DISASTER MANAGEMENT	2	0	0	0	
Course Objectives: Students will be able to:							
1. Learn to demonstrate a critical understanding of key concepts in disaster risk reduction							
		ian response.					
2. Critically	eval	uate disaster risk reduction and humanitarian response	poli	cy ar	nd pr	actice	
from mult	iple	perspectives.					
		derstanding of standards of humanitarian response and	prac	ctical	rele	vance	
		es of disasters and conflict situations.					
•		erstand the strengths and weaknesses of disaster manage	-	-			
		programming in different countries, particularly their h	ome	cou	ntry	or the	
countries t							
		(CO): Student will be able to					
UNIT - I		roduction				rs: 04	
		, Factors And Significance; Difference Between Haz		And	l Dis	saster;	
		de Disasters: Difference, Nature, Types And Magnitude					
UNIT – II		percussions Of Disasters And Hazards				<u>s: 04</u>	
	<u> </u>	Loss Of Human And Animal Life, Destruction Of I		•			
	-	kes, Volcanisms, Cyclones, Tsunamis, Floods, Droug	-				
		valanches, Man-made disaster: Nuclear Reactor Mo					
UNIT – III		s And Spills, Outbreaks Of Disease And Epidemics, Wa aster Prone Areas In India	1			s: 04	
		ones; Areas Prone To Floods And Droughts, Landslide					
		clonic And Coastal Hazards With Special Reference					
Disaster Disease	-	-	10	I Sull	ann,	1 051-	
		ster Preparedness And Management Preparedness:	L	etur	• Hı	s: 04	
		omena Triggering A Disaster Or Hazard; Evaluation O					
		g, Data From Meteorological And Other Agencies					
		Community Preparedness.	, 1			Portor	
		k Assessment Disaster Risk:	L	ectur	e Hı	:s: 04	
		nts, Disaster Risk Reduction, Global And National Disa					
1		k Assessment, Global Co-Operation In Risk Assessm					
_		on In Risk Assessment. Strategies for Survival.				-	
UNIT – VI			L	ectur	e Hı	:s: 04	
Disaster Mitiga	ntion	Meaning, Concept And Strategies Of Disaster Mi	tigat	ion,	Eme	erging	
Trends In Miti	gati	on. Structural Mitigation And Non-Structural Mitiga	tion,	Pro	gran	ns Of	
Disaster Mitigat	tion	In India.					
Suggested Read							
		gh AK, "Disaster Management in India: Perspectives, is	sues	s and	stra	tegies	
"New Royal book Company.							
2. Sahni, Pardeep, et.al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice							
Hall Of India, New Delhi.							
		ster Administration and Management Text And Case	Stu	dies	΄, Dε	eep &	
Deep Public	atio	n Pvt. Ltd., New Delhi.					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>Audit Subjects for All Specializations</u>

Course Code			L	Т	P	С
Semester	II	CONSTITUTION OF INDIA	2	0	0	0
Course Object	ives	Students will be able to:				
v		premises informing the twin themes of liberty and fre	edo	m fr	om a	civil
rights persp			C C C		0111 0	
0 1 1		e growth of Indian opinion regarding modern Ind	dian	in	tellec	tuals'
		le and entitlement to civil and economic rights as well as				
		e early years of Indian nationalism.			υ	
		role of socialism in India after the commencement	of	the	Bols	hevik
Revolution	in 19	17 and its impact on the initial drafting of the Indian Con	nstit	ution	1.	
Course Outcon	nes (CO): Student will be able to				
1. Discuss the	e gro	wth of the demand for civil rights in India for the bulk of	Inc	lians	befo	re the
arrival of C	Gand	hi in Indian politics.				
2. Discuss th	ne in	ntellectual origins of the framework of argument t	hat	inf	orme	d the
		on of social reforms leading to revolution in India.				
		cumstances surrounding the foundation of the Congre				-
		e leadership of Jawaharlal Nehru and the eventual failure	e of	the p	prope	sal of
		through adult suffrage in the Indian Constitution.				
	e pas	sage of the Hindu Code Bill of 1956.	-			
UNIT - I						<u>s: 04</u>
		of the Indian Constitution: History Drafting Committee	e, (C	Com	posit	ion &
	osopi	ny of the Indian Constitution: Preamble Salient Features	Т	4		0.4
UNIT – II		utional Diabta & Dutias, Eurodamantal Diabta, Diabtas				<u>s: 04</u>
		utional Rights & Duties: Fundamental Rights, Right to inst Exploitation, Right to Freedom of Religion, Cultur				
-	-	onstitutional Remedies, Directive Principles of State Po				
Duties		institutional Remedies, Directive Trinciples of State To	ncy	, IU	muai	licitai
UNIT – III			L	etm	e Hı	s: 04
	verna	nce, Parliament Composition, Qualifications and				
-		ons, Executive, President, Governor, Council of Mi		-		,
		ansfer of Judges, Qualifications, Powers and Functions.		,		,
UNIT – IV			L	ectu	re Hı	s: 04
Local Adminis	tratic	on: District's Administration head: Role and Important	ce,	Mun	icipa	lities:
Introduction, N	Iayo	r and role of Elected Representative, CEO of Muni	cipa	al C	orpoi	ation.
Pachayati raj:	Intro	oduction, PRI: ZilaPachayat. Elected officials and	the	ir ro	oles,	CEO
ZilaPachayat: P	ositi	on and role. Block level: Organizational Hierarchy (Diffe	eren	t dep	partm	ents),
	ole	of Elected and Appointed officials, Importance of grass re	oot	dem	ocrac	у.
UNIT – V						:s: 04
		ion: Election Commission: Role and Functioning				
		Election Commissioners. State Election Commi		on:	Role	and
		e and Bodies for the welfare of SC/ST/OBC and women	•			
Suggested Rea	0					
		of India, 1950 (Bare Act), Government Publication.		-	01-	
		Dr. B. R. Ambedkar framing of Indian Constitution, 1st E	diti	on, 2	.015.	
5. M. P. Jain.	india	n Constitution Law, 7th Edn., Lexis Nexis, 2014.				

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>Audit Subjects for All Specializations</u>

Course Code			L	Т	Р	С
Semester	II STRESS MANAGEMENT BY YOGA	2	0	0	0	
Course Object	ives:	Students will be able to:				
 To achiev To overco 		erall health of body and mind stress				
Course Outcom	nes ((CO): Student will be able to				
 Develop h Improve e 		ny mind in a healthy body thus improving social health ency	also			
UNIT - I			L	ectu	e Hr	s: 04
Definitions of E	Eight	parts of yog. (Ashtanga)	I			
UNIT – II			L	ectu	e Hr	s: 04
Yam and Niyan	n: Do	o`s and Don'ts in life, Ahinsa, satya, astheya, bramhach	narya	and	apari	graha
UNIT – III			L	ectu	e Hr	s: 04
Yam and Niyan	n: Do	o`s and Don'ts in life, Shaucha, santosh, tapa, swadhya	y, ish	warp	ranid	han
UNIT – IV			L	ectu	e Hr	s: 04
Asan and Prana	yam	: Various yog poses and their benefits for mind & body	1			
UNIT – V			L	ectu	e Hr	s: 04
Asan and Prana	yam	: Regularization of breathing techniques and its effects	-Туре	es of	prana	yam
Suggested Rea	ding	s::				
1. 'Yogic As	sanas	for Group Training-Part-I" : Janardan Swami Yogabh	yasi N	Aand	al, N	agpur
	,	conquering the Internal Nature" by Swami Vivekanand epartment), Kolkata	da, Ao	dvait	a Asł	ırama

