Approved Syllabus for

Master of Technology

in

ELECTRICAL POWER SYSTEMS

in

BOARD OF STUDIES MEETING HELD

on

25th & 26th April, 2015

DEPARTMENT OF ELECTRICAL ENGINEERING

COLLEGE OF ENGINEERING (AUTONOMOUS), ANANTHAPURAMU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

INFORMATION ON THE COURSE

1.0 Details about the Course.

1.1 Name of the Course (s)

Name of	Name of	Intake (Full/Part time)	Year of	Duration	Name of Degree &
Degree/	Specialization		Starting	(Total)	Branch eligible for
Diploma	_		_		admission
M. Tech.	Electrical Power	25+7 Sponsored	2009-10	2 Years	B. Tech/B. E in
	Systems	(Full Time)			EEE
		32 (Part Time)			

1.2 Course Structure and Scheme of Evaluation (Semester-wise)

Name of the Subject		Hrs	/Wee	k
	L	Т	Р	С
I-SEMESTER				
1. 15D21101 Advanced Power System Protection	4	-	-	4
2. 15D21102 Power System Stability & Control	4	-	-	4
3. 15D21103 Power System Wide Area Monitoring	4	-	-	4
& Control				
4. 15D21104 Power Quality Issues & Improvement	4	-	-	4
5. Elective-I	4	-	-	4
6. Elective-II	4	-	-	4
7.15D21107 Machines & Power Systems Lab	-	-	4	2
Electives:				
1.15D24101 System Reliability Concepts				
2. 15D21105 FACTS & HVDC Transmission				
Systems				
3.15D22101 Modern Control Theory				
4. 15D21106 Distributed Generation & Micro grid				
II-SEMESTER				
1. 15D21201 Power System Reliability	4	-	-	4
2. 15D21202 Smart Grid Design & Analysis	4	-	-	4
3. 15D21203 Restructured Power Systems	4	-	-	4
4. 15D22203 Intelligent Algorithms	4	-	-	4
5. Elective-III	4	-	-	4
6. Elective-IV	4	-	-	4
7. 15D54201 Research Methodology (Audit Course)	2	-	-	0
8. 15D21209 Power System Simulation Lab	-	-	4	2
Electives				
1. 15D21205 Reactive Power Compensation &				
Management				
2. 15D21206 EHVAC Transmission Systems				
3. 15D21207 Solar Energy Conversion Systems				
4. 15D21208 Wind Energy Conversion Systems				
III SEMESTER				
1. 15D21301 Seminar - I	-	-	4	2
IV SEMESTER				
1. 15D21401 Seminar – II	-	-	4	2
III & IV SEMESTER				
1. 15D21302 Project Work	-	-	-	44
		1		
			1	

15D21101 ADVANCED POWER SYSTEM PROTECTION

UNIT-I: STATIC RELAYS

Advantages of static relays - Basic construction of static relays – Level detectors – Replica impedance-mixing circuits-general equation for two input phase and amplitude comparators – Duality between amplitude and phase comparator.

UNIT-II: COMPARATORS

Amplitude: Circulating current type and opposed voltage type rectifier bridge comparators – Direct and Instantaneous comparators. Phase Comparators: Coincidence circuit type block spike phase comparator, techniques to measure the period of coincidence – Integrating type – Rectifier and vector product type phase comparators. Multi –Input Comparators: Conic section characteristics – Three input amplitude comparator – Hybrid comparator – Switched distance schemes – Polyphase distance schemes-Phase fault scheme – Three phase scheme – combined and ground fault scheme.

UNIT-III: STATIC OVER CURRENT, DIFFERENTIAL AND DISTANCE RELAYS

Introduction-Instantaneous over current relay – Time over current relays - Basic principles-Definite time and Inverse definite time over current relays. Analysis of static differential relays – static relay schemes – Dual bias transformer differential protection – Harmonic restraint relay. Static Relays: Static impedance – reactance - MHO and angle impedance relay sampling comparator – realization of reactance and MHO relay using a sampling comparator. **UNIT-IV: POWER SWINGS**

Effect of power swings on the performance of Distance relays - Power swing analysis – Principle of out of step tripping and blocking relays – Effect of line length and source impedance on distance relays.

UNIT-V: NUMERICAL RELAYS

Over current relays – Impedance relays – Directional relay – Reactance relay (Block diagram and flow chart approach only). Generalized mathematical expression for distance relays - Measurement of resistance and reactance – MHO and offset MHO relays – Realization of MHO characteristics – Realization of Offset MHO characteristics (Block diagram and flow chart approach only) Basic principle of Digital computer relaying.

TEXT BOOKS:

- 1. T.S.Madhava Rao, Power system Protection static relay, Tata McGraw Hill, 2nd Edition, 1989. **REFERENCE BOOKS**:
- 1. Badri Ram and D.N.Vishwakarma, Power system Protection and Switchgear, Tata McGraw Hill, First Edition -1995.
- 2. S H Horowitz and A G Phadke, Power System Relaying, 3rd edition, John Wiley & Sons, 2008.

15D21102 POWER SYSTEM STABILITY & CONTROL

UNIT-I: THE ELEMENTARY MATHEMATICAL MODEL AND SYSTEM RESPONSE TO SMALL DISTURBANCES

A Classical model of one machine connected to an infinite bus – Classical model of multimachine system – Problems – Effect of the excitation system on Transient stability. The unregulated synchronous Machine – Effect of small changes of speed – Modes of oscillation of an unregulated multimachine system – Regulated synchronous machine – Voltage regulator with one time lag – Governor with one time lag – Problems.

UNIT-II: DYNAMIC STABILITY

Concept of Dynamic stability – State space model of one machine system connected to infinite bus – Effect of excitation on Dynamic stability – Examination of dynamic stability by Routh's criterion.

UNIT-III: POWER SYSTEM STABILIZERS

Introduction to supplementary stabilizing signals - Block diagram of the linear system - Approximate model of the complete exciter – Generator system – Lead compensation – Stability aspect using Eigen value approach.

UNIT-IV: EXCITATION SYSTEMS

Excitation system response – Non-continuously regulated systems – Continuously regulated systems – Excitation system compensation – State space description of the excitation system - Simplified linear model – Effect of excitation on generator power limits. Type –2 system: Rotating rectifier system, Type-3 system: Static with terminal potential and current supplies - Type –4 system: Non – continuous acting - Block diagram representation – State space modeling equations of these types.

UNIT-V: STABILITY ANALYSIS

Review of Lyapunov's stability theorems of non-liner systems using energy concept – Method based on first concept – Method based on first integrals – Quadratic forms – Variable gradient method – Zubov's method – Popov's method, Lyapunov function for single machine connected to infinite bus. What is voltage stability – Factors affecting voltage instability and collapse – Comparison of Angle and voltage stability – Analysis of voltage instability and collapse – Integrated analysis of voltage and Angle stability – Control of voltage instability

TEXT BOOKS:

1. P.M.Anderson, A.A.Fouad, "Power System Control and Stability", IOWA State University Press, Galgotia Publications, Vol-I, 1st Edition.

REFERENCE BOOKS:

2. M.A.Pai, Power System Stability-Analysis by the direct method of Lyapunov, North Holland Publishing Company, New York, 1981.

15D21103 POWER SYSTEM WIDE AREA MONITORING AND CONTROL

UNIT - I : COMPUTER CONTROL OF POWER SYSTEMS

Need for real - time and computer control of power systems, operating states of a power system - 3 state & 5 states operation of power system - Supervisory Control and Data Acquisition system (SCADA), implementation considerations, energy control centers. WAMS (Wide Area Measurement system): Architecture, Components of WAMS, GUI (Graphical User Interface), Applications: Voltage Stability Assessment, Frequency stability Assessment, Power Oscillation Assessment, Communication needs of WAMS, WAMPAC (Wide Area Monitoring Protection & Control), RAS (Remedial Action Scheme). Standards: IEEE 1344, IEEE C37.118 (2005), IEEE Standard C37.111-1999 (COMTRADE), IEC61850 GOOSE.

UNIT - II : STATE ESTIMATION IN POWER SYSTEMS

Introduction, Power system state estimation, Maximum likelihood, Weighted least Square estimation, Weighted least square estimation. State Estimation of AC Networks: Types of measurements, Linear weighted least square (WLS) estimation theory, DC Load flow based WLS state estimation, Linearised model of WLS state estimation of Non - Linear AC power systems, sequential and non - Sequential methods to process measurements, Typical results of state estimation on an Ac network.

UNIT - III : TYPES OF STATE ESTIMATION AND NETWORK OBSERVABILITY

State estimation by conventional WLS (normal equations), Orthogonal decomposition and its algorithm, hybrid method. Tracking of state estimation, Dynamic state estimation, Detection and identification of bad measurements, estimation of quantities not being measured. Network observability and pseudo-measurements, observability by graphical technique and triangularisation approach, Optimal meter placement, Application of power system state estimation.

UNIT - IV : POWER SYSTEM SECURITY ANALYSIS

Concept of security, Security analysis and monitoring, factors affecting power system security, detection of network problems, an overview of security analysis. Contingency analysis for generator and line outages by Interactive Linear Power Flow (ILPF) method, Fast decoupled inverse Lemma based approach, network sensitivity factors, Contingency selection, concentric relaxation and bounding.

UNIT – V: VOLTAGE STABILITY

Basic concepts, Voltage collapse – general characterization, clasiffication, Voltage stability analysis – modeling, dynamic analysis, static analysis, shortest distance to instability, continuation power flow analysis, prevention of voltage collapse – design measures, operating measures.

TEXT BOOKS:

- 1. Allen J. Wood and Bruce Woolenberg, Power System Generation, Operation and Control, John Wiley and Sons, 1996.
- 2. John J. Grainger and William D Stevenson Jr, Power System Analysis, McGraw Hill ISE, 1994.
- 3. P. Kundur, Power System Stability and Control, McGraw Hill.
- 4. Fahd Hashiesh, M. M. Mansour, Hossam E. Mostafa Fahd Hashiesh, M. M. Mansour, Hossam E. Mostafa, Wide Area Monitoring, Protection and Control: The Gateway to Smart Grids, Lambert Academic Publishing.

REFERENCE BOOKS:

- 1. E. Handschin, Real-time Control of Electrical Power Systems, Elsevier Publications & Co, 1988.
- 2. Special Issue on Computer Control of Power Systems, IEEE Proc, July 1974.

15D21104 POWER QUALITY ISSUES & IMPROVEMENT

UNIT I: INTRODUCTION TO POWER QUALITY

Definition of Power Quality - Power Quality Progression - Power Quality Terminology - Power Quality Issues - Susceptibility Criteria - Responsibilities of Power Suppliers and Users - Power Quality Standards.

UNIT II: POWER FREQUENCY DISTURBANCE & TRANSIENTS

Introduction to Power Frequency Disturbance - Common Power Frequency Disturbances - Cures for Low Frequency Disturbances - Voltage Tolerance Criteria - ITIC Graph - Introduction to Transients - Transient System Model - Examples of Transient Models and Their Response - Power System Transient Modeling - Types and Causes of Transients - Examples of Transient Waveforms – Three Phase unbalance – single phase faults – phase to phase faults – two phase to ground faults – seven tips of three phase unbalanced sag.

UNIT III: HARMONICS & ELECTROMAGNETIC INTERFERENCE (EMI)

Definition of Harmonics - Harmonic Number (h) - Odd and Even Order Harmonics - Harmonic Phase Rotation and Phase Angle - Voltage and Current Harmonics - Individual and Total Harmonic Distortion - Harmonic Signatures - Effect of Harmonics On Power System Devices -Guidelines For Harmonic Voltage and Current Limitation - Harmonic Current Mitigation -Introduction to EMI - Frequency Classification - Electrical Fields - Magnetic Fields - EMI Terminology - Power Frequency Fields - High Frequency Interference - EMI Susceptibility -EMI Mitigation - Cable Shielding - Health Concerns of EMI.

UNIT IV: GROUNDING AND BONDING

Introduction to Grounding and Bonding - Shock and Fire Hazards - NEC Grounding Requirements - Essentials of a Grounded System - Ground Electrodes - Earth Resistance Tests -Earth Ground Grid Systems - Power Ground System - Signal Reference Ground (SRG) - SRG Methods - Single and Multipoint Grounding - Ground Loops - Electrochemical Reaction -Examples of Grounding Anomalies.

UNIT V: MEASURING AND SOLVING POWER QUALITY PROBLEMS

Introduction to Power Quality Measurements - Power Quality Measurement Devices - Power Quality Measurements - Test Locations - Test Duration - Instrument Setup - Instrument Guidelines

TEXT BOOKS:

- 1. Power quality by C. Sankaran, CRC Press
- Electrical Power Systems Quality, Roger C. Dugan, Mark F. McGranaghan, Surya Santoso, H.Wayne Beaty, 2nd Edition, TMH Education Pvt. Ptd.

REFERENCE BOOKS:

- 1. Understanding Power quality problems by Math H. J. Bollen IEEE Press
- 2. Power quality enhancement using custom power devices by Arindam Ghosh,Gerard Ledwich,Kluwer academic publishers

15D21107 MACHINES & POWER SYSTEMS LAB

- 1. Determination of Subtransient Reactance of a Salient Pole Machine
- 2. Determination of Sequence Impedances of a Cylindrical Rotor Synchronous Machine
- 3. Fault Analysis
 - i) LG Fault
 - ii) LL Fault
 - iii) LLG Fault
 - iv) LLLG Fault
- 4. Equivalent Circuit of a Three Winding Transformer
- 5. Separation of No Load losses of a Three Phase Squirrel Cage Induction Motor
- 6. Power Angle Characteristics of a Salient Pole Synchronous Machine
- 7. Scott Connection
- 8. Characteristics of IDMT Over Current Relay (Electro Magnetic Type)
- 9. Characteristics of Static Negative Sequence Relay
- 10. Characteristics of Over Voltage Relay
 - i) Electromagnetic Type
 - ii) Microprocessor Type
- 11. Characteristics of Percentage Biased Differential Relay
 - i) Electromagnetic Type
 - ii) Static Type

15D24101 SYSTEM RELIABILITY CONCEPTS

UNIT-I: Basic Probability Theory

Basic concepts – Rules for combining Probabilities of events – Failure Density and Distribution functions – Bernoulli's trials – Binomial distribution – Expected value and standard deviation for binomial distribution – Examples.

UNIT-II: Network Modeling and Reliability Evaluation

Basic concepts – Evaluation of network Reliability / Unreliability – Series systems, Parallel systems, Series - Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability / Unreliability using conditional probability method – Paths based and Cutset based approach – complete event tree and reduced event tree methods - Examples.

UNIT-III: Time Dependent Probability

Basic concepts – Reliability functions f(t), F(t), R(t), h(t) – Relationship between these functions – Baths tubs curve – Exponential failure density and distribution functions - Expected value and standard deviation of Exponential distribution – Measures of reliability – MTTF, MTTR, MTBF – Evaluation of network reliability / Unreliability of simple Series, Parallel, Series-Parallel systems - Partially redundant systems - Evaluation of reliability measure – MTTF for series and parallel systems – Examples.

UNIT-IV: Discrete Markov Chains & Continuous Markov Processes

Basic concepts – Stochastic transitional Probability matrix – time dependent probability evaluation – Limiting State Probability evaluation – Absorbing states – Markov Processes-Modelling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two component repairable models – Frequency and duration concepts – Frequency balance approach - Examples.

UNIT-V: Multi Component & Approximate System Reliability Evaluation

Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model - Series systems, Parallel systems, Basic reliability indices – Cutset approach – Examples.

Text Book:

1. System Reliability Concepts by V. Sankar, Himalaya Publishing House, 2015.

Reference Books:

1. Reliability Evaluation of Engineering Systems by Roy Billinton and Ronald N. Allan, Reprinted in India B. S. Publications, 2007.

- 2. Reliability Engineering by E. Balagurusamy, Tata McGraw Hill, 2003.
- 3. Reliability and Maintainability Engineering by Charles E. Ebeling, Tata McGraw Hill, 2000.
- 4. Probability concepts in Electric Power system G.J.Anders- 1^{st} edition –1990 John wiley & sons.

15D21105 FACTS & HVDC TRANSMISSION SYSTEMS

UNIT – I: SHUNT COMPENSATION

Objectives of shunt compensation - Methods of controllable var generation - variable impedance type static var generators - switching converter type var generators - hybrid var generators - Comparison of SVC and STATCOM.

UNIT – II: SERIES COMPENSATION

Objectives of series compensation – GTO Thyristor Controlled Series Capacitor (GCSC) - Thyristor Switched Series Capacitor (TSSC) - Thyristor Controlled Series Capacitor (TCSC) - Control schemes for TCSC, TSSC and TCSC.

UNIT- III: UNIFIED POWER FLOW CONTROLLER (UPFC)

Introduction - The Unified Power Flow Controller - Basic Operating Principles - Conventional Transmission Control Capabilities - Independent Real and Reactive Power Flow Control - Control Structure - Basic Control System for P and Q Control - Hybrid Arrangements: UPFC With a Phase Shifting Transformer.

UNIT- IV: CONVERTER AND HVDC SYSTEM CONTROL

Basic means of control-power reversal-constant current versus constant voltage control-desired features of control- actual control characteristics.- constant minimum ignition angle control-constant current control-constant extinction angle control-stability of control-tap changer control-frequency control.

UNIT - V: HARMONICS AND FILTERS & INTERACTION BETWEEN AC AND DC SYSTEMS

Characteristic Harmonics-troubles caused by harmonics-definitions of wave distortion or ripples –means of reducing harmonics-design of AC filters –Dc side filters- Voltage interaction –DC power modulation –power frequency control-Large signal modulation –active and reactive power coordination.

REFERENCE BOOKS:

- 1. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems by Narain G. Hingorani, Laszlo Gyugyi Standard Publishers Distributors IEEE Press First Edition 2001.
- 2. HVDC power Transmission systems by K.R.Padiyar 2nd edition, Wiley Eastern limited.
- 3. High voltage direct current transmission by J.Arrilaga, IEE power engineering series.
- 4. Direct current transmission by E.W.Kimbark, Vol-1, Wiley inter science-Newyork.

15D22101 MODERN CONTROL THEORY

Unit I

Fields, Vectors, and vector spaces; State space representation, state equations for dynamic systems, solution of state equations; State transition matrix – Properties of state transition matrix; evaluation. Fadeeva algorithm for conversion from state space to transfer function, Linearization of non-linear models

Unit II

Non uniqueness of state model, Similarity transformation, Invariance of system properties. Controllability – necessary and sufficient condition - Pole assignment using State feedback – Ackerman's formula for feedback gain determination; Observability. Duality. Effect of state feedback on controllability and observability. Controllable subspace – decomposition of state into controllable and uncontrollable components.

Unit III

Design of full order observer – Bass Gura algorithm. The separation principle - Combined observer – controller compensator. Design of reduced order observer. Unobservable subspace – decomposition of state into observable and unobservable components – Canonical decomposition theorem.

Unit IV

Reducibility – realization of transfer function matrices. Model decomposition and decoupling by state feedback. Design of robust control system for asymptotic tracking and disturbance rejection using State variable equations. Transfer function interpretations – transfer function form of observer and state estimate feedback. State space interpretation of internal model principle.

Unit V

Discrete time linear state regulator – Algorithm for the solution, Use of observer in implementing the control law. Continuous time linear state regulator – Matrix Riccati equation. Time invariant linear state regulator – the reduced matrix Riccati equation - An iterative method to solve the reduced matrix Riccati equation. Suboptimal linear regulator.

Text Books:

- 1. Modern Control Engineering, Katsuhiko Ogata, 5th Edition, Prentice Hall India, 1997
- 2. Modern Control System Theory, M. Gopal, Revised 2nd Edition, New Age International Publishers, 2005.

References:

1. Linear Systems, Thomas Kailath, Perntice Hall, 1980.

2. Control System Design, Graham C. Goodwin, StefanF. Graebe and Mario E. Salgado, Pearson Education, 2000.

 Linear System Theory and Design, Chi-Tsong Chen, OXFORD University Press.
 Richard C. Dorf and Robert H. Bishop, Modern Control Systems, 11th Edition, Pearson Edu India, 2009.

15D21106 DISTRIBUTED GENERATION & MICROGRID

UNIT I: DISTRIBUTED GENERATION AND MICROGRID CONCEPT

Distributed generation - Why integration of distributed generation? - Active distribution network - Concept of Microgrid - A typical Microgrid configuration - Interconnection of Microgrids -Technical and economical advantages of Microgrid - Challenges and disadvantages of Microgrid development - Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid.

UNIT II: DISTRIBUTED ENERGY RESOURCES

Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Types of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources - Storage devices.

UNIT III: MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEM

Introduction - Impact on heat utilisation - Impact on process optimisation - Impact on market -Impact on environment - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Microsource controller - Central controller.

UNIT IV: SCADA AND ACTIVE DISTRIBUTION NETWORKS

Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardisation -SCADA communication and control architecture - Communication devices - Observations on SCADA and communication.

UNIT V: IMPACT OF DG INTEGRATION ON POWER QUALITY AND RELIABILITY

Introduction - Power quality disturbances - Power quality sensitive customers - Existing power quality improvement technologies - Impact of DG integration - Issues of premium power in DG integration.

TEXT BOOK:

1. S. Chowdhury, S.P. Chowdhury and P. Crossley, "Microgrids and Active Distribution Networks", The Institution of Engineering and Technology, 2009.

15D21201 POWER SYSTEM RELIABILITY

UNIT-I : Generating System Reliability Analysis

Generation system model – Capacity outage probability tables – Recursive relation for capacitive model building – Sequential addition method – Unit removal – Evaluation of loss of load and energy indices – Examples.

UNIT-II : Combined Generation and Load System Reliability Analysis

Frequency and Duration methods – Evaluation of equivalent transitional rates of identical and non-identical units – Evaluation of cumulative probability and cumulative frequency of non-identical generating units – 2-level daily load representation - Merging generation and load models – Examples.

UNIT-III : Bulk Power System Reliability Evaluation

Basic configuration – Conditional probability approach – System and load point reliability indices – Weather effects on transmission lines – Weighted average rate and Markov model – Common mode failures.

UNIT-IV : Radial Distribution System Configuration Reliability Analysis

Basic Techniques – Radial networks – Evaluation of Basic reliability indices, performance indices - Load point and system reliability indices – Customer oriented, loss and energy oriented indices – Examples.

UNIT-V : Meshed System Reliability Analysis

Basic techniques – Inclusion of bus bar failures, scheduled maintenance – Temporary and transient failures – Weather effects – Common mode failures – Evaluation of various indices – Examples.

Text Books:

- 1. Roy Billinton and Ronald N. Allan, Reliability Evaluation of Power Systems, Plenum Press, New York and London, 2nd Edition, 1996.
- 2. J. Endrenyi , Reliability Modeling in Electric Power Systems, John Wiley & Sons, 1st Edition, 1978.

15D21202 SMART GRID DESIGN AND ANALYSIS

UNIT I: SMART GRID ARCHITECTURAL DESIGNS

Introduction – Comparison of Power grid with Smart grid – power system enhancement – communication and standards - General View of the Smart Grid Market Drivers - Stakeholder Roles and Function - Measures - Representative Architecture - Functions of Smart Grid Components-Wholesale energy market in smart grid-smart vehicles in smart grid.

UNIT II: SMART GRID COMMUNICATIONS AND MEASUREMENT TECHNOLOGY

Communication and Measurement - Monitoring, Phasor Measurement Unit (PMU), Smart Meters, Wide area monitoring systems (WAMS)- Advanced metering infrastructure- GIS and Google Mapping Tools.

UNIT III: PERFORMANCE ANALYSIS TOOLS FOR SMART GRID DESIGN

Introduction to Load Flow Studies - Challenges to Load Flow in Smart Grid and Weaknesses of the Present Load Flow Methods - Load Flow State of the Art: Classical, Extended Formulations, and Algorithms –Load flow for smart grid design-Contingencies studies for smart grid.

UNIT IV: STABILITY ANALYSIS TOOLS FOR SMART GRID

Voltage Stability Analysis Tools-Voltage Stability Assessment Techniques-Voltage Stability Indexing-Application and Implementation Plan of Voltage Stability in smart grid-Angle stability assessment in smart grid-Approach of smart grid to State Estimation-Energy management in smart grid.

UNIT V: RENEWABLE ENERGY AND STORAGE

Renewable Energy Resources-Sustainable Energy Options for the Smart Grid-Penetration and Variability Issues Associated with Sustainable Energy Technology-Demand Response Issues-Electric Vehicles and Plug-in Hybrids-PHEV Technology-Environmental Implications-Storage Technologies-Grid integration issues of renewable energy sources.

TEXT BOOKS:

1. James Momoh, "Smart Grid: Fundamentals of design and analysis", John Wiley & sons Inc, IEEE press 2012.

2. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", John Wiley & sons inc, 2012.

REFERENCE BOOKS:

1. Fereidoon P. Sioshansi, "Smart Grid: Integrating Renewable, Distributed & Efficient Energy", Academic Press, 2012.

2. Clark W.Gellings, "The smart grid: Enabling energy efficiency and demand response", Fairmont Press Inc, 2009.

15D21203 RESTRUCTURED POWER SYSTEMS

UNIT I: KEY ISSUES IN ELECTRIC UTILITIES

Introduction – Restructuring models – Independent System Operator (ISO) – Power Exchange – Market operations – Market Power – Standard cost – Transmission Pricing – Congestion Pricing – Management of Inter zonal/Intra zonal Congestion.

UNIT II: OPEN ACCESS SAME-TIME INFORMATION SYSTEM (OASIS) & MARKET POWER

Structure of OASIS - Posting of Information – Transfer capability on OASIS. Market Power: Introduction - Different types of market Power – Mitigation of Market Power - Examples.

UNIT III: AVAILABLE TRANSFER CAPABILITY (ATC) & ELECTRICITY PRICING

Transfer Capability Issues – ATC – TTC – TRM – CBM Calculations – Calculation of ATC based on power flow. Electricity Pricing: Introduction – Electricity Price Volatility Electricity Price Indexes – Challenges to Electricity Pricing – Construction of Forward Price Curves – Short-time Price Forecasting.

UNIT IV: POWER SYSTEM OPERATION IN COMPETITIVE ENVIRONMENT

Introduction – Operational Planning Activities of ISO- The ISO in Pool Markets – The ISO in Bilateral Markets – Operational Planning Activities of a GENCO.

UNIT V: TRANSMISSION COST ALLOCATION METHODS & ANCILLARY SERVICES MANAGEMENT

Introduction - Transmission Cost Allocation Methods : Postage Stamp Rate Method - Contract Path Method - MW-Mile Method – Unused Transmission Capacity Method - MVA-Mile method – Comparison of cost allocation methods. Ancillary Services Management: Introduction – Reactive Power as an Ancillary Service – a Review – Synchronous Generators as Ancillary Service Providers.

TEXT BOOKS :

- 1. Kankar Bhattacharya, Math H.J. Boller and Jaap E.Daalder, Operation of Restructured Power System, Kulwer Academic Publishers, 2001.
- 2. Mohammad Shahidehpour and Muwaffaq alomoush, Restructured Electrical Power Systems, Marcel Dekker, Inc., 2001.

REFERENCE BOOKS:

1. Loi Lei Lai, Power System Restructuring and Deregulation, John Wiley & Sons Ltd., England.

15D22203 INTELLIGENT ALGORITHMS

UNIT I: Introduction and motivation. Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule - based systems, the AI approach. Knowledge representation. Expert systems. Data Pre - Processing: Scaling, Fourier transformation, principal - component analysis and wavelet transformations.

UNIT II

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch - Pitts neuron model, simple perceptron, Adaline and Madaline, Feed - forward Multilayer Perceptron. Learning and Training the neural network. Networks: Hopfield network, Self - organizing network and Recurrent network. Neural Network based controller, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab / Neural Network toolbox.

UNIT III

Genetic Algorithm: Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other than GA search techniques like tabu search and ant - colony search techniques for solving optimization problems.

UNIT IV

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to Fuzzy logic modeling and control of a system. Fuzzification, inference and defuzzification. Fuzzy knowledge and rule bases.

UNIT V

Fuzzy modeling and control schemes for nonlinear systems. Self - organizing fuzzy logic control. Implementation of fuzzy logic controller using Matlab fuzzy - logic toolbox. Stability analysis of fuzzy control systems. Intelligent Control for SISO/MIMO Nonlinear Systems. Model Based Multivariable Fuzzy Controller.

Text Books

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition, 2003.
- 2. T.J.Ross, Fuzzy logic with Fuzzy Applications, Mc Graw Hill Inc, 1997.
- 3. David E Goldberg, Genetic Algorithms.

References

- 1. M.T.Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M.Ham and Ivica Kostanic, Principles of Neurocomputing for science and Engineering, McGraw Hill, 2001.
- 3. N.K. Bose and P.Liang, Neural Network Fundamentals with Graphs, Algorithms and Applications, Mc - Graw Hill, Inc. 1996.
- 4. Yung C. Shin and Chengying Xu, Intelligent System Modeling, Optimization and Control, CRC Press, 2009.
- 5. N.K.Sinha and Madan M Gupta, Soft computing & Intelligent Systems Theory & Applications, Indian Edition, Elsevier, 2007.
- 6. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, Pearson Education, Indian Edition, 2003. Witold Pedrycz, Fuzzy Control and Fuzzy Systms, Overseas Press, Indian Edition, 2008.

15D54201 RESEARCH METHODOLOGY

(Audit Course)

<u>UNIT I</u>

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

UNIT II

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation.

Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

UNIT III

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

<u>UNIT IV</u>

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Covariance – Multi-variate Analysis.

UNIT V

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Text books:

- 1. Research Methodology:Methods and Techniques C.R.Kothari, 2nd Edition,New Age International Publishers.
- 2. Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf on internet)
- 3. Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1st Edition,Excel Books,New Delhi.

REFERENCES:

- 1. Scientists must Write Robert Barrass (Available as pdf on internet)
- 2. Crafting Your Research Future Charles X. Ling and Quiang Yang (Available as pdf on internet)

15D21209 POWER SYSTEM SIMULATION LAB

MATLAB

- 1. Y Bus Formation Using MATLAB
- 2. Gauss Seidel Load Flow Analysis using MATLAB
- 3. Fast Decoupled Load Flow Analysis using MATLAB
- 4. Fast Decoupled Load Flow Analysis for Distribution Systems using MATLAB
- 5. Point by Point Method using MATLAB
- 6. Step Response of Two Area System with Integral Control and Estimation of Tie Line Power Deviation using SIMULINK
- 7. Step Response of Two Area System with Integral Control and Estimation of Tie Line Frequency Deviation using SIMULINK

MiPower

- 8. Load Flow Analysis using MiPower
 - i) Gauss Seidel Method
 - ii) Newton Raphson Method
- 9. Short Circuit Analysis using MiPower
- 10. Transient Stability Analysis using MiPower
- 11. Economic Load Dispatch Analysis using MiPower

15D21205 REACTIVE POWER COMPENSATION & MANAGEMENT

UNIT I : LOAD COMPENSATION

Objectives and specifications – Reactive power characteristics – Inductive and capacitive approximate biasing – Load compensator as a voltage regulator – Phase balancing and power factor correction of unsymmetrical loads - Examples.

UNIT II : STEADY – STATE & TRANSIENT STATE REACTIVE POWER COMPENSATION IN TRANSMISSION SYSTEM

Uncompensated line – Types of compensation – Passive shunt and series and dynamic shunt compensation – Characteristic time periods – Passive shunt compensation – Static compensations - Series capacitor compensation – Compensation using synchronous condensers – Examples.

UNIT-III : REACTIVE POWER COORDINATION & DEMAND SIDE MANAGEMENT

Objective – Mathematical modeling – Operation planning – Transmission benefits – Basic concepts of quality of power supply – Disturbances - Steady – state variations – Effects of under Voltages – Frequency – Harmonics, radio frequency and electromagnetic interferences.Load patterns – Basic methods load shaping – Power tariffs - KVAR based tariffs penalties for voltage flickers and Harmonic voltage levels.

UNIT-IV : DISTRIBUTION & USER SIDE REACTIVE POWER MANAGEMENT

System losses – Loss reduction methods – Examples – Reactive power planning – Objectives – Economics Planning capacitor placement – Retrofitting of capacitor banks - KVAR requirements for domestic appliances – Purpose of using capacitors – Selection of capacitors – Deciding factors – Types of available capacitor, characteristics and Limitations.

UNIT-V : REACTIVE POWER MANAGEMENT IN ELECTRIC TRACTION SYSTEMS AND ARC FURNACES

Typical layout of traction systems – Reactive power control requirements – Distribution transformers - Electric arc furnaces – Basic operations- Furnaces transformer – Filter requirements – Remedial measures – Power factor of an arc furnace.

TEXT BOOKS:

- 1. J.E.Miller, Reactive Power Control in Electric Power Systems, John Wiley and Sons, 1982 (Units I to IV).
- 2. D.M.Tagare, Reactive power Management, Tata McGraw Hill, 2004 (Units V toVIII).

15D21206 EHVAC TRANSMISSION SYSTEMS

UNIT – I: PRELIMINARIES

Necessity of EHV AC transmission – Advantages and problems – Power handling capacity and line losses- Mechanical considerations – Resistance of conductors – Properties of bundled conductors – Bundle spacing and bundle radius - Examples.

UNIT – II: LINE AND GROUND REACTIVE PARAMETERS

Line inductance and capacitances – Sequence inductances and capacitances – Modes of propagation – Ground return – Examples. Electrostatics – Field of sphere gap – Field of line changes and properties – Charge – potential relations for multi-conductors – Surface voltage gradient on conductors – Distribution of voltage gradient on sub-conductors of bundle – Examples.

UNIT – III: CORONA EFFECTS

Power loss and audible noise (AN) – corona loss formulae – Charge voltage diagram – Generation, characteristics - Limits and measurements of AN – Relation between 1-phase and 3 -phase AN levels – Radio interference (RI) - Corona pulses generation, properties, limits – Frequency spectrum – Modes of propagation – Excitation function – Measurement of RI, RIV and excitation functions - Examples.

UNIT – IV: ELECTRO STATIC FIELD & TRAVELING WAVE THEORY

Electrostatic field: calculation of electrostatic field of EHV/AC lines – Effect on humans, animals and plants – Electrostatic induction in unenergised circuit of double - circuit line – Electromagnetic interference - Examples. Traveling wave expression and solution - Source of excitation - Terminal conditions - Open circuited and short circuited end - Reflection and refraction coefficients - Lumped parameters of distributed lines - Generalized constants - No load voltage conditions and charging current.

UNIT -V: VOLTAGE CONTROL

Power circle diagram and its use – Voltage control using synchronous condensers – Cascade connection of shunt and series compensation – Sub synchronous resonance in series capacitor – Compensated lines – Static VAR compensating system.

TEXT BOOKS:

- 1. R. D. Begamudre, EHVAC Transmission Engineering, New Age International (p) Ltd.
- 2. S. Rao, HVAC and DC Transmission.

15D21207 SOLAR ENERGY CONVERSION SYSTEMS

UNIT-I: SOLAR CELL FUNDAMENTALS

Place of PV in world energy scenario – need for sustainable energy sources – current status of Renewable energy sources – place of photovoltaic in Energy supply – solar radiation – the sun and earth movement – angle of sunrays on solar collectors – sun tracking – estimating solar radiation empirically – measurement of solar radiation - Fundamentals of semiconductors – charge carriers and their motion in semiconductor – P-N Junction Diode – an introduction to solar cells.

UNIT-II: DESIGN OF SOLAR CELLS

Upper limits of cell parameters – short circuit current, open circuit voltage, fill factor, efficiency – losses in solar cells – model of a solar cell, effect of series and shunt resistance on efficiency , effect of solar radiation on efficiency – solar cell design – design for high I_{SC} – Design for high V_{OC} – design for high FF – Analytical techniques.

UNIT-III: SOLAR PHOTOVOLTAIC MODULES

Solar PV Modules from solar cells – series and parallel connection of cells – mismatch in module – mismatch in series connection – hot spots in the module , bypass diode – mismatching in parallel diode – design and structure of PV modules – number of solar cells in a module, wattage of modules, fabrication of PV module – PV module power output.

UNIT-V: BALANCE OF SOLAR PV SYSTEMS

Basics of Electromechanical cell – factors affecting performance – batteries for PV systems – DC to DC converters – charge controllers – DC to AC converters(Inverters) – Maximum Power Point tracking (MPPT) – Algorithms for MPPT.

UNIT V: PV SYSTEM DESIGN AND APPLICATIONS

Introduction to solar PV systems – standalone PV system configuration – design methodology of PV systems – design of PV powered DC fan without battery, standalone system with DC load using MPPT, design of PV powered DC pump, design of standalone system with battery and AC/DC load – wire sizing in PV system – precise sizing of PV systems – Hybrid PV systems – grid connected PV systems.

TEXT BOOKS:

1. "Solar Photovoltaics Fundamentals, Technologies and Applications" by Chetan singh solanki, PHI publications.

REFERENCES:

- 1. Solar Energy Fundamentals and applications by H.P. Garg, J. Prakash "Tata McGraw-Hill publishers Ist edition"
- 2. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.

15D21208 WIND ENERGY CONVERSION SYSTEMS

UNIT-I: FUNDAMENTALS OF WIND TURBINES

Historical background - basics of mechanical to electrical energy conversion in wind energy - types of wind energy conversion devices – definition - solidity, tip speed ratio, power coefficient, wind turbine ratings and specifications - aerodynamics of wind rotors - design of the wind turbine rotor

UNIT-II: WIND TURBINE CONTROL SYSTEMS & SITE ANALYSIS

Power speed characteristics - torque speed characteristics - Pitch angle control - stall control - power electronic control - Yaw control - Control strategy - wind speed measurements - wind speed statistics - site and turbine selection.

UNIT-III: BASICS OF INDUCTION AND SYNCHRONOUS MACHINES

The Induction Machine – constructional features - equivalent circuit model - performance characteristics - saturation characteristics – dynamic d-q model – the wound – field synchronous machine – the permanent magnet synchronous machine – power flow between two synchronous sources – induction generator versus synchronous generator

UNIT-IV: GRID CONNECTED AND SELF-EXCITED INDUCTION GENERATOR OPEARTION

Constant – voltage, constant – frequency- single output system –double output system with current converter & voltage source inverter – equivalent circuits – reactive power and harmonics – reactive power compensation – variable – voltage, variable – frequency generation – the self-excitation process – circuit model for the self – excited induction generator – analysis of steady state operation – the steady state characteristics – the excitation requirement – effect of a wind generator on the network .

UNIT-V: WIND GENERATION WITH VARIABLE-SPEED TURBINES AND APPLICATION

Classification of schemes – operating area – induction generators – doubly fed induction generator – wound field synchronous generator – the permanent magnet generator – Merits and limitations of wind energy conversion systems – application in hybrid energy systems – diesel generator and photovoltaic systems – wind photovoltaic systems.

TEXT BOOKS:

1. S.N.Bhadra, D.Kastha, S.Banerjee, "wind electrical systems" Oxford University Press.

REFERENCES:

- 1. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.
- "Renewable Energy sources & Conversion Technology" by N.K.Bansal, Manfred Kleemann, Michael Meliss. Tata Mcgraw Hill Publishers.

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ELECTRICAL POWER SYSTEMS

I SEMESTER

S.No.	Course	Subject Name	Cate		Hours Per Week		Credits			
	Code		Gory	L T P						
1	21D21101	Advanced Power System Protection	PC	3	0	0	3			
2	21D21102	Power System Security and State Estimation	PC	3	0	0	3			
3	Profession	al Elective – I								
	21D21103	Machine Learning Application to Power Systems								
	21D21104	Modeling and Analysis of HVDC Systems	PE	3	0	0	3			
	21D21105	Power System Optimization								
4	Profession	al Elective – II		1		1				
	21D21106	Solar & Wind Energy Conversion Systems								
	21D21107	Smart Grid Technologies	PE	3	0	0	3			
	21D21108	Electric Vehicle Engineering								
5	21D11109	Research Methodology and IPR	MC	2	0	0	2			
6	21D11110	English for Research Paper Writing								
	21D11111	Value Education	1D11111Value EducationAC	D11111 Value Education AC	D11111 Value Education AC	AC	2	0	0	0
	21D11112	Pedagogy Studies								
7	21D21109	Machine & Power Systems Lab	PC	0	0	4	2			
8	21D21110	Power Systems Simulation Lab	PC	0	0	4	2			
	•	Total		16	00	08	18			

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ELECTRICAL POWER SYSTEMS

II SEMESTER

S.No.	Course Code	Subject Name	Cate	-	Hours Per Week		Credits
	Code		Gory	L	Т	Ρ	
1	21D21201	Power System Stability and Control	PC	3	0	0	3
2	21D21202	FACTS Controllers	PC	3	0	0	3
3	Profession	al Elective – III		1	l		
	21D21203	Power System Wide Area Monitoring & Control					
	21D23104	Modern Control Theory	PE	3	0	0	3
	21D21204	Reactive power Compensation & Management					
4	Profession	al Elective – IV		L	I		
	21D21205	Power Quality					
	21D21206	Distributed Generation and Micro grid Control	PE	3	0	0	3
	21D21207	EHVAC Transmission Systems					
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga	1				
7	21D21208	Renewable Energy Systems Lab	PC	0	0	4	2
8	21D21209	FACTS Devices & Simulation Lab	PC	0	0	4	2
	1	Total		14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ELECTRICAL POWER SYSTEMS

III SEMESTER

S.No.	Course	Subject Name	Cate		urs I Weel		Credits
	Code		Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D21301	Restructured power systems					
	21D21302	Risk Assessment of Electrical Power					
		Systems	PE	3	0	0	3
	21D21303	Power System Automation					
2	Open Elect	ive					•
	21D20301	Waste to Energy	OE	3	0	0	3
3	21D21304	Dissertation Phase -I	PR	0	0	20	10
4	21D00301	Co-curricular Activities	PR				2
		Total	•	06	00	20	18

IV SEMESTER

S.No.	Course Code	Subject Name			urs 1 Weel		Credits
	Coue		Gory	L	Т	Ρ	
1	21D21401	Dissertation Phase – II	PR	0	0	32	16
		Total		00	00	32	16

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Course Code	21D21101	ADVANCED POWER SYSTEM PROTECTION	L	Τ	P	С
Semester	Ι	(21D21101)	3	0	0	3
Course Object	ives: To mak	te the student				
		f static relays.				
• To understa	and the opera	tion of amplitude and phase comparators.				
		cepts of Static over current, static differential and static	dista	nce 1	elay	s.
		out comparators and concept of power swings on the dis	stance	rela	ys.	
		of microprocessor based protective relays.				
		udent will be able to				
		uction of static relay and identify the advantages of		c re	lay (over
		y and analyze the importance of reliability in various fie				
		on of rectifier bridge comparators, instantaneous co		rator	s, p	nase
		nput comparators, static differential and distance relays.				
		bus, definite time and inverse definite minimum time ov				•
		of power swings on distance relays and to identify t	he m	crop	oroce	ssor
-		ys and their operation.	T			0
UNIT – I		ELAYS & COMPARATORS	Lect			
	•	vs - Basic construction of Static relays – Level det			-	
-	-	General equation for two input phase and Amplitud een Amplitude and Phase Comparator –Conic section		-		
		parator – Hybrid comparator – Switched distance sche				
		ts scheme – Three phase scheme–Combined and Ground				
UNIT - II		STATIC RELAYS	Lect			
		over current relay – Time over current relays - Basic pri				
		ne over current relays, directional over current relays - S	-			
		ferential relays–Static relay schemes-Dual bias transfor				
protection – Ha		• •				
UNIT - III		JMERICAL RELAYS	Lect	ure	Hrs:	9
Advantages of	Numerical	Relays – Numerical network-Digital Signal processin	ng-Es	stima	tion	of
		r Algorithm – Half Cycle Fourier Algorithm- practical of				
selection of Alg	gorithm–Disc	rete Fourier Transform				
UNIT - IV	DISTANC	E RELAYS AND POWER SWINGS	Lect	ure	Hrs:	12
		tic Impedance - reactance - MHO and Angle Impedance				
		reactance and MHO relay using a sampling comparator				
•	-	of Distance relays- Power swing analysis - Princip			of s	tep
		- Effect of line length and source impedance on distance				
UNIT - V		OCESSOR BASED PROTECTIVE RELAYS	Lect			
	• 1	dance relays – Directional relay – Reactance relay (Bl		<u> </u>		
11	• /	eneralized mathematical expression for distance relays				
		MHO and offset MHO relays – Realization of MHO				
Realization of	Unset MHO	characteristics (Block diagram and flow chart approa	acn o	my)	- ва	ISIC

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

principle of Digital computer relaying.

Textbooks:

- 1. T.S. Madhava Rao, Power system Protection static relay, Tata McGrawHill Publishing Company limited, 2nd Edition, 2004.
- 2. Badri Ram and D.N. Vishwakarma, Power system Protection and Switchgear, Tata McGraw Hill Publication Company limited, 2nd Edition, 2013.

Reference Books:

- 1. Bhavesh Bhalja, R. P. Maheshwari, N. G. Chothani, Protection and Switchgear, Oxford University Press, 2nd Edition, New Delhi, India, 2018.
- 2. Oza, B. A., N. C. Nair, R. P. Mehta, et al., Power System Protection & Switchgear, Tata McGraw Hill, New Delhi, 1st Edition, 2011.

Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Course Code	21D21102	POWER SYSTEM SECURITY AND STATE ESTIMATION	L	Т	Р	C
Semester	Ι	(21D21102)	3	0	0	3
			1			
Course Ob	jectives: To r	make the student				
		c concepts of network matrices, power flow methods, state	e esti	mati	on, a	and
		er system state estimation and structure of deregulated power				
•		nittance/impedance matrices, factors influencing power	syste	m s	ecur	ity,
	*	nd power wheeling transactions.			CT	
-		nods for determining the bus matrices, optimal ordering, I	DC	powe	er flo	ЭW,
-		mating a value and Available Transfer Capability (ATC). thm for orthogonal matrix, method to identify networl	z nr	oble	me	and
		nent methods and electricity sector structure.	x pr		115	anu
		: Student will be able to				
		concepts of network matrices, power flow methods, contin	ngen	cy a	naly	sis,
state	estimation, a	and need and conditions for deregulation.	•	•	•	
	•	admittance/impedance matrices methods, power system sec	urity	, sei	nsitiv	vity
		nation and electricity structure model.				
		ods for evaluating the bus matrices, sparsity, DC power t	flow,	AC	' pov	wer
	-	a value and Available Transfer Capability (ATC).				
	-	nods for state estimation, method to identify network proble	ems a	ind r	neth	ods
	congestion ma	-	1.4	2		
UNIT - I		wer System Network Matrices Lecture H				•
		tance matrices by direct inspection method and singula				
		formation of Bus impedance matrix: addition of a branch a				
		n Bus impedance matrix– Sparsity programming and Opt	imai	Orc	lerin	g –
UNIT - II		-representation of off-nominal tap transformers. wer System Security-I Lecture H	ra.0			
		methods (qualitative treatment only)– DC power flow		thad	aim	nlo
		to power system security – Factors influencing power syste				pie
UNIT - III		wer System Security-II Lecture H			Ly.	
		ncy analysis – Contingency analysis: Detection of Network			a lin	oor
	0	ower flow methods– Contingency selection– Simple proble	-		5, 111	Cai
UNIT - IV	Sta	te Estimation in Power System Lecture H	rs: 10)		
•		nation - SCADA -EMS center, Methods of state estimation				
-		l matrix-Properties- Givens rotation-Orthogonal decompo				
	Pseudo meas	urements and applications of power system state estim	natio	n –	Sim	ple
problems.						

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

UNIT - V	Security in Deregulated Environment	Lecture Hrs:9
Need and condition	ns for deregulation-Electricity sector structure	model - Power wheeling
transactions -Conge	stion management methods- Available Transfer (Capability (ATC) – System
security in deregulat	ion.	

Textbooks:

- 1. Allen J. Wood and Wollenberg B.F., Power Generation Operation and control, John Wiley & Sons, 3rd edition, 2013.
- 2. P. Venkatesh, B.V. Manikandan, S. Charles Raja and A.Srinivasan, Electrical power systems analysis, security, and deregulation, PHI learning private limited, Delhi, 1st edition 2014.

Reference Books:

- 1. Nagrath I.J. and Kothari D.P., Modern Power System Analysis, TMH, New Delhi, 3rd Edition, 2004.
- 2. John J. Grainger and William D. Stevenson, Power System Analysis, Tata McGraw-Hill, 1st edition, 2003.

Online Learning Resources:

1. https://nptel.ac.in/content/storage2/courses/108106022/LECTURE%205.pdf

2. https://nptel.ac.in/content/storage2/courses/108101040/download/Lec-26.pdf

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Course	21D21103	MACHINE LEARNING APPLICATION TO	L	Т	Р	С
Code	T	POWER SYSTEMS	-		0	-
Semester	Ι	(21D21103)	3	0	0	3
		(PE-I)				
Course Obje	etives. To m	ake the student				
0		cepts of machine learning algorithms, artificial neural network	vorl	~		
•		reinforcement learning, concepts of genetic algorithm.				
		to evaluate the genetic modeling and load forecasting.	1			
		ques using machine learnings to determine the economic lo	ad	disp	atch.	
	· /	Student will be able to				
		nce of machine learning and the concepts of learning algor				
	se about the a	rtificial neural network, training and testing of ANN, conce	epts	s of g	genet	ic
algorithm.						
	the algorithm	ns to determine the constrained and unconstrained problem	usi	ng g	eneti	ic
algorithm.						
	1 .	ues using machine learnings to determine the load forecast	ing	, fau	ılt	
identification						
UNIT - I	Machine L	earning Concepts		Lec 10	ture	Hrs:
Basic Concer	ots of Machine	e learning, History and early works, techniques, compariso	on a	nd r	elatio	on to
-		nization and statistics.				
UNIT - II	Machine Le	earning Algorithms		Lec	cture	
				Hrs	s:9	
Theoretical a	spects of ML,	, different types of Machine Learning algorithms such as L	ine	ar re	gres	sion,
Logistic regr	ession, K - N	earest Neighbor, Artificial Neural Networks, Random For	est	, and	i Suj	oport
Vector Mach	ine, learning	approaches: Supervised learning, unsupervised learning,	ser	ni si	uperv	vised
learning, rein	forcement lea	rning, self-learning and association rules.				
UNIT - III	Concepts of	f Artificial Neural Network		Lec	cture	Hrs:
				10		
		, Basic Concept, early NN Architectures, Characteristics,				
architectures,	, Single laye	r feed forward Network, Multi-layer feed forward ne	two	ork,	recu	rrent
networks, No	on-linear activ	ation operators, learning methods like Back propagation, l	LM	etc.	, trai	ning
and testing of	f ANN.					
UNIT - IV	Concepts of	f Genetic Algorithm		Lec	cture	
	_			Hrs	:10	
Genetic Algo	orithms: Fund	amentals, History, working principal, genetic modeling, e	enc	odin	g, fi	tness
		s: reproduction, cross over, mutation, Similarities and diff				
$G\Delta$ and tradi	tional method	s; Unconstrained and constrained optimization using Gener	tic .	Algo	orithr	n.

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

UNIT -	Applications of Machine Learning	Lecture
		Hrs:9
load fo	ons of machine learning in power systems operation and control for solvin casting, renewable energy forecasting, load flow studies, