Approved Syllabus for

Master of Technology

in

CONTROL SYSTEMS

From Academic Year 2015 - 2016

in

SECOND BOARD OF STUDIES MEETING HELD

on

April 25th & 26th , 2015

DEPARTMENT OF ELECTRICAL ENGINEERING COLLEGE OF ENGINEERING (*AUTONOMOUS*), *ANANTHAPURAMU* JAWHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

M.Tech (CS)/CEA/JNTUA

INFORMATION ON THE COURSE

1.1 Name of the Course

Degree /	Name of Specializatio n	Intake (Full / Part time)	Year of Starting						
I. Tech.	Control Systems	25+7 Sponsored Full time	2009 - 10				В. Т	Tech./B.I	Ε.
Degree / Diploma Specializatio n Intake (Full / Part time) Year of Starting Duration (Total) Name of Degree & B eligible for admission M Tech Control 25+7 Sponsored Full time 2009 – 10 2 Yrs/ 4 Year Degree C B Tech / B		1							
		Name of the Subjec	t				Week		
					L	Т	Р	С	
		-				-	-		
						-	-		
			heory			-	-		
		otimal Control				-	-		
					-	_			
6.	Elective - II				-				
7.	15D22108 Co	ntrol Systems Lab						-	
3. 1 4. 1 <u>II –</u> 1.	5D23103 Mac 5D22107 Emb <u>SEMESTER</u> 15D22201 A	chine Modeling and A bedded Systems daptive Control				_	-		
						-	-		
						-	-		
		sumation of Signals	and Systems			-	-		
						-	-		
		Pesearch Methodolog	v (Audit Course)		-	-		
			-)		-	-		
<u>Ele</u> 1. 1 2. 1 3. 1 4. 1	<u>ctives:</u> 5D22205 Res 5D21207 Sol 5D21208 Wi 5D22206 Pr	al Time Systems ar Energy Conversio nd Energy Conversio	n Systems on Systems		-	-	4	2	
1. IV	15D22301 Sei SEMESTER				-	-	4	2	
III	& IV SEMES	TER			-	-	4	2	
1 1 1	5D22302 Proj	ect Work			1			44	I

15D22101 MODERN CONTROL THEORY

Unit I

Fields, Vectors, and vector spaces; State space representation, state equations for dynamic systems, solution of state equations; State transition matrix – Properties of state transition matrix; evaluation. Fadeeva algorithm for conversion from state space to transfer function, Linearization of non-linear models

Unit II

Non uniqueness of state model, Similarity transformation, Invariance of system properties. Controllability – necessary and sufficient condition - Pole assignment using State feedback – Ackerman's formula for feedback gain determination; Observability. Duality. Effect of state feedback on controllability and observability. Controllable subspace – decomposition of state into controllable and uncontrollable components.

Unit III

Design of full order observer – Bass Gura algorithm. The separation principle - Combined observer – controller compensator. Design of reduced order observer. Unobservable subspace – decomposition of state into observable and unobservable components – Canonical decomposition theorem.

Unit IV

Reducibility – realization of transfer function matrices. Model decomposition and decoupling by state feedback. Design of robust control system for asymptotic tracking and disturbance rejection using State variable equations. Transfer function interpretations – transfer function form of observer and state estimate feedback. State space interpretation of internal model principle.

Unit V

Discrete time linear state regulator – Algorithm for the solution, Use of observer in implementing the control law. Continuous time linear state regulator – Matrix Riccati equation. Time invariant linear state regulator – the reduced matrix Riccati equation - An iterative method to solve the reduced matrix Riccati equation. Suboptimal linear regulator.

Text Books:

1. Modern Control Engineering, Katsuhiko Ogata, 5th Edition, Prentice Hall India, 1997

2. Modern Control System Theory, M. Gopal, Revised 2nd Edition, New Age International Publishers, 2005.

References:

1. Linear Systems, Thomas Kailath, Perntice Hall, 1980.

2. Control System Design, Graham C. Goodwin, StefanF. Graebe and Mario E. Salgado, Pearson Education, 2000.

 Linear System Theory and Design, Chi-Tsong Chen, OXFORD University Press.
 Richard C. Dorf and Robert H. Bishop, Modern Control Systems, 11th Edition, Pearson Edu India, 2009.

15D22102 ADVANCED DIGITAL SIGNAL PROCESSING

UNIT-I:

Short introduction, Analog to digital and Digital to Analog conversion, sampled and Hold circuit, Continuous time Fourier Transforms. Discrete-time signals and systems, Discrete-time Fourier transform- its properties and applications, Fast Fourier Transform (in time-domain and Frequency domain), IDFT and its properties.

UNIT-II: z- Transforms

Definition and properties, Rational z-transforms, Region of convergence of a rational z- Transform, The inverse z- Transform, Z-Transform properties, Computation of the convolution sum of finitelength sequences, The transfer function.

Digital Filter Structures: Block Diagram representation, Equivalent structures, Basic FIR Digital Filter structures, Basic IIR Digital Filter structures, Realization of Basic structures using MATLAB, All pass filters, Computational complexity of Digital filter structures.

UNIT III: IIR Digital Filter Design:

Preliminary considerations, Bilinear transformation method of IIR Filter design, Design of low pass IIR Digital filters, Design of High pass, Band pass and band stop IIR digital filters, Spectral Transformations of IIR filter, IIR digital filter design using MATLAB, Computer aided design of IIR digital filters.

UNIT IV:FIR Digital Filter Design:

Preliminary considerations, FIR filter design based on windowed Fourier series, Computer aided design of Equiripple Linear phase FIR filters, Design of Minimum phase FIR filters, FIR digital filter design using MATLAB, Design of computationally efficient FIR digital filters.

UNIT V: Analysis of Finite word length effects:

The quantization process and errors, quantization of Fixed point numbers, Quantization of floating point numbers, Analysis of coefficient quantization effects, Analysis of arithmetic round off errors, Low sensitivity digital filters, Reduction of product round off errors using error feedback, Round off errors in FFT algorithms. The basic sample rate alteration devices, Multi rate structures for sampling rate conversion, Multistage design of decimator and interpolator, The Polyphase decomposition, Arbitrary-rate sampling rate converter, Nyquist Filters and some applications of digital signal processing.

Text Books:

1. S.K. Mitra, Digital Signal Processing-, Tata McGraw-Hill, Third Edition, 2006.

- 2. B.P. Lathi, **Principle of Signal Processing and Linear Systems**-, Oxford International Student Version, 2009
- 3. M. Mondal and A Asif, **Continuous and Discrete Time Signals and Systems**, Cambridge, 2007

References:

1. Li Tan, **Digital Signal Processing- Fundamentals and Applications**-, Indian reprint, Elsevier, 2008.

2. Alan V. Oppenheim, Ronald W. Schafer, and John R.Buck, **Discrete- Time Signal Processing**-, Pearson Edu, 2008.

15D22103 NONLINEAR CONTROL THEORY

UNIT I:

Linear versus nonlinear systems - Describing function analysis: Fundamentals, common nonlinearities (saturation, dead - zone, on - off non - linearity, backlash, hysteresis) and their describing functions.

UNIT II:

Describing function analysis of nonlinear systems. Reliability of describing method analysis. Compensation and design of nonlinear system using describing function method. Phase plane analysis: Phase portraits, Singular points characterization. Analysis of non - linear systems using phase plane technique. Existence of limit cycles. Linearization: Exact linearization, input - state linearization, input - output linearization.

UNIT III:

Concept of stability, Zero - input and BIBO stability, stability in the sense of Lyapunov and absolute stability, Stability in the small and stability in the large, Lyapunov stability definitions, First method of Lyapunov,. Second (or direct) method of Lyapunov stability theory for continuous and discrete time systems, Aids to generate Lyapunov function – Krasovskii's theorem, Variable gradient method.

UNIT IV:

Aizerman's and Kalman's conjecture. Construction of Lyapunov function - Methods of Aizerman, Zubov, Variable gradient method. Lure problem. Popov's stability criterion, generalized circle criterion, Kalman - Yakubovich - Popov Lemma. Popov's hyperstability theorem.

UNIT V:

Concept of variable - structure controller and sliding control, reaching condition and reaching mode, implementation of switching control laws. Reduction of chattering in sliding and steady state mode. Some design examples of nonlinear systems such as the ball and beam, flight control, magnetic levitation and robotic manipulator etc.

Text Books

1. J. E. Slotine and Weiping LI, Applied Nonlinear Control, Prentice Hall,

2. Hassan K. Khalil, Nonlinear Systems, Prentice Hall, 1996.

References:

1. Sankar Sastry, Nonlinear Systems Analysis, Stability and Control.

2. M. Vidyasagar, Nonlinear Systems Analysis, Prentice - Hall International editions, 1993.

15D22104 OPTIMAL CONTROL

UNIT I

An overview of optimization problem - concepts and terms related to optimization - constrained and unconstrained problems and their solutions using different techniques.

UNIT II

Convex set and convex function - convex optimization problem - quadratic optimization problem - Karush - Kuhn - Tucker (KKT) necessary and sufficient conditions for quadratic programming problem.

UNIT III

Interior point method for convex optimization - linear programming - primal and dual problems and basic concept of multi - objective optimization problem. Concept of functional, different types of performance indices, Euler - Lagrange equation.

UNIT IV

Calculus of variation to optimal control problem - Fundamental concepts, functionals of a single function, functional involving several independent functions, necessary conditions for optimal control, linear regulator problems. Linear quadractic regulator, remarks on weighting matrices, solution of Riccati equation.

UNIT V

Frequency domain interpretation of linear quadratic regulator, robustness studies. Dynamic programming, Pontrygin's minimum principle, time optimal control, concept of system and signal norms, statement of problem and its solution.

Text Books:

- 1. Jasbir S. Arora, Introduction to optimum design, Elesevier, 2005.
- 2. A Ravindran, K.M. Ragsdell, and G.V. Reklaitis, Engineering optimization : Methods and applications, Wiley India Edition.
- 3. Donald E.Kirk, Optimal Control Theory an Introduction, Prentice Hall Network series First edition, 1970.

Reference Books:

- 1. D.S. Naidu, Optimal control systems, CRC Press, First edition, 2002.
- 2. Arturo Locatelli, Optimal control: An Introduction, Birkhauser Verlag, 2001.
- 3. S.H.Zak, Systems and Control, Indian Edition, Oxford University, 2003.
- 4. Niclas Anreasson, Anton Evgrafov and Michael Patriksson, An introduction to continuous optimization, Overseas Press (India) Pvt. Ltd.

15D22108 CONTROL SYSTEMS LAB

List of Experiments

- 1. Determination of Transfer functions of an Electrical System.
- 2. Time Response Characteristics of a Second order System (Typical RLC network).
- 3. Characteristics of Synchros:
 - (a) Synchro transmitter characteristics.
 - (b) Implementation of error detector using synchro pair.
- 4. Determination of Magnetic Amplifier Characteristics with different possible connections.
- 5. Process Control Simulator:
 - (a) To determine the time constant and transfer function of first order process.
 - (b) To determine the time response of closed loop second order process with Proportional Control.
 - (c) To determine the time response of closed loop second order process with Proportional-Integral Control.
 - (d) To determine the time response of closed loop second order process with Proportional-Integral-Derivative Control.
 - (e) To determine the effect of disturbances on a process.
- 6. To study the compensation of the second order process by using:
 - (a) Lead Compensator.
 - (b) Lag Compensator.
 - (c) Lead- Lag Compensator
- 7. Realization of AND, OR, NOT gates, other derived gates and ladder logic on Programmable Logic Controller with computer interfacing.
- 8. To determination of AC servomotor Characteristics.
- 9. To study the position control of DC servomotor with P, PI control actions.
- 10. Analog Computer:
 - (a) To examine the operation of potentiometer and adder.
 - (b) To examine the operation of integrator.
 - (c) To solve a second order differential equation.

15D22105 PLC & AUTOMATION

Unit-I:

PLC Basics: PLC system, I/O modules and interfacing, CPU processor, programming Equipment, programming formats, construction of PLC ladder diagrams, Devices connected to I/O modules.

PLC Programming: Input instructions, outputs, operational procedures, programming examples using contacts and coils. Drill press operation.

Unit-II:

Digital logic gates, programming in the Boolean algebra system, conversion examples Ladder Diagrams for process control: Ladder diagrams & sequence listings, ladder diagram construction and flowchart for spray process system.

Unit-III:

PLC Resisters: Characteristics of Registers, module addressing, holding registers, Input Registers, Output Registers.

PLC Functions: Timer functions & Industrial applications, counters, counter function industrial applications, Arithmetic functions, Number comparison functions, number conversion functions

Unit-IV:

Data Handling functions: SKIP, Master control Relay, Jump, Move, FIFO, FAL, ONS, CLR & Sweep functions and their applications

Bit Pattern and changing a bit shift register, sequence functions and applications, controlling of twoaxis & three axis Robots with PLC, Matrix functions.

Unit-V:

Analog PLC operation: Analog modules& systems, Analog signal processing, Multi bit Data Processing, Analog output Application Examples, PID principles, positions indicator with PID control, PID Modules, PID tuning, PID functions.

Reference Books:

- 1. Programmable Logic Controllers- Principles and Applications by John W. Webb & Ronald A. Reiss, Fifth Edition, PHI
- 2. Programmable Logic Controllers- Programming Method and Applications –JR.Hackworth &F.D Hackworth Jr. –Pearson, 2004

15D22106 ROBUST CONTROL

UNIT I: Review of classical feedback control

Review of classical feedback control: The control problem, Transfer functions, Deriving linear models, Frequency response, Feedback control, Closed loop stability, Evaluating closed - loop performance, Controller design, Loop shaping, Shaping closed loop transfer functions.

UNIT II: Introduction to Multivariable Control

Transfer functions for MIMO systems, Multivariable frequency response analysis, Control of multivariable plants, Introduction to robustness, General control problem formulation.

Elements of Linear System Theory: Internal stability of feedback systems, Stabilizing controllers, System norms, Input - Output Controllability, perfect control and plant inversion, Constraints on S and T.

UNIT III: Limitations on Performance

In SISO Systems: Limitations imposed by RHP - zeros, Limitations imposed by RHP - poles, Performance requirements imposed by disturbances and commands, Limitations imposed by input constraints, Limitations imposed by uncertainty.

In MIMO Systems: Constraints on S and T, Functional Controllability, Limitations imposed by RHP - zeros, Limitations imposed by RHP - poles, Performance requirements imposed by disturbances, Limitations imposed by input constraints, Limitations imposed by uncertainty.

UNIT IV: Uncertainty and Robustness for SISO Systems

Introduction to robustness, Representing uncertainty, parametric uncertainty, Representing uncertainty in the frequency domain, SISO robust stability, SISO robust performance, Examples of parametric uncertainty.

UNIT V: Robust Stability, Performance Analysis and Control System Design

General control formulation with uncertainty, Representing uncertainty, Obtaining P, N and M, Definition of robust stability and performance, Robust stability of the M Δ - structure, RS for complex unstructured uncertainty, RS with structured uncertainty: Motivation, The structured singular value and RS, Properties and computation of μ , Robust performance, Application: RP with input uncertainty, μ - synthesis and DK - iteration, Further remarks on μ . Trade - offs in MIMO feedback design, LQG control, H_2 and H_{∞} control, H_{∞} loop - shaping design.

Text Books:

- 1. Sigurd Skogestad and Ian Postlethwaite, Multivariable Feedback Control Analysis and Design John Wiley & Sons Ltd., 2nd Edition, 2005.
- 2. D. W. Gu, P. Hr. Petkov and M. M. Konstantinov "Robust Control Design with MATLAB" Spring Verlag London Ltd., 2005.

References:

1. Kennin Zhou, "Robust and Optimal Control", Prentice Hall, Engle wood Cliffs, New Jersy.

15D23103 MACHINE MODELING & ANALYSIS

UNIT -I: Basic Principles for Machine Analysis: Magnetically Coupled Circuits, Machine Windings and Air-Gap MMF, Winding Inductances and Voltage Equations.

Modeling And Analysis Of DC Machines:

Elementary DC Machine, Voltage and Torque Equations, Types of DC Machines, Permanent and Shunt DC Motors, Time-Domain and State-Equations,

UNIT-II:_Reference Frame Theory: Introduction to Transformations, Equations of Transformations, Change of Variables, and Transformation to an Arbitrary Reference Frame, Commonly used Reference Frames, Transformation between Reference Frames, Steady-State Phasor Relationships and Voltage Equations

UNIT-III: Modeling & Dynamic Analysis of Three Phase Induction Machines: Voltage and Torque Equations in Machine Variables, Voltage and Torque Equations in Arbitrary Reference Frame, Steady-State Analysis and its Operation.