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D11213			L	Т	Р	C
Code		ADVANCED CONCRETE LABO	RATORY-II				
Semester	II			0	0	4	2
Course O							
	study the mix	0					
		and Split Tensile Strength Properti	es of High St	reng	th C	onci	ete
	60).						
		Self Compacting Concrete.					
-	0	advance tests on concrete					
	utcomes (CO						
	mix design		~ . ~			a \	
	0 1	Tensile Strength Properties of High	Strength Conc	rete	(M60	0).	
	1	ing Concrete.					
		ge about advance tests on concrete					
	periments:						
	0	Fresh Properties of High Strength C	· · · · ·		1 0		
	-	rength and Split Tensile Strength	Properties of	Hış	gh S	stren	gth
	oncrete (M60)	Describes of High Stress (1) Comment					
	0	Properties of High Strength Concre					
	0	L – Box Test on Self Compacting Co					
		U – Box Test on Self Compacting C V Funnel Test on Self Compacting (
	0	rength and Split Tensile Strength 1		olf (Com	naat	ina
	oncrete.	lengui and spint reishe strength	Froperties of S		Com	paci	mg
		Properties of Self Compacting Con	crete				
	U	Fresh Properties of Light Weight Co					
	0	rength and Split Tensile Strength		fΤi	σht	Wei	σht
	oncrete.	rengin and Spite renshe Strength	i i i operates o		Sm		Sm
		Properties of Light Weight Concret	e				
		t on Hardened Concrete.					
		n Hardened Concrete Specimen.					
		on RCC Columns					

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D11214	COMPUTER AIDED DESIGN	L	Т	P	С
Semester	II	LABORATORY – II	0	0	4	2
Course Objecti	ves: The stud	ents will acquire knowledge about				
1. Demonst	rate the desig	n of truss bridge.				
2. Demonstr	rate RC multi-	storey buildingfor gravity and wind loads				
3. Explain a	analysis of a b	building for various loading.				
4. Demonst	rate the meth	od of analysis of water tank.				
Course Outcom	nes (CO): At	the end of the course, students will be able to:				
1. Analyze	and design of	ftruss bridge				
2. Analyze	and design R	C multi-storey buildingfor gravity and wind loads	5			
3. Analyze	for earthquak	e loading & wind loading of framed buildings.				
4. Analyze	and design o	f water tank, bearing structures, Bridge Girder				
List of Experim	ents:					
1. Analysis an	d design of tr	uss bridge				
2. Analysis of	Pre-engineer	ed building				
3. Analysis and	l design of RC	c multi-storey buildingfor gravity and wind loads.				
4. Analysis and	l design of RC	multi-storey buildingfor gravity and seismicloa	lds			
5. Analysis and	l design of RC	multi-storey framed building with shear wall for	later	al loa	ad	
6. Analysis an	d designof fl	atslabsystem for multistorey building				
7. Analysis and	d DesignofG	antry girders for industrial structures				
8. Analysis of	Bridge for va	rious Loads				
9. Design of B	ridge Girder	Structure				
10. Design of B						
11. Analysis an	d design of B	earings				
12. Analysis an	d design of R	C elevated water tank				

Course	21D12301	OPTIMIZATION IN STRUCTURAL	L	Т	P	С		
Code		DESIGN						
Semester	III	(PE-V)	3	0	0	3		
Course Ol	ojectives: Th	is course will enable students:						
1. Lea	arn the differ	rent optimization methodologies applied to struct	ıral s	yste	ms a	ind		
	ear optimizati							
		dynamic programming, decision theory and simulati						
	3. Assess the different optimization methodologies applied to structural systems							
		im principles to achieve economical structural system	ns.					
): Student will be able to						
		uirement of optimization specific to structural system						
		various conventional techniques available for structu						
		various programming techniques adapted for structur		imiz	zatio	n.		
		esign optimization for Reinforced concrete structures	•					
	ustrate the de	esign optimization for Reinforced concrete beams.	T (тт	1/			
UNIT - I	1		Lectu					
		echniques of Operation Research – Decision Ma	-					
		s of Minimum Weight, Minimum Cost Design, Vari	ibles,	Con	istrai	ns,		
	Model Build	ling, Objective Function, Classical Methods.	T 4			<u> </u>		
UNIT - II	f Linen Dree		Lectu					
		ramming, Integer Programming, Quadratic Program ometric Programming Methods for Optimal Desi						
		amming: Standard Form of Linear Programming Pr						
		g Problem. Solution of System of Linear Simulta						
		programming Methods for Plastic Design of Frames						
		and Multivariate Minimization.	comp	Juioi	beu			
UNIT - II			Lectu	re H	rs:10)		
		vised Simplex Method, Duality of Linear Programmi						
-	ality Analysi			110101	, icy	01		
UNIT - IV			Lectu	ro H	rc.Q			
		tural Theorems. Maxwell Mitchell and Heyma				for		
	and Frames.	turar meorems. Waxwen whenen and meyma	115 1	ncor	CIII	101		
UNIT - V			Lectu	re H	rs.9			
	on Techniqu	es Applied to Fully Stressed Design With Deflect						
-	Criterion Me		uon	com	Jului	100,		
Textbooks								
		ural Design, Civil Engineering and Engineering Me	chani	cs So	ervic	ces.		
-		Hall New Jersey, 1971.			•	7		
-		neory and Applications, S.S.Rao, Wiley Eastern Lin	nited,	New	/ De	lhi,		
197			,					
3. Op	timum Struct	ural Design, Uri Krisch, Mc Graw Hill Book Co., 19	81.					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

- 1. Operations Research, Richard Bronson, Schaums, Outline Series, Mc Graw Hill Book Company, Singapore 1983.
- 2. Introduction to Optimum Design, J.S.Arora, Mc Graw Hill Book Company, New Your, 1989.
- 3. Foundations of Structural Optimization A Unified Approach, A.J. Morris (Editor) John Wiley and Sons, Chichester, 1982.

Course Code	21D12302	CAD AND COMPUTER APPLICATIONS IN STRUCTURAL ENGINEERING	L	Т	Р	C			
Semester	III	$(\mathbf{PE} - \mathbf{V})$	3	0	0	3			
			1			<u>. </u>			
Course Ob	Course Objectives: This course will enable students:								
	*	distribution of forces within the structure and the displ	aced	l stat	e of	the			
		he crux of design process.							
•		iter aided methods of analysis adopted in industry for	such	pur	ooses	s.			
	_): Student will be able to							
1. Ha	we an overal	l understanding of CAD concepts and CAD system de	velo	pme	nts				
2. De	emonstrate th	e geometry transformation of 2D and 3 D models an	d its	app	licat	ion			
	CAD system								
3. Ha	ave an unders	standing of mathematical representation of computation	nal g	geon	netry	by			
pla	anar and spac	e curves and surfaces defined by different boundary c	urve	S	-	-			
4. Ha	we knowledg	ge of Engineering optimization using non-linear prog	ram	ming	g and	l to			
int	roduce stoch	astic search techniques							
5. To	5. To understand the importance of Data Base Systems in CAD systems								
UNIT - I			Lect	ture	Hrs	:10			
INTRODU	JCTION TO	O COMPUTER AIDED DESIGN- Reasons for Imp	lem	entin	g C	AD			
	Process – Aj	pplications of Computers to Design - Benefits of G	Com	puter	: Aic	ded			
Design.									
		DMPUTER GRAPHICS – Introduction, Graphic I							
		Lines, Bresenham's Algorithm, C Program to Draw	ΑL	line,	Circ	ele,			
	ng Breasenh	am's Algorithm.							
UNIT - II					Hrs				
		N IN GRAPHICS – Coordinate System Used L							
		, 2 – D Transformations, Clipping, 3-D Transformation							
UNIT - III					Hrs				
		D: Microsoft Excel Procedure for Stiffness Method of	Ana	lysi	s Ste	p –			
		ng Excel, Examples Using Excel.	-						
UNIT – IV					e Hr				
		MS USING STIFFNESS METHOD : Long hand se				-			
	s, continuous	beams solution of single span beams, continuous bea	1	0					
UNIT - V					Hrs				
	DATABASE : Introduction, Concept of A Database, Objectives of Databases, Design of Data								
	0	ation of Data Base.							
Textbooks									
-		esign, Software & Analytical Tools – C.S.Krishna Mu	ırthy	/ & I	Rajiv	' S.			
	U	House India.		_	_				
-		sign in Rainforced Concrete – Dr L.Shah-Structures P				ıe.			
3. Matrix Computer Analysis of Structures, Moshi, F., Rubinstein Prentice Hall 1986.									
Reference Books:									
1. $IS - 45$									
2. Limit S	State Design	– A.Jain.							

- 3. Computer Application Boyd C.Panbou Mc Graw Hill 1997.
- 4. Raker D., and Rice H. Inside Aut CAD, BPD Publication, Delhi, 1986.
- 5. Nancy Andrews Windows The Official Guide to Microsoft Operation Environment, Micro Soft, 1986.

Course	21D11302	COST EFFECTIVE HOUSING TECHNIQUES	L	Τ	Р	С
Code		(PE – V)	2	Δ	•	2
Semester	III		3	0	0	3
Course Ob	iectives. This	s course will enable students:				
	•	brehensive knowledge of planning, design, evaluation,	const	ructi	on	and
-	ncing of hous	• • • •	const	lucu		and
	0	st effective construction materials and methods.				
		the principles of sustainable housing policies and prog	ramn	nes.		
		table techniques in rural and disaster prone areas h			loca	allv
	lable materia	1 1	5	0		5
Course Ou	tcomes (CO)	: Student will be able to				
		construction technology and innovative techniques as	tools	to a	addr	ess
	and mass cor					
2 Kno	wledge of ec	o-friendly material with their application				
3 Lean	rn the use	of locally available material according to their	avail	abili	ty a	and
maii	ntenance					
UNIT - I		duction - Status of Urban Housing - Status of Rural Ho	Lectu		Irs:	10
Facilitator - Issues Land Use Urban Land Densities Housing T	Status At R and Physica d Ceiling an		nce a of Uri ss -	and l ban Resi oach	Rela Lan iden	tted d - tial and
	nt and Adam	otion of Low Cost Housing Technology	Lecu	ire r	115:	10
Introduction Precast Elect India- Gene Single Brick Brick Thick	n - Adoption ments in Part eral Remarks k Thick Load c Load Bearin	of Innovative Cost Effective Construction Technique ial Prefatroices - Adopting of Total Prefactcation of I s on Pre Cast Rooting/Flooring Systems -Economical ling Bearing Wall - 19cm Thick Load Bearing Mason ng Wall - Flyash Grypsym Thick for Masonry - Stone C. Plank and Join System for Roof/Floor in The Buildi	Mass Wa ery V Blocl	Hou Il Sy Valls	ising /ster 5 - H	g in n - Ialf
UNIT - III			Lectu	re H	Irs:	10
Introduction Substitution Alternative Low Cost I	n - Substitut as - Industria Building Ma nfrastructu Present Stat		for ,	P,To	opm	of

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

UNIT - IV	Lecture Hrs:10				
Rural Housing:					
Introduction Traditional Practice of Rural Housing Continuous - Mud Housing Technology					
Mud Roofs - Characteristics of Mud - Fire Treatment for Thatch Roof -	Soil Stabilization -				
Rural Housing Programs.					
UNIT - V	Lecture Hrs:10				
Housing in Disaster Prone Areas:					
Introduction – Earthquake - Damages To Houses - Traditional Prone Areas	- Type of Damages				
and Railways of Non-Engineered Buildings - Repair and Restore Ac	tion of Earthquake				
Damaged Non-Engineered Buildings Recommendations for Futu	re Constructions.				
Requirement's of Structural Safety of Thin Precast Roofing Units Against Earthquake Forces,					
Status of R&D in Earthquake Strengthening Measures - Floods, Cyclone, Fu	iture Safety				
Textbooks:					
1. Building Materials for Low -Income Houses - International Co	ouncil for Building				
Research Studies and Documentation.					
2. Hand Book of Low Cost Housing by A.K.Lal – Newage International Publishers.					
3. Modern Trends in Housing in Developing Countries - A.G. Madhava Rao, D.S.					
Ramachandra Murthy & G.Annamalai.					
Reference Books:					
1. Properties of Concrete – Neville A.M. Pitman Publishing Limited, L	ondon.				
2. Light Weight Concrete, Academic Kiado, Rudhai.G – Publishing I	Home of Hungarian				
Academy of Sciences 1963.					
2 Low Cost Housing CC Mathur					

3. Low Cost Housing – G.C. Mathur.

Course	21D10301	GREEN BUILDINGS	L	Т	P	С
Code		(OPEN ELECTIVE)		•	•	2
Semester	III	· · · ·	3	0	0	3
		ourse Will Enable Students:				
-	0	en building technologies and their significa	ince.			
	5	cial use of energy and its management.				
		un-earth relationship and its effect on clim				
		of end-use energy requirements in the soci	ety			
		hnologies for energy management				
		tudent will be able to	• •	1 1.		
		lamentals of energy use and energy process	ses in	buildir	ıg	
		requirement and its management.				
		relationship vis-a-vis its effect on climate.	•			
	-	the end-use energy requirements.				
	miliar with the	audit procedures of energy.	<u> </u>		10	
UNIT - I				re Hr		
		n Building, Why to go for Green Build	0			
-	-	Materials and Equipment in India, What		•	-	es for
	a Green Build	ing, Important Sustainable features for Gre				
UNIT - II				re Hr		
		And Practices Indian Green Building C				-
		Experienced in Green Buildings, Launch of			-	-
•		or, Market Transformation; Green Build	0			
		Green Building, Green Building Features, I				
	• •	m Energy Efficiency, Typical Energy	Savi	ng Aj	pproac	h in
	EED India Rat	ng System and Energy Efficiency,				
UNIT - III				ure H		
		troduction, Reduction in Energy Deman				
	•	Efficiency, Steps to Reduce Energy De				
		of Renewable Energy Sources. Eco-f	riendly	y cap	tive p	ower
	r factory, Buil	ding requirement,				
UNIT - IV				ure H		
	0	on, CII Godrej Green business centre, Des	01			U
	•••	eling, HVAC System design, Chiller sel				
	0	s, Selection of air handing units, Precooli	0			
	-	are of the building. Eco-friendly captive	-	-		
factory, Building requirement. Envelope design basics, ECBC compliant design strategy for a						
		oaches viz. Prescriptive, Whole building				
off approaches. Introduction to Eco Nivas Samhitha (ENS) and software tool for checking						
	gy, carbon, lig	hting and comfort performance.				
UNIT - V				ure H		
Material Conservation Handling of non-process waste, waste reduction during construction,						
materials with	th recycled co	ontent, local materials, material reuse, c	ertifie	d woo	d ,Ra	pidly

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF CIVIL ENGINEERING</u> <u>COMPUTER AIDED STRUCTURAL ENGINEERING</u>

renewable building materials and furniture; Indoor Environment Quality And Occupational Health: Air conditioning, Indore air quality, Sick building syndrome, Tobacco smoke control, Minimum fresh air requirements avoid use of asbestos in the building, improved fresh air ventilation, Measure of IAQ, Reasons for poor IAQ, Measures to achieve Acceptable IAQ levels,

Textbooks:

- 1. Handbook on Green Practices published by Indian Society of Heating Refrigerating and Air conditioning Engineers, 2009.
- 2. Green Building Hand Book by Tomwoolley and Samkimings, 2009.
- 3. Complete Guide to Green Buildings by Trish riley

- 1. Standard for the design for High Performance Green Buildings by Kent Peterson, 2009
- 2. Energy Conservation Building Code -ECBC-2020, published by BEE
- 3. "Eco Niwas Samhita -2021" published by BEE