Free Acceleration Characteristics viewed from Various Reference Frames, Dynamic Performance during Sudden Changes in Load Torque, Dynamic Performance during A Three-Phase Fault at the Machine Terminals

UNIT-IV:_Modeling & Dynamic Analysis of Synchronous Machine: Voltage and Torque Equations in Machine Variables, Voltage Equations in Arbitrary and Rotor Reference Frame, Torque Equations in Substitute Variable, Steady-State Analysis and its Operation.

Dynamic Performance of Synchronous Machine, Three-Phase Fault, Comparison of Actual and Approximate Transient Torque Characteristics, Equal Area Criteria.

UNIT -V: Modeling of Special Machines: Modeling of Permanent Magnet Brushless DC Motor Operating principle – Mathematical modeling of PM Brushless DC motor - PMDC Motor Drive Scheme.

Text books

- **1.** Krause, Wasynczuk, Sudhoff, **Analysis of Electric Machinery and Drive Systems**: 2nd Edition, Wiley Interscience Publications, 2002.
- 2. P. C. Krause, Analysis of Electric Machinery, McGraw Hill-1980

15D22107 EMBEDDED SYSTEMS

UNIT- I Embedded Systems: Processor & Memory Organization

Embedded System, types of Embedded System, Requirements of Embedded System, Issues in Embedded software development, Applications, Structural units in a processor, Processor selection, Memory devices, Memory selection, Memory Allocation & Map; Interfacing

UNIT-II: Devices, Device Drivers & Buses for Device Networks

I/O devices, Timer & Counter devices, Serial Communication, Communication between devices using different buses, Device drives, Parallel and serial port device drives in a system, Interrupt servicing mechanism, context and periods for context switching, Deadline and Interrupt Latency.

UNIT-III: Real Time Operating Systems

Operating System Services, I/O Subsystems, Network Operating Systems, Real-Time and Embedded System Operating Systems, Interrupt Routines and Handling of Interrupt Source Call in RTOS, RTOS task scheduling Models, Interrupt Latency and Response Times of the Tasks, Performance Metric in Scheduling Models for different Tasks, IEEE standard POSIX 1003.1b Functions for standardization of RTOS and Inter_Task Communication Functions, List of basic actions in a Preemptive Scheduler and Expected Times taken at a processor, Fifteen-point Strategy for Synchronization between the Processes, ISRs, OS Functions and Tasks for Resource Management, OS Security Issues, Mobile OS.

UNIT-IV: Hardware-Software Co-Design in an Embedded System

Embedded System Project Management, Embedded system design and co-design issues in system development process, design cycle in development phase for Embedded System, Uses of its Emulator and In-Circuit Emulator (ICE), Use of Software tools for development of an Embedded System, Use of scopes and Logic Analyzers for system Hardware tests, Issues in Embedded system design

UNIT-V: Applications

Embedded System Design for: An Adaptive Cruise Control System in a car, Smart Card, Digital Clock, Battery-operated Smartcard Reader, Automated Meter Reading (AMR) System, Digital Camera

TEXT BOOKS:

- 1. Raj Kamal, "Embedded Systems : Architecture, Programming and Design", Tata McGraw Hill, 2005
- 2. Shibu. K. V, "Introduction to Embedded Systems", Tata McGraw Hill, 2009

15D22201 ADAPTIVE CONTROL

Unit – I

Introduction, Block Diagram of an Adaptive System, Effects of Process Variations on System Performance, Types of Adaptive Schemes, Formulation of the Adaptive Control Problem, Abuses of Adaptive Control, Least Squares Method and Regression Models for Parameter Estimation – Theorems, Estimating Parameters in Models of Dynamic Systems, The Finite Impulse Response Model, The Transfer Function Model, and The Stochastic Model.

Unit – II

Block Diagram of Deterministic Self Tuning Regulator (STR), Pole Placement Design – Process Model, Model Following, Causality Conditions. Indirect STRs – Estimation, Continuous - Time STRs, Direct STRs – Minimum Phase Systems, Adaptive Control Algorithm, Feed Forward Control, Non Minimum Phase Systems – Adaptive Control Algorithm, Algorithm For Hybrid STR.

Unit – III

Design of Minimum Variance and Moving - Average Controllers, Stochastic STR – Indirect STR, Algorithm for Basic STR, Theorems on Asymptotic Properties. Unification of Direct STRs, Generalized Direct Self Tuning Algorithm, Self Tuning Feed Forward Control. Linear Quadratic STR – Theorems on LQG Control, Algorithms for Indirect LQG – STRs Based on Spectral Factorization and Riccati Equation.

Unit –IV

Model Reference Adaptive System (MRAS), The MIT Rule, Block Diagram of an MRAS for adjustment of Feed Forward Gain based on MIT Rule. Adaptation Gain – Methods for determination. Design of MRAS using Lyapunov Theory – Block Diagram of an MRAS based on Lyapunov Theory for a First Order System. Proof of The Kalman – Yakubovich Lemma, Adjustment Rules for Adaptive Systems, Relation between MRAS and STR.

Unit – V

Gain Scheduling – Principle, Block Diagram, Design of Gain Scheduling Controllers, Nonlinear Transformations, Block Schematic of a Controller based on Nonlinear Transformations. Application of Gain Scheduling for Ship Steering, Flight Control. Self Oscillating Adaptive System (SOAS) – Principle, Block Diagram, Properties of The Basic SOAS, Procedure for Design of SOAS. Industrial Adaptive Controllers and applications.

Text books

1. K.J.Astrom and Bjorn Wittenmark, Adaptive control, Pearson Edu., 2nd Edn.

2. Sankar Sastry, Adaptive control.

References

- 1. V.V.Chalam, Adaptive Control System Techniques & Applications, Marcel Dekker Inc.
- 2. Miskhin and Braun, Adaptive control systems, MC Graw Hill
- 3. Karl Johan Åström, Graham Clifford Goodwin, P. R. Kumar, Adaptive Control, Filtering and Signal Processing
- 4. G.C. Goodwin, Adaptive control.

5. Narendra and Anna Swamy, Stable Adaptive Systems.

15D22202 DIGITAL CONTROL SYSTEMS

UNIT – I

Digital Control Systems – Block Schematic, Examples, Signal Forms, Advantages and Disadvantages of Digital Control, Data Conversion and Quantization, Sampling Process. Reconstruction of Original Signals from Sampled Signals - Sampling Theorem, Ideal Low – Pass Filter. Impulse Sampling and Data Hold-Transfer Function of Zero - Order Hold and First-Order Hold, Frequency Response Characteristics.

UNIT – II

The Z-Transform and Inverse Z Transform, Z - Transform Method for Solving Difference Equations. The Pulse Transfer Function (PTF) – PTFs of Closed - Loop Systems, Digital Controllers, Digital PID Controller and Digital Control Systems. Mapping Between The S – Plane and Z – Plane – Primary and Complementary Strips. Stability Analysis – Jury Test, Bilinear Transformation and Routh Criterion, Lyapunov Method for LTI Discrete time systems. Design based on the Frequency Response Method and Bilinear Transformation.

UNIT – III

State Space Representations of Discrete - Time Systems, Solution of The Time - Invariant Discrete-Time State Equation, State Transition Matrix , Z-Transform Approach to The Solution of State Equation , Discritization of Continuous- Time State- Space Equations , Controllability and Observability of Discrete- Time Systems, Conditions, Principle of Duality.

UNIT – IV

Design via Pole Placement – Necessary and Sufficient Condition for Pole Placement, Ackerman's Formula, Dead Beat Response, Design of Dead Beat Controllers. State Observers – Necessary and Sufficient Condition for State Observation. Full Order State Observer, Error Dynamics of The Full Order State Observer, Design of Prediction Observers – Ackerman's Formula.

UNIT – V

Design of Minimum-Order Observer, Observed- State Feedback Control System with Minimum-Order Observer. Diophantine Equation, Polynomial Equation approach to Control System Design. Design of Model Matching Control Systems.

Text books:

- 1. K. Ogata, Discrete Time Control Systems, PHI/Addison Wesley Longman Pte. Ltd., India, Delhi, 1995.
- 2. B.C Kuo, Digital Control Systems, 2nd Edition, Oxford Univ Press, Inc., 1992.

Reference Books:

1. .F. Franklin, J.D. Powell, and M.L. Workman, Digital control of Dynamic Systems, Addison - Wesley Longman, Inc., Menlo Park, CA, 1998.

- 2. Gopal, Digital Control and State Variable Methods, Tata McGraw Hill, India, 1997.
- 3. C. H. Houpis and G.B. Lamont, Digital Control Systems, McGraw Hill, 1985.
- 4. John S. Baey, Fundamentals of Linear State Space Systems, Mc. Graw Hill, 1st edition
- 5. Bernard Fried Land, Control System Design, Mc. Graw Hill, 1st edition
- 6. Dorsay, Continuous and Discrete Control Systems, McGraw Hill.

15D22203 INTELLIGENT ALGORITHMS

UNIT I: Introduction and motivation. Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule - based systems, the AI approach. Knowledge representation. Expert systems. Data Pre - Processing: Scaling, Fourier transformation, principal - component analysis and wavelet transformations.

UNIT II

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch - Pitts neuron model, simple perceptron, Adaline and Madaline, Feed - forward Multilayer Perceptron. Learning and Training the neural network. Networks: Hopfield network, Self - organizing network and Recurrent network. Neural Network based controller, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab / Neural Network toolbox.

UNIT III

Genetic Algorithm: Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other than GA search techniques like tabu search and ant - colony search techniques for solving optimization problems.

UNIT IV

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to Fuzzy logic modeling and control of a system. Fuzzification, inference and defuzzification. Fuzzy knowledge and rule bases.

UNIT V

Fuzzy modeling and control schemes for nonlinear systems. Self - organizing fuzzy logic control. Implementation of fuzzy logic controller using Matlab fuzzy - logic toolbox. Stability analysis of fuzzy control systems. Intelligent Control for SISO/MIMO Nonlinear Systems. Model Based Multivariable Fuzzy Controller.

Text Books

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition, 2003.
- 2. T.J.Ross, Fuzzy logic with Fuzzy Applications, Mc Graw Hill Inc, 1997.
- 3. David E Goldberg, Genetic Algorithms.

References

- 1. M.T.Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M.Ham and Ivica Kostanic, Principles of Neurocomputing for science and Engineering, McGraw Hill, 2001.
- 3. N.K. Bose and P.Liang, Neural Network Fundamentals with Graphs, Algorithms and Applications, Mc - Graw Hill, Inc. 1996.
- 4. Yung C. Shin and Chengying Xu, Intelligent System Modeling, Optimization and Control, CRC Press, 2009.
- 5. N.K.Sinha and Madan M Gupta, Soft computing & Intelligent Systems Theory & Applications, Indian Edition, Elsevier, 2007.
- 6. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, Pearson Education, Indian Edition, 2003.
- 7. Witold Pedrycz, Fuzzy Control and Fuzzy Systms, Overseas Press, Indian Edition, 2008.

15D22204 ESTIMATION OF SIGNALS AND SYSTEMS

UNIT I

Review of Probability theory and random variable - random process - A Family of Transfer function Models. Equation Error Model Structure, Linear Regression. ARMAX Model Structure, Other Equation. Error - Type Model Structures - Output Error Model Structure - Box - Jenkins Model Structure - A General Family of Model Structures - Continuous Time Black - Box Model.

UNIT II

Recursive least squares (RLS), Consistency of estimation, Weighted LS.

UNIT III

Parametric models - LS estimation, bias - Generalized Least Squares (GLS) and Instrumental Variable (IV) method. Persistently exciting input signal - Likelihood functions and Maximum Likelihood Estimation (MLE) - Singular Value Decomposition (SVD).

UNIT IV

Kalman filter, State estimation using Kalman filter, Parameter estimation using Kalman filter. Extended Kalman Filters for continuous and discrete time systems, State and Parameter estimations.

UNIT V

Multi - variable system representation, controllability and observability indices; Feedback system identification. Stochastic Approximation Algorithm (STA); Model order and structure determination.

Text Books:

- 1. Papoulis and Pillai, Probability, Random Variables and Stochastic Process, McGraw Hill, 2002.
- Jerry M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice - Hall, 1995.

References:

- 1. Karl J Astrom, Introduction to Stochastic Control Theory, Mathematics in Series and Engg., Vol. 70.
- 2. Michel Verhaegen and Vincent Verdult, Filtering and System Identification A Least Squares Approach, Cambridge Univ. Press, 2007.
- 3. M.S. Grewal and A.P. Andrews, Kalman Filtering Theory and Practice Using Matlab, John Wiley, 2008.

15D54201 RESEARCH METHODOLOGY

(Audit Course)

<u>UNIT I</u>

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

<u>UNIT II</u>

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation.

Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

<u>UNIT III</u>

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

UNIT IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Co-variance – Multi-variate Analysis.

<u>UNIT V</u>

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Text books:

- 1. Research Methodology:Methods and Techniques C.R.Kothari, 2nd Edition,New Age International Publishers.
- 2. Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf on internet)
- 3. Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1st Edition,Excel Books,New Delhi.

REFERENCES:

- **1.** Scientists must Write Robert Barrass (Available as pdf on internet)
- 2. Crafting Your Research Future –Charles X. Ling and Quiang Yang (Available as pdf on internet)

15D22207 CONTROL SYSTEMS SIMULATION LAB

List of Experiments

The following experiments may be implemented in MATLAB/SIMULINK environment.

- 1. Preliminary Transformations:
 - (a) Transfer function to State space models vice- versa.
 - (b) Conversion of Continuous to Discrete time systems vice- versa.
 - (c) Verification of controllability and observablity of a given system.
- 2. Design of state feedback controllers.
- 3. Stability analysis of a given system using:
 - (a) Root Locus.
 - (b) Bode plot.
 - (c) Lyapunov stability.
- 4. Implementation of Kalman Filter.
- 5. Implementation of Least squares error method.
- 6. Implementation of PID controller and its effects on a given system.
- 7. Design of Lead, Lag, Lead- Lag compensators using frequency domain analysis.
- 8. Construction of Simulink model for an Induction motor.

Note: At least four problems may be implemented from the following

- 9. Solving steady state Ricatti Equation.
- 10. Construction of Simulink model foe single area and multi area Power system.
- 11. Solving an optimal control problem using Ricatti equation.
- 12. Implementation of Full order and minimum order Observer.
- 13. Implementation of Back-Propagation Algorithm.
- 14. Implementation of simple Fuzzy controller.
- 15. Implementation of storage and recall algorithm of Hopfield network model.

15D22205 REAL TIME SYSTEMS

UNIT-I:

Introduction to Real - time systems: Typical examples of RTS, Characteristic features of RT applications. Structural, Functional and Performance requirement of Reactive RTS. Distinctive features from Non - RT and Off - line system. Modeling RTS: Representation of time, Concurrency and Distributedness in discrete event systems.

UNIT-II:

Hierarchical representation of complex DES. Input, Output and Communication. Examples of modeling practical systems as RT DES. Modeling programs as RTS. Analyzing RTS: Analyzing logical properties of DES such as Reachability, Deadlock etc. Analyzing timing related properties, Specification and Verification of RT DES properties.

UNIT-III:

Temporal logic, Model checking. Example of checking safety and timing properties of industrial systems. Requirements and features of real - time Computing Environments: Real - time Operating Systems, Interrupts, clock, Device support.

UNIT-IV:

Real time System, Multi tasking, Static and Dynamical Scheduling of resource Allocation, Real - time Programming.

UNIT-V:

Real - time process and applications, Distributed Real - time systems.

TEXTBOOK:

1. Jane W S Liu, "Real- Time Systems", Pearson publications, 1st edition, 2006.

REFERENCE BOOK:

1. Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2009.

15D21207 SOLAR ENERGY CONVERSION SYSTEMS

UNIT-I: SOLAR CELL FUNDAMENTALS

Place of PV in world energy scenario – need for sustainable energy sources – current status of Renewable energy sources – place of photovoltaic in Energy supply – solar radiation – the sun and earth movement – angle of sunrays on solar collectors – sun tracking – estimating solar radiation empirically – measurement of solar radiation - Fundamentals of semiconductors – charge carriers and their motion in semiconductor – P-N Junction Diode – an introduction to solar cells.

UNIT-II: DESIGN OF SOLAR CELLS

Upper limits of cell parameters – short circuit current, open circuit voltage, fill factor, efficiency – losses in solar cells – model of a solar cell, effect of series and shunt resistance on efficiency, effect of solar radiation on efficiency – solar cell design – design for high I_{SC} – Design for high V_{OC} – design for high FF – Analytical techniques.

UNIT-III: SOLAR PHOTOVOLTAIC MODULES

Solar PV Modules from solar cells – series and parallel connection of cells – mismatch in module – mismatch in series connection – hot spots in the module , bypass diode – mismatching in parallel diode – design and structure of PV modules – number of solar cells in a module, wattage of modules, fabrication of PV module – PV module power output.

UNIT-V: BALANCE OF SOLAR PV SYSTEMS

Basics of Electromechanical cell – factors affecting performance – batteries for PV systems – DC to DC converters – charge controllers – DC to AC converters(Inverters) – Maximum Power Point tracking (MPPT) – Algorithms for MPPT.

UNIT V: PV SYSTEM DESIGN AND APPLICATIONS

Introduction to solar PV systems – standalone PV system configuration – design methodology of PV systems – design of PV powered DC fan without battery, standalone system with DC load using MPPT, design of PV powered DC pump, design of standalone system with battery and AC/DC load – wire sizing in PV system – precise sizing of PV systems – Hybrid PV systems – grid connected PV systems.

TEXT BOOKS:

1. "Solar Photovoltaics Fundamentals, Technologies and Applications" by Chetan singh solanki, PHI publications.

REFERENCES:

- 1. Solar Energy Fundamentals and applications by H.P. Garg, J. Prakash "Tata McGraw-Hill publishers Ist edition"
- 2. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.

15D21208 WIND ENERGY CONVERSION SYSTEMS

UNIT-I: FUNDAMENTALS OF WIND TURBINES

Historical background - basics of mechanical to electrical energy conversion in wind energy - types of wind energy conversion devices – definition - solidity, tip speed ratio, power coefficient, wind turbine ratings and specifications - aerodynamics of wind rotors - design of the wind turbine rotor

UNIT-II: WIND TURBINE CONTROL SYSTEMS & SITE ANALYSIS

Power speed characteristics - torque speed characteristics - Pitch angle control – stall control – power electronic control – Yaw control – Control strategy – wind speed measurements – wind speed statistics – site and turbine selection.

UNIT-III: BASICS OF INDUCTION AND SYNCHRONOUS MACHINES

The Induction Machine – constructional features - equivalent circuit model - performance characteristics - saturation characteristics – dynamic d-q model – the wound – field synchronous machine – the permanent magnet synchronous machine – power flow between two synchronous sources – induction generator versus synchronous generator

UNIT-IV: GRID CONNECTED AND SELF-EXCITED INDUCTION GENERATOR OPEARTION

Constant – voltage, constant – frequency- single output system –double output system with current converter & voltage source inverter – equivalent circuits – reactive power and harmonics – reactive power compensation – variable – voltage, variable – frequency generation – the self- excitation process – circuit model for the self – excited induction generator – analysis of steady state operation – the steady state characteristics – the excitation requirement – effect of a wind generator on the network

UNIT-V: WIND GENERATION WITH VARIABLE-SPEED TURBINES AND APPLICATION

Classification of schemes – operating area – induction generators – doubly fed induction generator – wound field synchronous generator – the permanent magnet generator – Merits and limitations of wind energy conversion systems – application in hybrid energy systems – diesel generator and photovoltaic systems – wind photovoltaic systems.

TEXT BOOKS:

1. S.N.Bhadra, D.Kastha, S.Banerjee, "wind electrical systems" Oxford University Press.

REFERENCES:

- 1. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.
- "Renewable Energy sources & Conversion Technology" by N.K.Bansal, Manfred Kleemann, Michael Meliss. Tata Mcgraw Hill Publishers.

15D22206 PROCESS DYNAMICS AND CONTROL

UNIT I:

Introduction to Process Control, Representative Process Control Problems, Illustrative Example-A Blending process, Classification of Control Strategies, Hierarchy of Process Control activities, Dynamic versus Steady - state Models, The rationale of Dynamic Process models, General Modeling Principles, Dynamic model of CSTR, Degrees of freedom analysis, Linearization of Non-linear models. Processes with time delays, Approximation of Higher - Order transfer functions, Interacting and Non interacting Processes, Multiple - Input, Multiple - Output (MIMO) Processes.

UNIT II:

Basic Control modes, Features of PID Controllers, Typical process responses with Feedback control, Digital versions of PID Controllers, Transducers and Transmitters, Final Control elements, Accuracy in Instrumentation, Guidelines for selection of Controlled, Manipulated and Measured variables, Process safety and Process Control, Block diagram representation of Blending process composition control system, General stability criterion, Routh Stability criterion for time delay systems, Direct substitution method.

UNIT III:

Performance Criteria for Closed - Loop Systems, Model - based design methods - Direct Synthesis Method, Internal Model Control, Controller tuning relations, Controllers with two degrees of freedom, Online controller tuning, trial and error tuning, Continuous Cycling Method, Relay auto tuning, Process Reaction Curve Method, Guidelines for Common Control Loops, troubleshooting Control Loops.

UNIT IV:

Introduction to Feed forward Control, Ratio Control, Feed forward Controller Design based on Steady - State Models, Controller Design based on Dynamic Models, Tuning Feed forward Controllers, Configurations for Feed forward - Feedback Control, Cascade control, Design considerations for cascade control, Time delay compensation, Block diagram of the Smith predictor, Inferential control, Selective control/Override systems.

UNIT V:

Multi loop and multivariable control: Process Interactions and Control Loop Interactions, Pairing of Controlled and Manipulated Variables, Bristols RGA method, Calculation of the RGA, Methods for obtaining the steady state gain matrix, Measure of Process Interactions and Pairing recommendations, Dynamic considerations, Extensions of the RGA analysis, Singular value analysis, Selection of manipulated variables and Controlled variables, Tuning of multi loop PID Control systems, Decoupling and multi variable control strategies, Strategies for Reducing Control Loop Interactions.

Text Books:

Dale E. Seborg, University of California, Santa Barbara, Thomas F. Edgar, University of Texas at Austin, Duncan A. Mellichamp, University of California, Santa Barbara, Process Dynamics and Control, John Wiley & Sons, 2nd Edition, 2004.

References:

Brian Roffel, Ben Betlem, Process Dynamics and Control Modeling for Control and Prediction, John Wiley & Sons Ltd., 2007.

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CONTROL SYSTEMS

I SEMESTER

S.No.	Course Code	Subject Name	Cate	-	urs I Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D22101	Modern Control Systems	PC	3	0	0	3
2	21D22102	Adaptive Control Theory	PC	3	0	0	3
3	Profession	al Elective – I		I	1	1	
	21D22103	Estimation of Signals & Systems					
	21D22104	Real Time & Embedded Systems	PE	3	0	0	3
	21D22105	Advanced Digital Signal Processing					
4	Profession	al Elective – II		1			
	21D22106	Intelligent Control Systems					
	21D22107	Networked Control Systems	PE	3	0	0	3
	21D22108	Digital Control Systems					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies					
7	21D22109	Control Systems Lab	PC	0	0	4	2
8	21D22110	Control Systems Simulation Lab	PC	0	0	4	2
	1	Total	I	16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CONTROL SYSTEMS

II SEMESTER

S.No.	Course Code	Subject Name	ct Name Cate Hours Per Week		Week		Credits
	Code		Gory	L	Т	Ρ	
1	21D22201	Non-linear Control Systems	PC	3	0	0	3
2	21D22202	Process Dynamics & Control	PC	3	0	0	3
3	Profession	al Elective – III					
	21D22203	Robotics & Control					
	21D22204	Optimal Control	PE	3	0	0	3
	21D22205	Performance Assessment & Plant Wide Control			Ŭ	U	
4	Profession	al Elective – IV					
	21D21106	Solar & Wind Energy Conversion Systems		S			
	21D22206	Biomedical Measurement Systems	PE		0	0	3
	21D22207	Robust Control	_				
5	21D11209	Technical Seminar	PR	0	0	4	2
б	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga	_				
7	21D22208	Process Control Lab	PC	0	0	4	2
8	21D22209	Advanced Control Systems Simulation Lab	PC	0	0	4	2
	1	Total		14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CONTROL SYSTEMS

III SEMESTER

S.No.	Course	Subject Name Cate		-	urs I Weel	Credits	
	Code		Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D22301	Industrial Drives & Control					
	21D22302	Data Driven Control	PE	3	0	0	3
	21D22303	Guidance Strategies for Autonomous		_			_
		Vehicles					
2	Open Elect	ive					
	21D20301	Waste to Energy	OE	3	0	0	3
3	21D22304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
	•	Total	÷	06	00	20	18

IV SEMESTER

S.No. Course		Subject Name			urs 1 Weel		Credits
	Code		Gory	L	Т	Ρ	
1	21D22401	Dissertation Phase – II	PR	0	0	32	16
	•	Total		00	00	32	16

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(CONTROL SYSTEMS)

Course Code	21D22101	MODERN CONTROL SYSTEMS	L	Τ	P	C
Semester	Ι	(21D22101)	3	0	0	3

Course Objectives: Student will be able to

- Remember and understand the concept of state space representation, Solution of state equation, STM, linearization of nonlinear systems, controllability and observability concepts, principles of duality, concepts of optimal and Lyapunov stability.
- Apply the above concepts to analyze controllability, Observability and pole placement by state feedback.
- Analyze the concept of regulator, stability and sensitivity using various methods and disturbance rejection.
- Design Full order observer and reduced order observer.

Course Outcomes (CO): After completion of the course Student may get knowledge to

- Understand the state space representation, controllability and observability concepts, principles of duality, concepts of optimal and Lyapunov stability.
- Apply the state equations, pole placement by state feedback.
- Analyze controllability & observability of state models.
- Design full order observer and reduced order observer.

UNIT - I STATE VARIABLE DISCRIPTION

Lec Hrs: 9

Introductory matrix algebra and linear Vector Space, State space representation of systems-Linearization of a non-linear System- Solution of state equations- Evaluation of State Transition Matrix (STM).

UNIT - IITRANSFORMATION, POLEPLACEMENT ANDLec Hrs: 10CONTROLLABILITY

Similarity transformation and invariance of system properties due to similarity transformations-Minimal realization of SISO- SIMO and MISO transfer functions-Discretization of a continuous time state space model- Conversion of state space model to transfer function model using Fadeeva algorithm- Fundamental theorem of feedback control - Controllability and Controllable canonical form - Pole assignment by state feedback using Ackermann's formula– Eigen structure assignment problem.

UNIT - III OPTIMAL CONTROL

Lec Hrs: 10

Lec Hrs: 9

Linear Quadratic Regulator (LQR) problem and solution of algebraic Riccati equation using Eigen value and Eigen vector methods- iterative method- Controller design using output feedback.

UNIT - IV OBSERVERS

Observability and observable canonical form-Design of full order observer using Ackermann's formula -Bass Gura algorithm- Duality between controllability and observability- Full order Observer based controller design- Reduced order observer design.

UNIT - VSTABILITY ANALYSIS AND SENSITIVITYLec Hrs: 10Internal stability of a system- Stability in the sense of Lyapunov- Asymptotic stability of linear
time invariant continuous and discrete time systems- Solution of Lyapunov type equation- Model
decomposition and decoupling by state feedback- Disturbance rejection- sensitivity and
complementary sensitivity functions.

Textbooks:

: Student and und

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

1. K. Ogata, "Modern Control Engineering", Prentice Hall, India, 5 th edition, 2010.							
2. T. Kailath, "Linear Systems", Perntice Hall, 2016.							
3. N.K. Sinha, "Control Systems", New Age International, 4 th edition, 2013.							
Reference Books:							
1. Panos J Antsaklis, and Anthony N.Michel,"LinearSystems", New-age							
international (P) LTD, Publishers, 2009.							
2. John JDAzzoand C. H. Houpis, "LINEAR Control System Analysis And							
Design With Matlae", Marcel Dekker, Inc., 5 Th edition, 2003.							
3. B.N.Dutta, "Numerical Methods for linear Control Systems", Elsevier Publication,							
2007.							
4. C.T. Chen "Linear System Theory and Design- Oxford Series 3 rd Edition, 1998.							
5. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", 12 th Edition,							
Pearson Edu., India, 2014							
Online Learning Resources:							

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

Course Code	21D22102	ADAPTIVE CONTROL THEORY	L T P C
Semester	Ι	(21D22102)	3 0 0 3
Course Object	ives: Student	will be able to	
		concepts of Adaptive control and types, Self Tuning Re	gulator and
	and gain sche	-	
-		eduling and applications of Adaptive control	
 To Appl 	y Gain Sched	luling concepts in real life applications.	
• To deve	lop adaptive	control algorithms	
Course Outcon	nes (CO): Af	ter completion of the course Student may get knowledg	e to
• Understa	and the basic	concepts of Adaptive control system, types, formulation	n of control
problem	and various	dynamic models.	
Analyse	the Adaptive	e models like STR and MRAS	
• Design of	of STR based	control algorithms and MRAS based control algorithms	S
 Apply the second second	ne Adaptive c	ontrol concepts for various applications.	
Evaluate	e the given dy	namical system performance using Adaptive control law	WS
UNIT - I		OF ADAPTIVE SYSTEMS	Lec Hrs: 10
Preface to adap	tive systems-	Block Diagram of an Adaptive System- Effects of Pro	cess Variations
on System Pe	rformance-T	ypes of Adaptive Schemes-Formulation of the Ad	aptive Control
Problem-Abuse	s of Adaptive	e Control-Least Squares Method and Regression Model	s for Parameter
Estimation – Th	neorems-Estin	nating Parameters in Models of Dynamic Systems-The	Finite Impulse
Response Mode	l-The Transf	er Function Model and The Stochastic Model	
UNIT - II		INING REGULATOR	Lec Hrs: 09
		istic Self Tuning Regulator (STR)-Pole Placement De	
	-	usality Conditions-Indirect STRs – Estimation-Cont	
		imum Phase Systems-Adaptive Control Algorithm-	
		se Systems – Adaptive Control Algorithm-Algorithm Fo	or Hybrid STR.
UNIT - III		SELF TUNING REGULATORS	Lec Hrs: 10
-		ce and Moving - Average Controllers-Stochastic STR -	
-		Theorems on Asymptotic Properties-Unification of	
		ning Algorithm-Self Tuning Feed Forward Control-Li	-
	-	Control- Algorithms for Indirect LQG - STRs Bas	ed on Spectral
Factorization an	^		<u> </u>
UNIT - IV		EFERENCE ADAPTIVE SYSTEM	Lec Hrs: 11
	-	System (MRAS)-The MIT Rule- Block Diagram of	
		ard Gain based on MIT Rule-Adaptation Gain –	
		RAS using Lyapunov Theory – Block Diagram of an M	
		irst Order System-Proof of The Kalman – Yakub	ovich Lemma-
0	· ·	ve Systems-Relation between MRAS and STR.	
UNIT - V		IEDULING	Lec Hrs: 10
	0 1	e-Block Diagram-Design of Gain Scheduling Contro	
		mematic of a Controller based on Nonlinear Th	
		ing for Ship Steering-Flight Control. Self Oscillating A	
(SOAS) – Prir	1c1ple-Block	Diagram-Properties of The Basic SOAS-Procedure	tor Design of

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

SOAS- Industrial Adaptive Controllers and applications.

Textbooks:

1. K.J.Astrom and Bjorn Wittenmark, "Adaptive control", Pearson Edu., 2nd Edn. 2008.

2. Sankar Sastry, Marc Bodson," Adaptive control stability, convergence and robustness" Prentic – Haii, 1st Edition, 2008.

Reference Books:

1. V.V.Chalam, "Adaptive Control System - Techniques & Applications" Marcel Dekker Inc. 2ndEdition, 1987.

2. Miskhin and Braun," Adaptive control systems", MC Graw Hill ,1st Edition.1961.

3. Karl Johan Åström, Graham Clifford Goodwin, P. R. Kumar, "Adaptive Control, Filtering and Signal Processing", 2nd Edition, 2008.

Online Learning Resources:

1. https://nptel.ac.in/courses/108/102/108102113/

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

Course Code	21D22103	ESTIMATION OF SIGNALS AND SYSTEMS	L	T	Р	С
Semester	Ι	(21D22103) (PE-I)	3	0	0	3
Course Object	was. Student	will be able to				
v						
represen	tation, contro	ty theory, types of model structure, Multi variable system illability and observability indices				
		f recursive least square, weighted least square, generaliz 1 maximum likelihood estimation	zed le	east		
Analyze	SVD, Kalma	n filter and extended Kalman filter				
Create A	pproximation	n Algorithm (STA)				
		ter completion of the course Student may get knowledge	e to			
		ty theory, types of model structure, Multi variable system				
	-	llability and observability indices				
		f recursive least square, weighted least square, generaliz	zed le	east		
		l maximum likelihood estimation				
_		In filter and extended Kalman filter				
2		n Algorithm (STA)				
UNIT - I	**	Probability Theory and Model Structures	Le	c Hi	rs: 1	1
		ry and random variable - random process - A Family				
	•	fror Model Structure-Linear Regression- ARMAX Mo	•			
	-	e Model Structures - Output Error Model Structure -				
		Family of Model Structures - Continuous Time Black				
UNIT - II		Least Squares		c Hı		
Recursive least)-Consistency of estimation-Weighted LS.				
UNIT - III	Parametric		Lee	c Hı	rs: 1	0
		timation-bias - Generalized Least Squares (GLS) and				
Variable (IV)	method-Persis	stently exciting input signal - Likelihood functions a) - Singular Value Decomposition (SVD).				
UNIT - IV		ter and Extented Kalman Filter	Lee			
Kalman filter-S	state estimati	on using Kalman filter- Parameter estimation using	Kaln	nan	filt	er-
	nan Filters f	for continuous and discrete time systems - State a	and	Para	ame	ter
estimations.	1					
UNIT - V	Multi Varia	able System Representation	Lee	c Hi	rs: 1	10
		esentation-controllability and observability indices-Fee	edba	ck s	syst	em
identification-S	tochastic A	pproximation Algorithm (STA)-Model order a	ınd	str	uct	ıre
determination.						
Textbooks:						
		pability, Random Variables and Stochastic Process, M	cGra	aw 1	Hill	4^{th}
edition. 201						
		ns in Estimation Theory for Signal Processing, Commu	inica	tior	ns, a	nd
Control, Pre	ntice - Hall,2	nd edition. 1995.				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

Reference Books:


- 1. Karl J Astrom, Introduction to Stochastic Control Theory, Mathematics in Series and Engg., Vol. 70, 1st edition. 1970.
- 2. Michel Verhaegen and Vincent Verdult, Filtering and System Identification A Least Squares Approach, Cambridge Univ. Press, 1st edition. 2012.
- 3. M.S. Grewal and A.P. Andrews, Kalman Filtering Theory and Practice Using Matlab, John Wiley, 4th edition. 2014.

Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Course Code	21D22104	REAL TIME & EMBEDDED SYSTEMS	L	Т	P	С
Semester	Ι	(21D22104) (PE-I)	3	0	0	3
Course Objecti	ves: Student v	vill be able to				
1	ble real-time s					
		matical model of the system.				
		gorithm for task scheduling.				
		ing of real-time operating systems and real-time databa				
		development of protocols related to real-time commun		on		
		er completion of the course Student may get knowledg	e to			
		ssors, microcontrollers and digital signal processors				
		d data acquisition; analog to digital signal conversion	and	vice	ver	sa
	0	ogic circuits used with embedded systems				
Ŭ	nbedded syster		-			
UNIT - I	System Des	0			rs: 9	
		nd brief overview of micro-controllers-microprocess ural definitions- Typical applicationscenario of embed				
UNIT - II	Data Acquis	ition Basics:	Le	c H	rs: 1	0
		on on PC- Sampling fundamentals-Input/output techni	ques	and	l bu	ses-
		counters and timers- DMA- Software and hardwa				
Calibration- Res	solution- Data	acquisition interface requirements.				
UNIT - III		ues Related to Embedded Systems:			rs: 1	
Interface Issues FPGA- ASIC- d		Embedded Systems: A/D- D/A converters-timers- ac	tuato	ors-	pov	/er-
UNIT - IV	Techniques	for Embedded Systems:	Le	c H	rs: 9)
State Machine	and state tab	les in embedded design- Simulation and Emulatio	n of	em	bed	ded
systems- High- design.	evel language	e descriptions of S/W for embedded system- Java en	nbed	ded	sys	tem
UNIT - V	Real Time N	Iodels & Case Studies	Le	c H	rs: 1	10
models-Petrinet scheduling- into memory require Case Studies: D mc8051- ADSP Textbooks: 11. K.J.Astrom 2. Sankar Sastry Reference Bool	models – Rea errupt process ments and cor Discussion of s 2181-PIC seri- and Bjorn Wit y, Adaptive cor ss:	and Operating Systems- Event based- process based al time languages – The real time kernel- OS tasks- sing-clocking communication and synchronization- ntrol- kernel services. specific examples of complete embedded systems using es of microcontroller. tenmark, "Adaptive control", Pearson Edu., 2nd Edn. ntrol 1 st Edition.2008.	task cont ng m 2008	state rol ac68	es- t bloc HC	ask cks-
Edn. 1987.						

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

2. Miskhin and Braun, Adaptive control systems, MC Graw Hill, 1st Edition.1961.

3. Karl Johan Åström, Graham Clifford Goodwin, P. R. Kumar, Adaptive Control, Filtering and Signal Processing, 2nd Edn. 2008.

Online Learning Resources:

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Course Code	21D22105	ADVANCED DIGITAL SIGNAL PROCESSING	L	Т	P	С
Semester	Ι	(21D22105)	3	0	0	3
		(PE-I)				
	-					
Course Object	ives: Student	will be able to				
• Understa	anding the fun	damental characteristics of signals and systems.				
		nathematical skills to solve problems involving convol	utio	n, fi	lter	ing
modulat	tion and sampl	ing.				
Knowlee	dge of frequ	ency-domain representation and analysis concepts	usin	ıg l	Four	ier
analysis	tools, Z-trans	form.				
Realizat	tion of FIR a	nd IIR digital filters				
Course Outcon	nes (CO): Aft	er completion of the course Student may get knowledge	e to			
Understa	anding of diffe	erent transformation techniques.				
Compute	e the z-transfo	rm of a sequence, identify its region of convergence, ar	nd co	omp	ute	the
inverse z	z-transform by	partial fractions.		-		
Compute	e the linear an	d circular convolutions of discrete-time sequences.				
• Realize	various filters	and finding solution for various filter designs.				
UNIT - I	Preface To	Advanced Digital Signal Processing	Le	c H	rs: 9)
Short introducti	ion- Analog to	o digital and Digital to Analog conversion-sampled and	d Ho	old	circu	ıit-
Continuous tim	e Fourier Tra	ansforms- Discrete-time signals and systems- Discret	e-tin	ne l	Four	ier
transform- its p	roperties and	applications- Fast Fourier Transform (in time-domain	and	Fre	quer	ıcy
domain)-IDFT a						
UNIT - II		ms And Digital Filter Structures			rs: 1	
		Rational z-transforms- Region of convergence of				
Transform- The	e inverse z- T	Transform- Z-Transform properties- Computation of the	ne co	onv	olut	ion
	0 1	s- The transfer function.				
		lock Diagram representation-Equivalent structures- Bas				
		Digital Filter structures- Realization of Basic structures-	ructu	ires	us	ing
		omputational complexity of Digital filter structures.	·			
UNIT - III		Filter Design			rs: 1	
•		Bilinear transformation method of IIR Filter design-		-		
		gn of High pass- Band pass and band stop IIR digital				
		- IIR digital filter design using MATLAB-Computer a	ided	de	sign	of
IIR digital filter			-			
UNIT - IV	0	Filter Design			rs: 1	
		FIR filter design based on windowed Fourier series- C	-			
		phase FIR filters-Design of Minimum phase FIR filte		IR	dig	ital
<u> </u>	, Ŭ	- Design of computationally efficient FIR digital filters.	1			
UNIT - V		Finite Word Length Effects			rs: 1	
-	-	errors- quantization of Fixed point numbers- Quantizat				-
		coefficient quantization effects- Analysis of arithm				
		l filters- Reduction of product round off errors using e				
	-	rithms- The basic sample rate alteration devices- Multi				
tor sampling ra	ate conversion	n- Multistage design of decimator and interpolator-T	i he	Pol	yph	ase

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

decomposition- Arbitrary-rate sampling rate converter-Nyquist Filters and some applications of digital signal processing.

Textbooks:

1. S.K. Mitra, Digital Signal Processing-, Tata McGraw-Hill, Third Edition, 2007.

2. B.P. Lathi, **Principle of Signal Processing and Linear Systems-**, Oxford International Student Version, 1st edition ,2009.

3. M. Mondal and A Asif, **Continuous and Discrete Time Signals and Systems**, Cambridge, 1st edition ,2007.

Reference Books:

1. Li Tan, **Digital Signal Processing- Fundamentals and Applications-**, Indian reprint, Elsevier, 3st edition ,2018.

2. Alan V. Oppenheim, Ronald W. Schafer, and John R.Buck, **Discrete- Time Signal Processing-**, Pearson Edu, 3rd edition 2010.

Online Learning Resources:

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> <u>(CONTROL SYSTEMS)</u>

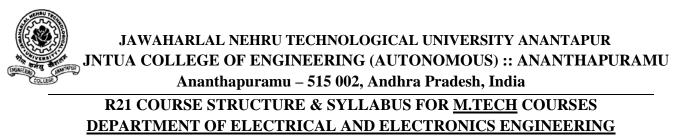
Course	21D22106	INTELLIGENT CONTROL SYSTEMS	L	Т	P	C
Code Semester	Ι	(21D22106) (PE-II)	3	0	0	3
Semester	L	(1 L-11)	5	U	U	5
Course Obie	ctives: Studen	t will be able to				
· · · ·		ic concepts of Intelligent control, architecture, data p	re-r	oroc	essi	nσ
	cial Neural Ne	etworks, Fuzzy Logic Control System, finally Heuristic				
	the concept thms and cont	s of ANN, Fuzzy and Heuristic Optimization to de rol techniques	velo	op v	vario	ous
Analy	ze Linear ar	nd Non-Linear systems by applying ANN, Fuzzy	and	He	euris	stic
Optim	nization techni	ques				
	n Intelligent C ptimization m	Control Systems for various applications with the help o ethods	f Al	NN,	Fuz	ZZY
Course Outc	comes (CO): A	After completion of the course Student may get knowledg	e to)		
Artific techni	cial Neural Ne iques	ic concepts of Intelligent control, architecture, data p etworks, Fuzzy Logic Control System, finally Heuristic	Op	otim	izat	ion
algori	thms and cont	-		•		
	ze Linear ar	nd Non-Linear systems by applying ANN, Fuzzy ques	and	He	euris	stic
	n Intelligent C ptimization m	Control Systems for various applications with the help o ethods	f Al	NN,	Fuz	ZZY
UNIT - I	•	t Control Overview & Data Pre-processing	Le	c H	rs: 9)
Overview an		Approaches to intelligent control. Architecture for intel	lige	nt c	contr	col.
Symbolic rea	soning system	n, rule - based systems, the AI approach. Knowledge 1	epro	eser	ntati	on.
		- Processing: Scaling, Fourier transformation, principal				
analysis and	wavelet transfo	ormations.				
UNIT - II	Artificial	Neural Networks	Le	c H	rs: 1	10
neuron mode Learning and network and	I, simple perce Training the Recurrent netw	ral Networks and its basic mathematical model, McC eptron, Adaline and Madaline, Feed - forward Multilay e neural network. Networks: Hopfield network, Self vork. Neural Network based controller, Case studies: Ide ear dynamic systems using Matlab / Neural Network tool	er F - ntifi	Perco orga icati	eptr aniz	on. ing
UNIT - III		Optimization Technioques			rs: 1	
of free param	eters. Solution A search techr	concept of Genetic algorithm and detail algorithmic step of typical control problems using genetic algorithm. Co niques like tabu search and ant - colony search techniqu	nce	pt of	n so	me

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

UNIT - IV	Fuzzy Logic System	Lec Hrs: 9
Introduction to	crisp sets and fuzzy sets, basic fuzzy set operation and approxim	ate reasoning.
Introduction to	Fuzzy logic modeling and control of a system. Fuzzification,	inference and
defuzzification.	Fuzzy knowledge and rule bases.	
UNIT - V	Fuzzy Controller Design & Analysis	Lec Hrs: 10
	g and control schemes for nonlinear systems. Self - organizing fuzzy	U
-	of fuzzy logic controller using Matlab fuzzy - logic toolbox. Stabil	
	ystems. Intelligent Control for SISO/MIMO Nonlinear Systems.	Model Based
	uzzy Controller.	
Textbooks:		
1. Bose and	d Liang "Artificial Neural Networks", Tata McGraw Hill, 1 st edition	,1996.
2. Huaguar	ng Zhang, Derong Liu "Fuzzy Modeling and Fuzzy Control	", Birkhauser
Publishe	ers, 26st edition, 2006.	
	vanandam and S. N. Deepa, "Principles of Soft Computing", John	Wiley & Sons,
2 st editio	on 2011.	
Reference Boo	ks:	
	ørgaard, O.Ravn, N. K. Poulsen, L. K. Hansen "Neural Networks	
	Iodelling and Control of Dynamic Systems", Springer-Verlag, 1 st	
	n, 2002	
2. Laxm	idhar Behera and Indrani Kar "Intelligent Systems and Control	", Oxford, 1 st
editio	n, 2009.	
	b B,Prentice "Neural Networks and Fuzzy Systems: A Dynam	
Appro	pach to Machine Intelligence", Hall of India, New Delhi, 1 st edition	on,
1994.		
Online Learnin		
Prof. Kevin	M. Passino resources of MATLAB codes (http://eew	www.eng.ohio-

state.edu/~passino/ICbook/ic_code.html)

Course Code	21D22107	NETWORKED CONTROL SYSTEMS	L	Τ	Р	С	
--------------------	----------	---------------------------	---	---	---	---	--


JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u>

(CONTROL SYSTEMS)

Semester	Ι	(21D22107)	3	0	0	3
		(PE-II)				
<u> </u>	<u> </u>					
Course Objectiv						
Security,	Various Mea	concepts of Industrial communication system, Intensurements and IOT	rnet	, N	etwo	ork
	-	order to measure various control system related issues				
measurem	nents	nance of networked control systems with the he	-			
security a	nd feedback			t, n	etwo	ork
		er completion of the course Student may get knowledge				
		concepts of Industrial communication system, Intensurements and IOT	rnet	, N	etwo	ork
 Apply the 	concepts in	order to measure various control system related issues				
• Analyze	the perform	nance of networked control systems with the he	lp o	of y	vario	ous
measurem	nents					
		ntrol systems with the concepts of interfacing, interfaci	erne	t, n	etwo	ork
	nd feedback					
		Communication Systems:			rs: 9	
	luction, Princ	ciples of interface- serial interface and its standards-Par	allel	int	erfa	ces
and buses						
		Physical Layer Aspects			rs: 1	
	-	of Internet - Overview of TCP / IP layers - IP address	-	-		
		- SMTP, POP, MIME, NNTP, ftp, Telnet, HTML				
		s. Physical Layer Aspects: Backbone network – Tr	unks	s, R	oute	ers,
5		IODEMs, WILL, ISDN, XDSL, VSAT.	-			1.0
		yer Aspects and Network Security:			rs: 1	
		PSO – Public key cryptography – digital signature stan				
	-	- Secure Data Network System SDNS - Network	laye	er s	ecur	nty
		nt Tunneling Protocol PPTP – SHTTP.	т		1	10
		nts Through Internet:			rs: 1	
measuring instru	ments throug	– Monitoring of plant parameters through Internet – gh Internet. Internet based Control: Virtual laboratory ersthrough Internet. Wireless sensors for measurement	- 1	Web	bas	sed
UNIT - V	Internet of 7	Things	Le	c H	rs: 1	10
		erview- basic elements- use of control system- comn	nuni	cati	on a	nd
feedback control	Demonstrati	on usingappropriate tools in the laboratory.				
Textbooks:						
		stems, Shuang-Hua Yang, Springer, 1 st Edition 2011.				
2. Internet Work	ing with TCI	P/IP, Douglas E. Camer, 3 rd Edition, Prentice Hall, 1999)			
Reference Books						
		ed, Richard Stevens, Addison Wesley, 1 st Edition 1999.				

<u>(CONTROL SYSTEMS)</u>

Internet Cryptography, Richard E. Smith, Addison Wesley, 1st Edition 1999.

Online Learning Resources:

2.

Course Code	21D22108	DIGITAL CONTROL SYSTEMS	LI	' P	С
Semester	Ι	(21D22108)	3 0	0	3
		(PE-II)			
Course Object					
1. Understand	basics of D	CS, Z & Inverse Z-Transforms, Controlability, Obse	ervabili	ty, P	ole
Placement and	observers.				
2. Analyze Da	ta conversior	n, quantization, sampling process, stability analysis u	sing Z	ury t	est,
Routh criteria a	nd Lyapunov	function			
3. Apply Z-Tra	nsforms to so	olving state equations and ackermans formulation for fi	nding f	eedb	ack
gain and observ	er gain matri	ces			
4. Design full o	rder observer	r, reduced order observer, prediction observer and dead l	beat co	ntroll	er
Course Outcor	nes (CO): Af	fter completing the course, the student should be able to	:		
		CS, Z & Inverse Z-Transforms, Controlability, Obse		ty, P	ole
Placement and	observers.			•	
2. Analyze Da	ta conversior	n, quantization, sampling process, stability analysis u	sing Z	ury t	est,
Routh criteria a			U	5	
		solving state equations and Ackermans formula for fin	nding f	eedb	ack
gain and observ			U		
4. Design full o	rder observer	r, reduced order observer, prediction observer and dead l	beat co	ntroll	er
		Digital Control Systems	Lec		
		– Block Schematic, Examples, Signal Forms, A	dvanta	ges a	and
		Control, Data Conversion and Quantization, Sam			
0	0	Signals from Sampled Signals - Sampling Theorem, Id			
	-	d Data Hold-Transfer Function of Zero - Order Hold			
Hold, Frequenc					
-		ation Techniques	Lec	Irs:	10
		erse Z Transform, Z - Transform Method for Solv			
		sfer Function (PTF) – PTFs of Closed - Loop Sy			
-		troller and Digital Control Systems. Mapping Between		-	S –
	-	ary and Complementary Strips. Stability Analysis – Jur		Bilin	ear
		Criterion, Lyapunov Method for LTI Discrete time s			
		bonse Method and Bilinear Transformation.			υ
UNIT - III	_ .	e Representations of DCS	Lec	Irs:	10
		s of Discrete - Time Systems, Solution of The Ti			
1	1	on, State Transition Matrix, Z-Transform Approach to			
	-	on of Continuous- Time State- Space Equations, Con			
	, 21501112401	· ·			
-	f Discrete- Ti	ime Systems, Conditions, Principle of Duanty.			
Observability o		me Systems, Conditions, Principle of Duality. Pole Placement and Full Order Observer	Lec	Irs:	9
Observability o UNIT - IV	Design Via	Pole Placement and Full Order Observer	Lec I		
Observability o UNIT - IV Design via Pole	Design Via e Placement -	Pole Placement and Full Order Observer - Necessary and Sufficient Condition for Pole Placeme	nt, Ack	erma	n's
Observability o UNIT - IV Design via Pole Formula, Dead	Design Via Placement - Beat Respon	Pole Placement and Full Order Observer - Necessary and Sufficient Condition for Pole Placeme se, Design of Dead Beat Controllers. State Observers –	nt, Ack Neces	erma sary a	n's and
Observability o UNIT - IV Design via Pole Formula, Dead Sufficient Cond	Design Via Placement - Beat Respon lition for Stat	Pole Placement and Full Order Observer - Necessary and Sufficient Condition for Pole Placeme	nt, Ack Neces	erma sary a	n's and

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Design of Minimum-Order Observer, Observed- State Feedback Control System with Minimum-Order Observer. Diophantine Equation, Polynomial Equation approach to Control System Design. Design of Model Matching Control Systems.

Textbooks:

- 1. K. Ogata, Discrete Time Control Systems, Pearson Education India, 2nd Edition, 2015.
- 2. B.C Kuo, Digital Control Systems, Oxford Univ Press, USA, 2nd Edition, 1995.

Reference Books:

- 1 .F. Franklin, J.D. Powell, and M.L. Workman, Digital control of Dynamic Systems, AddisonWesley Longman, Inc., Menlo Park, CA, 1st 1998.
- 2. Gopal, Digital Control and State Variable Methods, Tata McGraw Hill, India, 1st 1997.
- 3. C. H. Houpis and G.B. Lamont, Digital Control Systems, McGraw Hill, 1st 1985.
- 4. John S. Baey, Fundamentals of Linear State Space Systems, Mc. Graw Hill, 1st edition
- 5. Bernard Fried Land, Control System Design, Mc. Graw Hill, 1st edition
- 6. Dorsay, Continuous and Discrete Control Systems, McGraw Hill.1st Edition

Online Learning Resources:

https://www.coursebuffet.com/sub/electrical-engineering/525/digital-control-system

Course Code	21D22109	CONTROL SYSTEMS LAB	L	Т	Р	С
Semester	Ι	(21D22109)	0	0	4	2

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

Course Objectives: To make the student

- Familiarize with the modeling of dynamical systems
- Interpret the characteristics of control components like ac servo motor, synchro and magnetic amplifier.
- Analyze and simulate the stability using MATLAB software
- Design the compensators.

Course Outcomes (CO): After completion of the course Student may get knowledge to

- Understand the stability of an Electrical, mechanical and other physical systems
- Analyze the physical systems represented in transfer function.
- Apply the control components like ac servo motor, synchro and magnetic amplifier.
- Design controllers, compensators using MATLAB software

List of Experiments:

- 1. Determination of Transfer functions of an Electrical System.
- 2. Time Response Characteristics of a Second order System (Typical RLC network).
- 3. Characteristics of Synchros:
 - (a) Synchro transmitter characteristics.
 - (b) Implementation of error detector using synchro pair.
- 4. Determination of Magnetic Amplifier Characteristics with different possible connections.
- 5. Process Control Simulator:
 - (a) To determine the time constant and transfer function of first order process.
 - (b) To determine the time response of closed loop second order process with Proportional Control.
 - (c) To determine the time response of closed loop second order process with Proportional-Integral Control.
 - (d) To determine the time response of closed loop second order process with Proportional-Integral-Derivative Control.
 - (e) To determine the effect of disturbances on a process.
- 6. To study the compensation of the second order process by using:
 - (a) Lead Compensator.
 - (b) Lag Compensator.
 - (c) Lead- Lag Compensator
- 7. Realization of AND, OR, NOT gates, other derived gates and ladder logic on Programmable

Logic Controller with computer interfacing.

- 8. To determination of AC servomotor Characteristics.
- 9. To study the position control of DC servomotor with P, PI control actions.
- 10. Analog Computer:
 - (a) To examine the operation of potentiometer and adder.
 - (b) To examine the operation of integrator.
 - (c) To solve a second order differential equation.

Course Code	21D22110	CONTROL SYSTEMS SIMULATION LAB (21D22110)	L	Т	Р	C
Semester	Ι		0	0	4	2

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

Course Objectives:	То	make	the	student
---------------------------	----	------	-----	---------

- Will have a strong knowledge on MATLAB software.
- To study the concept of time response and frequency response of the system
- Students get the basic knowledge on practical control system applications on machines & electronic devices.
- This course aims to familiarize with the modeling of dynamical systems, to simulate and analyze the stability of the system using MATLAB.

Course Outcomes (CO): After completion of the course Student may get knowledge to

- to illustrate modeling and simulation of any system.
- To Classify and evaluate the performance parameters of a system and then with simulation prepare an advance tool to modify the values of the parameter of the system in order to meet the desired need.
- to compute or to predict the characteristics of a system by visualizing experimental data and its graphical representation.
- Evaluate possible causes of discrepancy in practical experimental observations in comparison to theory by introducing the concepts of different stability theorems

List of Experiments:

The following experiments may be implemented in MATLAB/SIMULINK environment.

- 1. Preliminary Transformations:
 - (a) Transfer function to State space models vice- versa.
 - (b) Conversion of Continuous to Discrete time systems vice- versa.
 - (c) Verification of controllability and observablity of a given system.
- 2. Design of state feedback controllers.
- 3. Stability analysis of a given system using:
 - (a) Root Locus.
 - (b) Bode plot.
 - (c) Lyapunov stability.
- 4. Implementation of Kalman Filter.
- 5. Implementation of Least squares error method.
- 6. Implementation of PID controller and its effects on a given system.
- 7. Design of Lead, Lag, Lead- Lag compensators using frequency domain analysis.
- 8. Construction of Simulink model for an Induction motor.

Note: At least four problems may be implemented from the following

- 9. Solving steady state Ricatti Equation.
- 10. Construction of Simulink model foe single area and multi area Power system.
- 11. Solving an optimal control problem using Ricatti equation.
- 12. Implementation of Full order and minimum order Observer.
- 13. Implementation of Back-Propagation Algorithm.
- 14. Implementation of simple Fuzzy controller.

15. Implementation of storage and recall algorithm of Hopfield network model.

Course Code		Research Methodology and	L	Т	Р	С
Semester	Ι	IPR	2	0	0	2
Course Objectives	s: To make the	student				

Reference Books:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Outcomes (CO):Student will be able to
Understand research problem formulation.
 Analyze research related information
 Follow research ethics
• Understand that today's world is controlled by Computer, Information
• Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
• Understanding that when IPR would take such important place in growth of individuals &
nation, it is needless to emphasis the need of information about Intellectual Property Right
to be promoted among students in general & engineering in particular.
• Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in
turn brings about, economic growth and social benefits.
turn brings about, economic growth and social benefits.
UNIT – I Lecture Hrs: 8
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good
research problem, Errors in selecting a research problem, Scope and objectives of research
problem. Approaches of investigation of solutions for research problem, data collection,
analysis, interpretation, Necessary instrumentations
UNIT - II Lecture Hrs: 4
Effective literature studies approaches, analysis Plagiarism, Research ethics
2110011 (° Interature studies approaches, anaryors i lagransin, resolutor ethios
UNIT - III Lecture Hrs: 5
Effective technical writing, how to write report, Paper Developing a Research Proposal,
Format of research proposal, a presentation and assessment by a review committee
UNIT - IV Lecture Hrs: 8
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting
and Development: technological research, innovation, patenting, development. International
Scenario: International cooperation on Intellectual Property. Procedure for grants of patents,
Patenting under PCT.
UNIT - V Lecture Hrs: 7
Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent
information and databases. Geographical Indications. New Developments in IPR:
Administration of Patent System. New developments in IPR; IPR of Biological Systems,
Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.
Textbooks:
1. Stuart Melville and Wayne Goddard, "Research methodology: An introduction for
science & engineering students'"
2. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide• for
beginners"
4. Defense Booker

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

- 1. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 2. Mayall, "Industrial Design", McGraw Hill, 1992.
- 3. Niebel, "Product Design", McGraw Hill, 1974.
- 4. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 5. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- 6. T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Anantnapuramu – 515 002, Andrra Pradesn, India

Course Code		RESEARCH PAPER	L	Т	Р	С
Semester	Ι	WRITING SKILLS	2	0	0	0
		(Audit Course-I)				
Course Objective	s: To make the	student				
Understand that	t how to improv	ve your writing skills and level of r	eadabil	ity.		
• Learn about wh	at to write in ea	ch section.				
• Understand	the		ded		wh	en
¥		alityofpaperatveryfirst-timesubmis	sion.			
Course Outcomes	s (CO):Student	will be able to				
	I		I			
UNIT – I				re Hrs:		
		Order, Breaking up long sentence				
andSentences,Beir	ngConciseandR	emovingRedundancy,AvoidingAm	nbiguity	and V	aguene	ess
UNIT - II			Lectur	re Hrs:	6	
	Did What I	Highlighting Your Findings, H				zing
		tions of a Paper, Abstracts. Introdu		anu	Cittle	Zing,
UNIT - III		nons of a raper, Abstracts. Introdu			5	
				re Hrs:		
Review of the Lite	erature, Method	s, Results, Discussion, Conclusion	s, The I	-inal C	песк	
UNIT - IV			Lectur	re Hrs:	6	
Key skills are nee	ded when writi	ng a Title, key skills are needed v	when w	riting a	an Abs	tract,
		ng an Introduction, skills needed v				
the Literature						
UNIT - V			Lectur	re Hrs:	7	
Skills are needed	when writing t	he Methods, skills needed when	writing	the Re	esults,	skills
are needed when	writing the Di	scussion, skills are needed when	writing	g the C	Conclus	sions.
useful phrases, h	ow to ensure	paper is as good as it could p	ossibly	be th	e first	-time
submission						
Textbooks:						
1. Goldbort R(2	006) Writing	for Science, Yale University Pr	ess(ava	ilable	on G	oogle
Books).						
• • • •		and Publish a Scientific Paper, Car	0		•	
-		ook of Writing for the Mathema	atical S	cience	s, SIA	М
Highman's bo						
		for Writing Research Papers,	Spring	ger Ne	ew Yo	rk
	idelberg Londo	n, 2011.				
Reference Books:						
Online Learning	Resources:					

Course Code	21D22201	NONLINEAR CONTROL SYSTEMS	L	ΤP	C
Semester	II	(21D22201)	3	0 0	
Course Objecti	ives: Student v	vill be able to			
		nonlinear systems, describing function, overview of s	vster	n anal	vsis
and Stab			<i>J</i> ~		- J
	•	ons to nonlinear systems			
		ith Lyapunov stability theorem and Popov's stability cr	riterio	on.	
		ear systems such as the ball and beam, flight cor			netic
	n and robotic n		,	magi	10010
		er completion of the course Student may get knowledg	e to		
		nonlinear systems, describing function, overview of s		n anal	vsis
and Stab		nominear systems, according function, overview of s	95001	ii uiiu	.9515
	•	ons to nonlinear systems			
	• •	ith Lyapunov stability theorem and Popov's stability cr	riteria	าท	
		ear systems such as the ball and beam, flight cor			netic
	n and robotic n		moi,	magi	lette
UNIT - I	System Non	*	Leo	Hrs:	9
	V	stems - Describing function analysis: Fundamen			
		d – zone- on - off non – linearity- backlash- hyster			
describing funct			,		
UNIT - II	Describing F	unction	Leo	Hrs:	10
		of nonlinear systems- Reliability of describing me			
-	•	nonlinear system using describing function method		-	
		lar points characterization- Analysis of non - linear			
-		ce of limit cycles.	•		C
UNIT - III	Concept of S	tability and Theorems	Leo	Hrs:	10
Concept of stal	bility-Zero - in	nput and BIBO stability- stability in the sense of	Lyap	unov	and
absolute stabilit	y- Stability in	the small and stability in the large-Lyapunov stabil	ity de	efiniti	ons-
First method of	Lyapunov- Se	cond (or direct) method of Lyapunov stability theory	for c	ontinı	lous
and discrete tim	ne systems- Ai	ds to generate Lyapunov function - Krasovskii's the	orem	- Vari	able
gradient method	l				
UNIT - IV	Stability Ana	llysis	Leo	e Hrs:	10
Aizerman's and	Kalman's conj	ecture-Construction of Lyapunov function - Methods	s of A	Aizern	nan-
	0	thod- Lure problem. Popov's stability criterion- gen	erali	zed c	ircle
criterion- Kalma	an - Yakubovic	h - Popov Lemma- Popov's hyper stability theorem.			
UNIT - V		of Non-Linear Controller	1	e Hrs:	
		re controller and sliding control- reaching condition			
-		tching control laws- Reduction of chattering in slid	-		•
	-	nples of nonlinear systems such as the ball and beam	-fligh	it con	trol-
U	ion and robotic	e manipulator etc.			
Textbooks:					
		, Applied Nonlinear Control, Prentice Hall,			
2. Hassan K. Kł	nalil, Nonlinear	Systems, Prentice Hall, 1996.			

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Reference Books:

1. Sankar Sastry, Nonlinear Systems Analysis, Stability and Control.

2. M. Vidyasagar, Nonlinear Systems Analysis, Prentice - Hall International editions, 1993.

Online Learning Resources:

1. https://nptel.ac.in/courses/108/102/108102113/

Course Code	21D22202	PROCESS DYNAMICS & CONTROL	L	Т	Р	C
Semester	II	(21D22202)	3	0	0	3
		-	·			
Course Objecti	ves: Student wil	l be able to				
Understa	and process con	trol problems, Basic control modes, linearization	on of	Nor	ı-lin	ear
models,	SISO and MIMO	O Processes, Block diagram representation of blen	ding p	roce	sses	
		s to different processes				
		ling of CSTR, general stability criteria, perform				
	•	control, feed forward control, cascade control,	deco	upli	ng a	ind
	U	und singular valve analysis				
 Design r 	atio control, case	cade controller and feed forward controller.				
Course Outcon	nes (CO): After	completion of the course Student may get knowle	dge to			
Understa	and process con	trol problems, Basic control modes, linearization	on of	Nor	ı-lin	ear
models,	SISO and MIM	O Processes, Block diagram representation of bler	iding p	proce	esses	5
11.4		s to different processes				
Analyze	dynamic mode	lling of CSTR, general stability criteria, perform	nance	of 1	proc	ess
	•	control, feed forward control, cascade control	, deco	upli	ng a	and
	0	and singular valve analysis				
-		cade controller and feed forward controller.				
UNIT - I	Process contro		Lectur			
		Representative Process Control Problems-Illustra				
		n of Control Strategies, Hierarchy of Process G				
		e Models, The rationale of Dynamic Process				
		model of CSTR - Degrees of freedom analysis				
		with time delays - Approximation of Higher				
	icting and Non i	interacting Processes, Multiple - Input, Multiple -	Outp	ut (N	ЛIМ	IO)
Processes.			TT .			10
UNIT - II		ers, Transducers and Stability	Lect			
		s of PID Controllers - Typical process response				
-		PID Controllers - Transducers and Transmitters				
		entation, Guidelines for selection of Controlled,				
		safety and Process Control, Block diagram	-			
	-	ontrol system - General stability criterion - Routh substitution method.	Stabin		. ner	IOII
UNIT - III		analysis of process control systems	Lect	uro I	Irev	0
		- Loop Systems, Model - based design methods -				
		ol - Controller tuning relations - Controllers with		-		
		ing - trial and error tuning - Continuous Cycling				
		on Curve Method - Guidelines for Common				
troubleshooting			001110		o p	
		eed forward controller and Cascade controller	Lect	ure I	Hrs:	10
		Control, Ratio Control - Feed forward Controller				
		oller Design based on Dynamic Models - Tuni	-			
		Feed forward - Feedback Control, Cascade	-			

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

considerations for cascade control - Time delay compensation - Block diagram of the Smith predictor - Inferential control - Selective control/Override systems.

UNIT - V Multi loop and multivariable control

Lecture Hrs:9

Process Interactions and Control Loop Interactions - Pairing of Controlled and Manipulated Variables - Bristols RGA method - Calculation of the RGA - Methods for obtaining the steady state gain matrix - Measure of Process Interactions and Pairing recommendations - Dynamic considerations - Extensions of the RGA analysis - Singular value analysis - Selection of manipulated variables and Controlled variables - Tuning of multi loop PID Control systems - Decoupling and multi variable control strategies - Strategies for Reducing Control Loop Interactions.

Textbooks:

1. Dale E. Seborg, Santa Barbara, Thomas F. Edgar, Duncan A. Mellichamp, Santa Barbara, Process Dynamics and Control, John Wiley & Sons, 4th Edition, 2016.

Reference Books:

1. Brian Roffel, Ben Betlem, Process Dynamics and Control Modeling for Control and Prediction, John Wiley & Sons Ltd., 2007.

Course Code	21D22203	ROBOTIC & CONTROL	L	Т	Р	C
Semester	II	(21D22203)	3	0	0	3
		(PE-III)	L			
Course Object	Trage Student .	will be able to				
Course Objecti		scriptions and transformations, manipulator kinematics,	vol	ooit	ion	nd
	-	d non linear control of manipulators	ver	ocn	168 2	шa
		tion, Eulers Equation to frame force equations and con	ntro	1 pr	oble	ms
for mani	-	tion, Eulers Equation to frame force equations and con		I PI	0010	ms
	-	bution, Euler dynamic formulations, Lagrangian F	orm	ula	tion	of
•		s, Formulating manipulator dynamics and Present in				
control s	cheme.					
Modelli	ng and contro	l of a single joint manipulator				
		er completion of the course Student may get knowledge				
		scriptions and transformations, manipulator kinematics,	vel	ocit	ies a	and
		d non linear control of manipulators				
	-	tion, Eulers Equation to frame force equations and con-	ntro	l pr	oble	ms
for mani	-			1		c
		bution, Euler dynamic formulations, Lagrangian Formulating manipulator dynamics and Present in				
control s	-	s, Formulating manipulator dynamics and Fresent in	luus	alla	1 10	υοι
		l of a single joint manipulator				
UNIT - I		criptions and Transformations	Le	сH	[rs: 9	9
	A	ns: positions, orientations and frames - Mappin				
		o frame - Operators: translations, rotations, tr	<u> </u>		<u> </u>	~
Transformation	arithmetic -	Transform equations - More on representation of	orie	enta	ition	. –
	of free vector	s - Computational considerations.				
UNIT - II		r Kinematics			[rs: 1	
	-	ion - Link connection description - convention for a		-		
	-	atics - Actuator space, Joint space and Cartesian space			-	
		robots - Computational considerations. Introduction -			-	
	-	subspace when n<6 - Algebraic Vs. Geometric - Alge Pieper's solution when three axes intersect - Example				
•		e standard frames - SOLVE - ing a manipulator - Re				
accuracy - Cor		0 1	2000			
UNIT - III		Velocities And Static Forces	Le	c H	[rs:]	12
Introduction -	Notation for	r time varying position and orientation - Linear an	nd R	Rota	tion	of
velocity of rigid	bodies - Mo	ore on angular velocity - Motion of the links of a Robo	t -	Ve	locit	y "
		nk – Jacobians – Singularities - Static forces in M	-			
		ain - Cartesian transformation of velocities and				
		of a rigid body - Mass distribution - Newton's Equ				
-		n –Euler dynamic formulation - Iterative Vs. Closed				
example of clos	eu torm uyna	mic equations - The structure of the Manipulator dyna	11110	eq	uali	JIIS

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(CONTROL SYSTEMS)

- Lagrangian Formulation of manipulator Dynamics - Formulating manipulator dynamics in Cartesian space - Computational considerations.

UNIT - IV	Linear Control Of Manipulators	Lec Hrs: 9
Introduction -	Feedback and closed loop control - Second order linear systems	- Control of
second order sy	stems - Control law partitioning - Trajectory - Following control	- Disturbance
rejection - Co	ontinuous Vs. Discrete time control - Modeling and control of a	single joint -
Architecture of	industrial robot controller.	
UNIT - V	Non - Linear Control And Force Control Of Manipulators	Lec Hrs: 12
Introduction -	Nonlinear and time - varying systems - multi - input, Multi -	output control
systems - The	control problem for manipulators - Practical considerations - Pro-	esent industrial
robot control sy	stems - Lyapunov stability analysis - Cartesian based control syste	ems - adaptive
control. Introdu	ction - Application of Industrial robots to assembly tasks - A f	frame work for
control in partia	ally constrained tasks - The hybrid position/force control problem -	- Force control
of a mass - spri	ng - The hybrid position / force control scheme - Present industria	al robot control
scheme.		
Textbooks:		
1. John. J.	Craig, Introduction to Robotics Mechanics & Control, Pearson/Prent	ice Hall, 3 rd
Edition,	-	
2. Mark W	. Sponge, Sethhutchinson and M. Vidyasagar Robot Modeling and C	ontrol, Wiley
student	Edition, 2006.	-
Reference Boo	ks:	
1. Tsuneo	Yoshikawa, Foundations of Robotics – Analysis and Control, MIT pre	ess, 2003
	Qu and Drasen M Dawson, Robust Tracking Control of Robot Manip	
Press, 19		·
,	ia Adaptiva Control of Machanical Manipulatora Addison Waslay 1	Deading MA

3. J. J. Craig, Adaptive Control of Mechanical Manipulators, Addison Wesley, Reading MA, 1988.

Course Code	21D22204	OPTIMAL CONTROL	L	T	P	C
Semester	II	(21D22204)	3	0	0	3
		(PE-III)				
Course Objecti	ves: Student v	vill be able to				
To mem	orize the basic	concepts related to optimal control and its position in o	opti	miz	atio	1.
To calcu	late the extrer	na and parameter optimization by the method of Lagran	nge	mul	tipli	ers
and vari	ational calculu	as and Pontragin's minimum principle.	-		-	
• To expla	in the Optima	lity Principle and Dynamic Programming.				
• To estim	nate an appro	ach for the Hamilton Jacobi-Bellman equation and L	ine	ar (Optir	nal
	Problem.	-				
Course Outcon	nes (CO): Aft	er completion of the course Student may get knowledge	e to			
Rememb	per basic conc	epts related to optimal control and its position in optim	izat	ion.		
Apply	the calculus of	of extrema and parameter optimization by the method	d of	f La	igrai	nge
11.		onal calculus and Pontragin's minimum principle.			U	U
Understa	and the Optima	ality Principle and Dynamic Programming.				
	-	ch for the Hamilton Jacobi-Bellman equation and L	ine	ar (Dotir	nal
	Problem	1			1	
UNIT - I			Le	c H	rs:	9
An overview of	optimization	problem - concepts and terms related to optimization	1 - 0	cons	traii	ned
and unconstrain	ed problems a	nd their solutions using different techniques.				
UNIT - II			Le	ec H	rs:	10
Convex set and	convex functi	on - convex optimization problem - quadratic optimiza	tion	n pro	oble	m -
Karush - Kuhn	- Tucker (Kl	KT) necessary and sufficient conditions for quadratic	pro	ogra	mm	ing
problem.						
UNIT - III			Le	e H	rs:	10
Interior point m	ethod for con	ivex optimization - linear programming - primal and	dua	l pr	oble	ms
		objective optimization problem - Concept of function	nal	- d	iffer	ent
	nance indices -	- Euler - Lagrange equation.				
UNIT - IV			Le	e H	rs:	9
Calculus of vari	ation					to
		undamental concepts, functionals of a single functio				
		nt functions - necessary conditions for optimal co				
		quadractic regulator - remarks on weighting matrices	5 - 5	solu	tion	of
Riccati equation	l .					
UNIT - V					rs:	
		tion of linear quadratic regulator - robustness studi				
		ninimum principle - time optimal control - concept	of s	yste	em a	and
signal norms - s	tatement of pr	oblem and its solution.				

TL CHARTER STATE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Textb	oooks:
1.	Jasbir S. Arora," Introduction to optimum design", Elesevier, 2005.
2.	A Ravindran, K.M. Ragsdell, and G.V. Reklaitis, "Engineering optimization : Methods and
	applications", Wiley India Edition.
3.	Donald E.Kirk," Optimal Control Theory an Introduction", Prentice - Hall Network series -
	First edition, 1970.
Refer	ence Books:
1.	D.S. Naidu, Optimal control systems, CRC Press, First edition, 2002.
2.	Arturo Locatelli, Optimal control: An Introduction, Birkhauser Verlag, 2001.
3.	S.H.Zak, Systems and Control, Indian Edition, Oxford University, 2003.
4.	Niclas Anreasson, Anton Evgrafov and Michael Patriksson, An introduction to continuous
1	

optimization, Overseas Press (India) Pvt. Ltd

Course Code	21D22205	PERFORMANCE ASSESSMENT & PLANT WIDE CONTROL	L	T	P	С
Semester	II	(21D22205) (PE-III)	3	0	0	3
Course Ol	bjectives: Stu	adent will be able to				
 Un pla Ap control An control Des mo Course On Un pla Ap control An control 	derstand the l nt wide contr ply the conce atroller, PID c alyze perfor atrollers sign overall c des of contro atcomes (CO derstand the l nt wide contr ply the conce atroller, PID c alyze perfor atrollers	 basic concepts of minimum variance, interactor matrix, feedbool, Degrees of freedom and optimal control epts to design minimum variance control, feedback controller controller and optimum controller mance assessment of various processes through difference control system through dynamic modeling, degrees of freedor llers D: After completion of the course Student may get knowledge basic concepts of minimum variance, interactor matrix, feedbool, Degrees of freedom and optimal control epts to design minimum variance control, feedback control 	ler, ent n an <u>e to</u> pack ler, ent	plar mod did con plar mod	des iffer ntroll nt w des	ide of ent ler, ide of
mo	des of contro		1			
and singul order of i	teractor Matr ar LQ contro nteractor ma	num Variance ices and Minimum Variance Control - Weighted unitary inter of - Estimation of the Unitary Interactor Matrices - Determ trices - Factorization of unitary interactor matrices - Esti closed-loop conditions - Numerical rank.	racto nina	or m tion	of	ces the
UNIT - II	Feedb	ack Controller Performance Assessment:	Le	e H	rs: 1	10
Assessmen with both	ıt - Diagonal	Multivariable performance index - Feedback Controller Interactor - effect of non- minimum phase zeros - Performan and deterministic disturbances - Performance assessme ces.	nce	asse	ssm	ent
	on - Integrate	wide Control Fundamentals: ed Processes - Material Recycle - Energy Integration. Effect ccle Systems - Steady-State Design. Dynamic Controllability.			rs: 1 ecyc	
design - St	f freedom – l eady econom in plant desi	es of Freedom Design, steady operation and control DOF - DOFs for Econ- nic process operation - Economic CVs for self-optimizing con- ign and steady operation Process Dynamics - PI(D) Contro	omi htrol	c op Eco	onor	um nic

UNIT	· V Optimum Control Design	Lec Hrs: 10							
Optim	Optimum design and operation of complete plants - Steady state economic optimum design -								
Steady	state optimum operating policy - The bottom-up pairing approach - System	atic top-down							
plant v	ide control design procedure - Simple control structure design examples.								
Textbo	oks:								
1. I	rocess Control Performance Assessment: From Theory to Implementation, A	Andrzej Ordys,							
I	Damien Uduehi, Michael A Johnson, Springer, 1 st Edition 2007.								
2. 0	control Performance Management in Industrial Automation, Mohieddine Jela	ali, Springer, 1 st							
I	dition 2013.								
3. I	lant-wide Process Control, William L. Luyben, Bjorn D. Tyreus, Michael	el L. Luyben,							
N	IcGraw Hill, 1 st Edition 1998.	-							
Refere	nce Books:								
1. I	erformance Assessment of Control Loops: Theory and Applications, Biao Hu	ang and Sirish							
I	. Shah, Springer-Verlag, 1 st Edition 1999.								
2. I	Dynamic Modeling, Predictive Control and Performance Monitoring, Biao H	Iuang, Ramesh							
H	adali, Springer, 1 st Edition 2008.	-							
3. I	lantwide Control: Recent Developments and Applications, G.P. Rangaiah, V	inayKariwala,							
V	Viley, 1 st Edition 2012.	-							
Online	Learning Resources:								
	<u>x</u>								

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

(CONTROL SYSTEMS)

Course	21D21106		L	T	P	С
Code		(21D21106)				
Semester	II	(PE-IV)	3	0	0	3
Course O	hiactivas. St	udent will be able to				
	*	tovoltaic systems and principle of wind turbines				
	-					
		bus technologies of solar PV cells	1	1		
		etails about manufacture, sizing and operating techniques in	a sol	ar	enei	gy
	ersion system					
		ne concepts of fixed speed and variable speed, wind ener	gy c	onv	versi	ion
syste						
		ge of design considerations and analyze grid integration issue				
): After completion of the course Student may get knowledge				
		fundamentals of solar cell, Solar PV Modules from solar			-	
		ne PV system configuration, Maximum Power Point trackin				
		ne concepts of fixed speed and variable speed, wind ener	gy c	onv	versi	on
•	tems.					
1.		ncept of various technologies of solar PV cells, manufactu	ire, s	siziı	ng a	ınd
-	erating techni					
	•	oncept of Effect of series and shunt resistance on efficiency,				
		ficiency, Analytical techniques, Hot spots in the module, A	Algoi	rith	ms	for
	PT					
	U 1	powered DC fan without battery, Standalone system with l				<u> </u>
	-	ered DC pump, standalone system with battery and AC/DC lo	ad a	nd o	cont	rol
1	nciples of Wi					
UNIT - I		& Wind Fundamentals			rs: 1	
		nergy sources -solar radiation - the sun and earth movem				
-		ctors - sun tracking - estimating solar radiation - measure				
		nd energy conversion devices - definition - solidity, tip spee			-	
		e ratings and specifications - aerodynamics of wind rotors -	- des	ign	of	the
wind turbin						
UNIT - II	Solar	Photovoltaic Modules	Leo	: H	rs: 1	10
Solar PV N	Modules from	n solar cells – model of a solar cell, effect of series and shu	nt res	sista	ance	on
efficiency,	effect of se	olar radiation on efficiency - series and parallel connecti	on o	of c	ells	_
mismatch	in module –	mismatch in series connection - hot spots in the module , l	oypas	ss d	liod	e –
mismatchi	ng in paralle	l diode - design and structure of PV modules - number of a	solar	cel	lls i	n a
module, w	attage of mod	dules, fabrication of PV module – PV module power output.				
UNIT - II	I PV Sy	ystem Design And Applications	Leo	e H	rs: 1	10
Introductio		V systems – standalone PV system configuration – design n	ietho	dol	ogy	of
PV system	ns – design o	of PV powered DC fan without battery, standalone system	with	i D	C lo	oad
using MPI	PT, design o	of PV powered DC pump, design of standalone system wi	th ba	atte	ry a	ınd
		zing in PV system - precise sizing of PV systems - Hybrid	PV	sys	tem	s –
grid conne	cted PV syste	ems.				

UNIT - IVWind Turbine Control Systems & Site AnalysisLec Hrs: 12							
Wind Turbine - Torque speed characteristics - Pitch angle control – stall control – power electronic							
control - Yaw control - Control strategy - Wind speed measurements - Wind speed statistics -							
Site and turbine selection. Constant voltage & constant frequency- single output system -doub							
output system with current converter & voltage source inverter - equivalent circuits - reactive							
power and harmonics - reactive power compensation - variable voltage, variable frequency - the							
self-excitation process - circuit model for the self-excited induction generator - analysis of stead							
state operation – the excitation requirement – effect of a wind generator on the network .							
UNIT - VWind Generation With Variable Speed Turbines AndLec Hrs: 10							
Applications							
Classification of schemes - operating area - induction generators - doubly fed induction generate							
- wound field synchronous generator - the permanent magnet generator - Merits and limitations							
wind energy conversion systems - application in hybrid energy systems - diesel generator ar							
photovoltaic systems – wind photovoltaic systems.							
Textbooks:							
1. "Solar Photovoltaics Fundamentals, Technologies and Applications" by Chetan sing							
solanki, PHI publications.							
2. S.N.Bhadra, D.Kastha, S.Banerjee, "wind electrical systems" Oxford University Press							
Reference Books:							
1. Solar Energy Fundamentals and applications by H.P. Garg, J. Prakash "Tata McGraw-Hil							
publishers I st edition"							
2. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.							
3. "Renewable Energy sources & Conversion Technology" by N.K.Bansal, Manfred							
Kleemann, Michael Meliss. Tata Mcgraw Hill Publishers							
Online Learning Resources:							

Course Code	21D22206	BIOMEDICAL MEASUREMENT SYSTEMS	LI	P	C
Semester	II	(21D22206)	3 (0	3
		(PE-IV)			
Course Objectiv					
		nental concepts of Bio-medical measurement system,	Its mo	odelli	ng,
		processing, Imaging and Implantation			
2. Apply the systems	e concepts &	& principles for the modelling 7 designing of various	is Bio	med	ical
•	various Biom	edical measurement systems by observing their charact	eristic	3	
		omedical measurement systems with the help of			and
	ion technique	•	mag		and
	•	er completion of the course Student may get knowledge	to		
		nental concepts of Bio-medical measurement system,		odelli	ng.
		processing, Imaging and Implantation			0,
		k principles for the modelling 7 designing of various	is Bio	med	ical
systems	Ĩ				
3. Analyze v	arious Biom	edical measurement systems by observing their charact	eristic	S	
4. Create ac	dvanced Bio	omedical measurement systems with the help of	imag	ing a	and
*	ion technique				
		Measurement System	Lec		
		measurable variables- Nature and complexities of			
	-	uipment standards- organization, classification an	-		
		d Equipment safety — Physiological effects of electric	ity, M	icro	and
macro shocks, the			• •	· T	10
		Analysis of Biomedical Systems	Lec		
		Biomedical instrumentation – Difference in modellin			
		stems — Model based analysis of Action Potentials - ood glucose regulation and neuromuscular function	cardia	acout	put
		Signals-Its Processing	Lec	Ince	10
		iological signals – Signal transactions – Noise and arti			
		lectrodes- types and characteristics - Origin, recording			
U	-	als Electrocardiography(ECG) - with typical examples			
) - Electromyography (EMG)– Processing and tran			
-	• • •	et transforms in signal compression and denoising.			01
	Medical Ima		Lec	Irs:	9
		techniques and modalities -Instrumentation and a			
	00	mputed tomography - Magnetic Resonance Imaging a			
Algorithms and	applications	of artificial intelligence in medical image analysis	and di	agno	sis-
Telemedicine and	l its applicati	ons in tele monitoring.			
UNIT - V	Implantable	Biomedical Devices	Lec	Hrs:	10
Implantable med	lical devices	: artificial valves, vascular grafts and artificial jo	ints-	coch	lear
-	-	ers – Microfabriation technologies for biomedical 1	Micro	syste	ms-
microsensors for a	clinical appli	cations – biomedical microfluid systems.			

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Textbooks:

- 1. John G.Webster, "Bioinstrumentation", John Wiley & Sons, 3rd Edition 2008.
- 2. Shayne C.Gad, "Safety Evaluation of Medical Devices", CRC Press, 2nd Edition, 2002.

Reference Books:

- 1. Michael C.K.Khoo, "Physiological Control Systems: Analysis, Simulation and Estimation, IEEE Press, 1st Edition 2000.
- John G.Webster, "Medical Instrumentation Application and Design", John Wiley & Sons, 3rd Edition, 2009.
- 3. L.Cromwell, Fred J.Weibell and Erich A.Pfeiffer, "Biomedical Instrumentation and Measurements", Prentice Hall of India, Digitized 2010.
- 4. P.Strong, "Biophysical Measurements", Tektronix, Digitized 2007.
- 5. K.Najarian and R. Splinter, "Biomedical Signal and Image Processing", CRC Press, 1st Edition, 2012.
- 6. John L.Semmlow, "Biosignal and Biomedical Image Processing", CRC Press, 1st Edition, 2004.
- 7. Joseph J.Carr and John M.Brown, "Introduction to Biomedical Equipment Technology", Prentice Hall, 4th Edition, 2004.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D22207	ROBUST CONTROL	L	Т	Р	С
Semester	II	(21D22207)	3	0	0	3
		(PE-IV)				L
Course Objecti	ives: Student v	vill be able to				
To provi	ide the student	s with the principles and tools of robust control theory:				
nominal	stability, nom	inal performance, robustness, uncertainty, robust				
stability	, loop shaping,	, H ∞ control, robust performance.				
• To famil	liarize the com	putational tools for control systems available in Robust	t			
Control	Toolbox (MA	TLAB).				
• To focus	s on an introdu	ction to the fundamentals of robustness, uncertainty				
	gn method of I					
Course Outcon	nes (CO): Afte	er completion of the course Student may get knowledge	e to			
		ility and nominal performance.				
• Explain	robustness and	d uncertainty of systems.				
-		entals of Hontrol, and based on this knowledge	e. d	lesig	m	
		control systems.	-, -	2	5	
	and robust per	•				
UNIT - I		Classical Feedback Control	Le	сH	rs: 9)
		control: The control problem - Transfer functions - I				
		- Feedback control - Closed loop stability - Evaluating		<u> </u>		
-		gn - Loop shaping - Shaping closed loop transfer function	-			- F
UNIT - II		n to Multivariable Control		c H	rs: 1	10
) systems - Multivariable frequency response analysi				
		ction to robustness - General control problem formulation		001		01
		m Theory: Internal stability of feedback systems		Stab	oilizi	ing
		Input - Output Controllability - perfect control and pla				
Constraints on S						
UNIT - III		on Performance	Le	c H	rs: 1	0
		ns imposed by RHP - zeros - Limitations imposed by				
-		posed by disturbances and commands - Limitations im				
		used by uncertainty.	1			-
		nts on S and T - Functional Controllability - Limitatio	ns i	mpo	sed	bv
		mposed by RHP - poles - Performance requirement				
		posed by input constraints - Limitations imposed by unc				2
UNIT - IV		and Robustness For SISO Systems		c H)
Introduction to	•	Representing uncertainty - parametric uncertainty -				
		lomain - SISO robust stability - SISO robust performan				
of parametric u		, 1			1	
1	5	ility, Performance Analysis and Control System	Le	c H	rs: 1	0
	Design	<i>y</i>				-
		vith uncertainty - Representing uncertainty - Obtaining	g P,	N a	nd N	Λ-
		and performance - Robust stability of the $M\Delta$ - stru				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

complex unstructured uncertainty - RS with structured uncertainty: Motivation, The structured singular value and RS - Properties and computation of μ - Robust performance - Application: RP with input uncertainty - μ - synthesis and DK - iteration - Further remarks on μ - Trade - offs in MIMO feedback design - LQG control - H_2 and H_{∞} control, H_{∞} loop - shaping design.

Textbooks:

- Sigurd Skogestad and Ian Postlethwaite, Multivariable Feedback Control Analysis and Design - John Wiley & Sons Ltd., 2nd Edition, 2005.
- 2. D. W. Gu, P. Hr. Petkov and M. M. Konstantinov "Robust Control Design with MATLAB" Spring Verlag London Ltd., 2005.

3. K. Zhou and J. C. Doyle. Essentials of Robust Control. Prentice Hall; ISBN: 0-13-525833-2.

Reference Books:

- 1. Kennin Zhou, "Robust and Optimal Control", Prentice Hall, Engle wood Cliffs, New Jersy.
- 2. Robust Control Toolbox User's Guide R2017a. MathWorks.

Semester II (21D22208) 0 0 0 4 2 Course Objectives: Student will be able to 1. Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller 2. Apply PID controllers to various control systems for finding open lop and closed la responses 3. Analyze time domain specifications for different processes using above mentio controllers Course Outcomes (CO): After completion of the course Student may get knowledge to 1. Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller 2. 2. Apply PID controllers to various control systems for finding open lop and closed la responses 3. 3. Analyze time domain specifications for different processes using above mentio controllers 4. 2. Apply PID controllers to various control systems for finding open lop and closed la responses 3. 3. Analyze time domain specifications for different processes using above mentio controllers 4. LIST OF EXPERIMENTS: 1. 1. 1. 1. 1. 1. 1. Study of Temperature control system: a) Open loop response b) Closed loop resp	Course Code	21D22208	PRO	CESS CONT	ROL LAB	L	Τ	P	С	
 Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed log responses Analyze time domain specifications for different processes using above mentio controllers Course Outcomes (CO): After completion of the course Student may get knowledge to Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed log responses Analyze time domain specifications for different processes using above mentio controllers Analyze time domain specifications for different processes using above mentio controllers IST OF EXPERIMENTS: Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller Study of airflow control system: a) Open loop response with and without PID controller Study of ratio control scheme for air flow process b) Closed loop response with and without PID controller Study of acacade control scheme for temperature process fudy of temperature control systems: a) Open loop response b) Closed loop response with and without PID controller Study of acacade control scheme for temperature process Study of temperature control systems: a) Open loop response b) Closed loop response b) Closed loop response with and without PID controller	Semester	II		(21D2220	8)	0	0	4	2	
 Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed log responses Analyze time domain specifications for different processes using above mentio controllers Course Outcomes (CO): After completion of the course Student may get knowledge to Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed log responses Analyze time domain specifications for different processes using above mentio controllers Analyze time domain specifications for different processes using above mentio controllers IST OF EXPERIMENTS: Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller Study of airflow control system: a) Open loop response with and without PID controller Study of ratio control scheme for air flow process b) Closed loop response with and without PID controller Study of acacade control scheme for temperature process Study of temperature control systems: a) Open loop response b) Closed loop response with and without PID controller Study of acacade control scheme for temperature process Study of temperature control systems: a) Open loop response b) Closed loop response b) Closed loop response with and without PID controller										
 ratio control, feed forward control and cascade controller 2. Apply PID controllers to various control systems for finding open lop and closed la responses 3. Analyze time domain specifications for different processes using above mentiod controllers Course Outcomes (CO): After completion of the course Student may get knowledge to 1. Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller 2. Apply PID controllers to various control systems for finding open lop and closed la responses 3. Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: 1) Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller 2) Study of pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control system: a) Open loop response b) Closed loop response closed loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems: a) Open loop response b) Closed loop response with and without PID controller 4) Study of temperature control systems: a) Open loop response b) Closed loop response with and without PID controller 5) Study of temperature control systems: a) Open loop response b) Closed loop response with and without PID controller 	*	*								
 Apply PID controllers to various control systems for finding open lop and closed la responses Analyze time domain specifications for different processes using above mentio controllers Course Outcomes (CO): After completion of the course Student may get knowledge to Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed la responses Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: Study of Temperature control system: Open loop response Closed loop response with and without PID controller Study of ariflow control system:						aboi	it PI	D coi	ntroller,	
 responses 3. Analyze time domain specifications for different processes using above mentio controllers Course Outcomes (CO): After completion of the course Student may get knowledge to Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed la responses Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: Study of Temperature control system: Open loop response Closed loop response with and without PID controller Study of airflow control system: Open loop response Closed loop response with and without PID controller Study of airflow control system: Open loop response Closed loop response Study of tatio control scheme for temperature process Study of liquid level control systems: Open loop response Closed loop response Closed loop response with and without PID controller Study of liquid flow control systems: Open loop response Closed loop response with and without PID controller 		,				n lon	and	clos	ed loon	
 Analyze time domain specifications for different processes using above mentio controllers Course Outcomes (CO): After completion of the course Student may get knowledge to Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed la responses Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: Study of Temperature control system: Open loop response Closed loop response Closed loop response Closed loop response Study of airflow control system:				ontrol system	is for finding ope	n iop	anu	C105	cu loop	
 controllers Course Outcomes (CO): After completion of the course Student may get knowledge to 1. Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller 2. Apply PID controllers to various control systems for finding open lop and closed la responses 3. Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: 1) Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller 2) Study of pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of temperature control systems: a) Open loop response b) Closed loop response with and without feed forward controller 4) Study of temperature control systems: a) Open loop response b) Closed loop response with and without PID controller 	-		n specificatio	ons for differ	ent processes us	ing a	bove	e me	ntioned	
 Understand temperature pressure, flow control processes and study about PID control ratio control, feed forward control and cascade controller Apply PID controllers to various control systems for finding open lop and closed la responses Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: Study of Temperature control system:	•				r	0				
 ratio control, feed forward control and cascade controller 2. Apply PID controllers to various control systems for finding open lop and closed log responses 3. Analyze time domain specifications for different processes using above mention controllers LIST OF EXPERIMENTS: 1) Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller 2) Study of airflow control system: a) Open loop response b) Closed loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response closed loop response closed loop response d) Closed loop response closed loop response closed loop response closed loop response d) Open loop response d) Open loop response d) Open loop response d) Open loop response with and without PID controller 4) Study of tatio control scheme for air flow process for the perature control systems: a) Open loop response b) Closed loop response b) Closed loop response b) Closed loop response closed loop response d) Open loop response with and without PID controller 	Course Outcom	nes (CO): Aft	er completion	n of the course	e Student may get	knov	vledg	ge to		
 Apply PID controllers to various control systems for finding open lop and closed log responses Analyze time domain specifications for different processes using above mention controllers LIST OF EXPERIMENTS: Study of Temperature control system:		-	-	-		abou	it PI	D coi	ntroller,	
responses 3. Analyze time domain specifications for different processes using above mentio controllers LIST OF EXPERIMENTS: 1) Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller Study of ratio control system: a) Open loop response b) Closed loop response with and without PID controller Study of ratio control scheme for air flow process Study of temperature control systems with and without feed forward controller Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller Study of liquid flow control systems: a) Open loop response with and without PID controller Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 		,								
 3. Analyze time domain specifications for different processes using above mention controllers LIST OF EXPERIMENTS: Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller 2) Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response b) Closed loop response with and without PID controller 3) Study of ratio control scheme for air flow process 5) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 			to various c	control system	is for finding ope	n lop	and	clos	ed loop	
controllers LIST OF EXPERIMENTS: 1) Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller 2) Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 	-		specificatio	one for differ	ant processes us	ina a	boy	s mo	ntioned	
LIST OF EXPERIMENTS: 1) Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller 2) Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 3) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems: a) Open loop response b) Closed loop response b) Closed loop response b) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response	•		specificatio	is for unrer	ent processes us	ing c	iUUV		nuoneu	
 Study of Temperature control system: a) Open loop response b) Closed loop response with and without PID controller Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller Study of airflow control system: a) Open loop response with and without PID controller Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller Study of ratio control scheme for air flow process Study of cascade control scheme for temperature process Study of temperature control systems: a) Open loop response b) Closed loop response b) Closed loop response b) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller Study of liquid flow control systems: a) Open loop response with and without PID controller b) Closed loop response with and without PID controller b) Closed loop response with and without PID controller 										
 b) Closed loop response with and without PID controller 2) Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems: a) Open loop response b) Closed loop response with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 			rol system:							
 2) Study of Pressure Control system: a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems: a) Open loop response b) Closed loop response with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 	a) Open l	loop response	-							
 a) Open loop response b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller 	b) Closed	d loop respons	se with and w	vithout PID co	ontroller					
 b) Closed loop response with and without PID controller 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller b) Closed loop response with and without PID controller 	2) Study of Press	sure Control s	system:							
 3) Study of airflow control system: a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller b) Closed loop response with and without PID controller 	a) Open l	loop response	-							
 a) Open loop response b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller b) Closed loop response with and without PID controller 	b) Closed	d loop respons	se with and w	vithout PID co	ontroller					
 b) Closed loop response with and without PID controller 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller b) Closed loop response closed loop response closed loop response with and without PID controller 	3) Study of airflo	ow control sy:	stem:							
 4) Study of ratio control scheme for air flow process 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response with and without PID controller b) Closed loop response with and without PID controller 	a) Open l	loop response								
 5) Study of cascade control scheme for temperature process 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response b) Closed loop response with and without PID controller 	b) Closed	d loop respons	se with and w	vithout PID co	ontroller					
 6) Study of temperature control systems with and without feed forward controller 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response b) Closed loop response with and without PID controller 	4) Study of ratio	control scher	ne for air flov	w process						
 7) Study of liquid level control systems: a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 	5) Study of casca	ade control sc	heme for tem	perature proc	ess					
 a) Open loop response b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 	6) Study of temp	perature contro	ol systems wi	th and without	it feed forward co	ntroll	er			
 b) Closed loop response with and without PID controller 8) Study of liquid flow control systems: a) Open loop response b) Closed loop response with and without PID controller 	7) Study of liqui	id level contro	ol systems:							
8) Study of liquid flow control systems:a) Open loop responseb) Closed loop response with and without PID controller	a) Open l	loop response								
a) Open loop responseb) Closed loop response with and without PID controller	b) Closed	d loop respons	se with and w	vithout PID co	ontroller					
b) Closed loop response with and without PID controller	8) Study of liqui	id flow contro	l systems:							
	a) Open l	loop response								
9) Study of ratio control scheme for liquid flow process	b) Closed	d loop respons	se with and w	vithout PID co	ontroller					
	9) Study of ratio	control scher	ne for liquid	flow process						
10) Study of cascade control scheme for liquid level process	•		-	-	cess					
11) Study of liquid level control system with and without feed forward controller	· ·					ntroll	er			

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D22209	ADVANCED CONTROL SYSTEMS SIMULATION LAB	L	Τ	Р	C
Semester	II	(21D22209)	0	0	4	2
Semester			U	U	-	
Course C	bjectives: Stu	ident will be able to				
		onlinear systems & characteristics, Lyapunov function	on,	linea	rizat	ion
		nic modelling and Riccatti equation				
		v function, Popov's stability and Isoclane methods for di y using Lyapunov function, Popov's stability and Isocla				
		imal control problem using Riccatti equation	ane i	neur	ous	anu
		edictor, LQG and LQR controllers				
Course C	utcomes (CO): After completion of the course Student may get know				
		onlinear systems & characteristics, Lyapunov function	on,	linea	rizat	ior
	1	nic modelling and Riccatti equation v function, Popov's stability and Isoclane methods for di	ffor	ont o	votar	ne
		y using Lyapunov function, Popov's stability and Isocla			·	
		imal control problem using Riccatti equation				
		edictor, LQG and LQR controllers				
	xperiments:					
I. Id	entification of	Non-Linear system characteristics				
2. N	onlinear syster	n stability analysis using Isoclines				
3. L	apunov functi	ion generation and stability test				
4. Po	pov's stability	y criterion				
5. Li	nearization of	Non-linear models				
6. D	namic model	ling of Continuous Stirred Tank Reactor				
7. PI	D controller tu	uning for SISO systems				
8. Pl	D controller tu	uning for MIMO systems				
9. D	esign of Smith	predictor				
10. D	esign of LQG	controller				
11. D	esign of Linear	r Quadratic Regulator				
12. Se	lving Steady s	state Riccatti equation				
13. So	lving an opti	mal control problem using Riccatti equation				

Course Code	21D22301	INDUSTRIAL DRIVES AND CONTROL	L T P C
Semester	III	(PE-V)	3 0 0 3
Course Object	ives: Student	will be able to	
		beed torque equations of electrical drives, classifi	cation of load
		odel of DC motor drive, principle of vector control a	
	cial machines of		·
2. Apply v	voltage, freque	ncy and vector controller to control electric drives	
3. Analyze	DC motro,	Induction motor, Synchronous motor and Specia	l motor drives
perform	ance character	istics	
4. Develop	state models	for half, semi, full and dual converter fed drives	
Course Outcon	nes (CO): Aft	er completion of the course Student may get knowledg	ge to
1. Understa	and torque, sp	beed torque equations of electrical drives, classifi	cation of load
torque,	state space m	odel of DC motor drive, principle of vector control a	nd synchronous
and spec	cial machines	drives	
2. Apply v	voltage, freque	ency and vector controller to control electric drives	
3. Analyze	DC motro,	Induction motor, Synchronous motor and Specia	l motor drives
perform	ance character	ristics	
4. Develop	state models	for half, semi, full and dual converter fed drives	-
	DC MOTOR	DRIVES al torque equations, Speed torque conventions and	Lec Hrs: 10
model of DC n	notor drive, Sand Dual conv	bad torques, Nature and classification of load torque ingle-phase and Three-phase drives: Half converter, s erter fed drives- Two quadrant and four quadrant cho of DC drives	Semi converter,
	-	MOTOR DRIVES	Lec Hrs: 10
		Stator Control: Stator voltage control, Rotor v	
		nd frequency control, Current control, Voltage, curren	
		ontrol: Conventional methods, Static rotor resistance	
		r drive, Static Scherbius drive.	Ĩ
UNIT - III V	ECTOR CO	NTROL OF INDUCTION MOTOR DRIVES	Lec Hrs: 10
Principle of v	ector control	- Direct vector control - Flux vector estimation - 1	Indirect vector
		ne-side PWM rectifier - Stator flux oriented vector co	
control of curr	ent fed inverte	r drive.	
UNIT - IV S	YNCHRONC	US DRIVES	Lec Hrs: 9
Synchronous M	lotor Drives: C	pen loop volts/hertz control, Self control model, absol	ute position
encoder, vector	control and sy	vnchronous reluctance machine drives	
UNIT - V S	PECIAL DRI	IVES	Lec Hrs:9
Permanent mag	net ac motor	drives, Brushless dc motor drives, Sensorless con	ntrol - Stepper
motor and Swit	tched reluctant	ce motor drives.	
Textbooks:			
		A, "Electric Drives", CRC Press LLC, New York, 3 rd	
2. Gopal K	Dubey, "Fund	amentals of Electric Drives", Narosa Publishing House	e, New Delhi,

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

2016.

3. Bimal K. Bose "Modern Power Electronics and AC Drives" PHI 1st Edition 2002

Reference Books:

- 1. Muhammad H Rashid, "Power Electronics Handbook", Butterworth-Heinemann-Elsevier, 2014
- 2. Krishnan R, "Electric Motor Drives: Modelling, Analysis and Control", Prentice Hall of India, New Delhi, 2009.
- 3. Bimal K Bose, "Power Electronics and Variable Frequency Drives Technology and Application", Standard Publishers Distributers, 2000.

Course Code	21D22302	DATA-DRIVEN CONTROL	L T P C
Semester	III	(PE-V)	3 0 0 3
	I		
Course Objecti	ves: Student v	will be able to	
1. Understa	and the conce	ept of Iterative Feedback Tuning, Non-iterative dire	ect data-driven
	f multivariable		
2. Apply the	he concept c	of non-iterative Correlation- based Tuning, Willems	' Fundamental
Lemma.			
3. Analyze	the input-outp	put data	
4. Develop	iterative learn	ning control	
5. Design c	ontrol for para	ameter varying systems	
Course Outcom	nes (CO): Aft	er completion of the course Student may get knowledg	e to
tuning of and piec 2. Apply th	f multivariable e-wise affine he concept o	ept of Iterative Feedback Tuning, Non-iterative dire e controllers, Direct data-driven control of linear par systems.Model-free predictive control for hierarchical of non-iterative Correlation- based Tuning, Willems sed Adaptive Control	ameter-varying schemes.
	the input-outp		
4. Develop	iterative learn	ning control, virtual reference feedback control	
		ameter varying systems	
UNIT - I PI	reface to Data	a Driven Control	Lec Hrs: 9
Limitations of and control Taxe		control when the model is uncertain -Joint design o	f identification
UNIT - II It	erative Feedl	back Tuning	Lec Hrs: 10
		Virtual Reference Feedback Tuning, non-iterative Co	orrelation- based
		ble, integrating and unstable processes. Selection of re-	
and their impact	. Advantages	and limitations direct data-driven control over tradition	nal model-based
design.			
UNIT - III N	on Iterative f	eedback Tuning	Lec Hrs: 10
Non-iterative di	rect data-driv	ven tuning of multivariable controllers-PID controller	design directly
based on data. A	dvantages and	d limitations.	
UNIT - IV No	nparametric	Control	Lec Hrs: 9
		and regularization. Optimal experiment design. The re-	
-	0	on of control specifications	
UNIT - V Di	rect Data Dri	iven Control	Lec Hrs: 10
		f linear parameter-varying and piece-wise affine s	
		ierarchical schemes. Willems' Fundamental Lemma.	
Adaptive Control	ol: An Extrer	num Seeking Approach. Model free adaptive control	for SISO and
MIMO nonlinea	r systems.		
Textbooks:			
	eng Hou, Sha ss, 1 st Edition	angtaiJin Model Free Adaptive Control: Theory and 2014.	Applications, ,

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

2. Learning-based Adaptive Control: An Extremum Seeking Approach, Mouhacine Benosman Butterworth-Heinemann, 1st 2016.

Reference Books:

- 1. S. Formentin, S. M. Savaresi, L. Del Noniterative direct data-driven tuning of multivariable controllers: theory and application, Re. IET control theory and applications, 2012; 6(9): 1250-1257.
- K. van Heusden, A. Karimi, T. Söderström. On identification methods for direct datadriven controller tuning, International Journal of Adaptive Control and Signal Processing, 2011; 25(5): 448–465
- 3. M. Gevers, Identification for control: From the early achievements to the revival of experiment design, European journal of control, 2005; 11(4): 335-352.
- 4. M.C. Campi, A. Lecchini, S.M. Savaresi. Automatica "Virtual reference feedback tuning: a direct method for the design of feedback controllers" 1st Edition 2002;

Course Code	21D22303	GUIDANCE STRATEGIES FOR AUTONOMOUS VEHICLES	L	T	Р	C
Semester	III	(PE-V)	3	0	0	3
Semester			5	U	U	5
Course Ol	piectives: Stu	ident will be able to				
	•	fundamental concepts of missile guidance and unmanned aircr	aft s	vst	ems	
		prative control, feedback control procedures for missile guidance		•		
		guidance system with the help of cooperative control &UAS				
	state space of					
	1	t control strategies(cooperative control, feedback control,	clas	sic	al a	ind
	-	for missile guidance and UAS				
): After completion of the course Student may get knowledge	to			
		fundamental concepts of missile guidance and unmanned aircr		yste	ems	
		rative control, feedback control procedures for missile guidan				
		guidance system with the help of cooperative control &UAS				
	l state space	• • • •				
		t control strategies(cooperative control, feedback control,	clas	sic	al a	ınd
	0	for missile guidance and UAS				
UNIT - I	Over	view of Missile Guidance	Lec	: H	rs: 9)
Basics of r	nissile guida	nce - Introduction to missiles, missile guidance laws (pursuit,	line	e-of	- si	ght,
proportion	al navigation), capturability analysis form aneuvering and non-maneuvering	g tar	get	s	_
UNIT - II	Coope	rative Control	Lec	H	rs: 1	10
Application	ns of guidan	ce strategies to cooperative control - multi-vehicle path plan	ning	g, c	ollis	sion
avoidance,	rendezvous/	docking problems.				
UNIT - III			Lec			
		nanned aircraft systems (UAS). UAS design parameters, UAS	S co	mp	one	nts:
		, Overview of UAS Guidance & Navigation.				
UNIT - IV	, v		Lec			
		of motion, Mechanics of flight (performance requirements, for				
dynamics),	, UAS feed	back control system characteristics, UAS control system	stał	oilit	y a	ınd
performance						
UNIT - V		0	Lec			10
		thods for UAS Flight Control Design, Classical and state space	con	ntro	1	
design for						
Textbooks						
		and pursuit: Kinematics, Dynamics and Control, N.A.Shney	ydor	:: H	arw	ood
	lishing, 1 st Ec					
	nation Contro dition 2018.	ol of Multiple Autonomous Vehicle Systems, Hugh H.T. Liu,	Bo Z	Zhu	,Wi	ley,
		and Simulation, Brian L. Stevens, Frank L. Lewis, Eric N.	Iohr	ופחי	n Т1	hird
		st Edition, 2016.	50111	1301	.1, 11	mu
Reference		Lutton, 2010.				
		uided Vehicles: Methods and Models for Optimal Path Pla	nnir	וס	Нат	ned
1. 11		server conteres, methods and models for optimal radi ria		•6,	1 Ial	

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Fazlollahtabar, Mohammad Saidi-Mehrabad, Springer, 1st Edition 2015.

- Autonomous Control Systems and Vehicles: Intelligent Unmanned Systems, Kenzo Nonami, Muljowidodo Kartidjo, Kwang-Joon Yoon, Agus Budiyono, Springer, 1st Edition 2013.
- 3. Multilayer Control of Networked Cyber-Physical Systems Application to Monitoring, Autonomous and Robot Systems, Sabato Manfredi, Springer, 1st Edition 2017.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (CONTROL SYSTEMS)

Course Code	21D20301	WASTE TO ENERGY	L	Т	Р	C
Semester	III	(Open Elective)	3	0	0	3
			ł		•	
Course Ol	ojectives: To	make the student				
• To uno	derstand the co	oncept of waste to energy.				
• To ana	alyze technica	l and management principles for production of	of energ	y from	n waste	e .
• To app	oly the best av	ailable technologies for waste to energy.				
• To de	velop the pr	ocess for thermal conversion, bio-chemica	l and y	waste	to en	ergy
conver						
		:Student will be able to				
		oncept of waste to energy.				
		l and management principles for production of	of energ	y fron	n wast	e.
		vailable technologies for waste to energy.				
		ocess for thermal conversion, bio-chemica	l and v	vaste	to en	ergy
	version.		T	TT	0	
$\frac{\mathbf{UNIT} - \mathbf{I}}{\mathbf{C}\mathbf{I} + \mathbf{C}\mathbf{C}\mathbf{I}}$		tion to Energy from Waste		ure H		1117
		as fuel – Agro based – Forest residue – In	dustrial	waste	e- MS	• W –
UNIT - II		nerators – Gasifiers – Digestors.	Last	ure H		
						tion
• •	• •	v fast – Manufacture of charcoal – Methods – c oils and gases – Yields and applications.	- i leius	and a	ррпса	uon-
UNIT - III		Gasification	Lect	ure H	rc• 10	
		ystem – Downdraft and updraft gasifiers – I				
		d operation – Gasifier burner arrangemen				
		nent and electrical power – Equilibrium and				
gasifier op				• • • • • • • •		
UNIT - IV		Combustion	Lect	ure H	rs: 10	
Biomass st	oves – Impro	ved challahs - Types, Some exotic designs -	Fixed	bed co	ombus	tors-
	-	combustors - Fluidized bed combustors -				
and operation	ion-Operation	n of all the above biomass combustors.				
UNIT - V	Introduct	ion to Biogas	Lect	ure H	rs: 10	
		lorific value and composition)-Biogas plant				
		esign and constructional features-Biomas	s reso	urces	and	their
	on–Biomass	conversion processes-Thermochemical	conver			Direc
	-	sification– Pyrolysis and liquefaction– Bioc				
		of biogas Plants-Applications-Alcohol pro				
	production-U	rban waste to energy conversion - Biomas	ss energ	gy pro	gramn	ne ir
India.						
Textbooks			1 St 🗔 1	· · · ·	000	
		al Energy, Desai, Ashok V.,WileyEasternLtd				7.1
	-	gy– A Practical Hand Book- Khandelwal, K. C	\sim . and N	iandi,	۵.۵.,۱	/01.

I & II, Tata McGraw Hill Publishing Co.Ltd., 1st Edition,1983.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (CONTROL SYSTEMS)

Reference Books:

- 1. Food, Feed and Fuel from Biomass, Challal, D.S., IBH Publishing Co. Pvt. Ltd., 1st Edition, 1991.
- 2. Biomass Conversion and Technology, C.Y. WereKo-Brobby and E.B.Hagan, John Wiley & Sons, 1st Edition, 1996.

- 1. https://www.digimat.in/nptel/courses/video/103107125/L01.html
- 2. https://nptel.ac.in/courses/103/107/103107125/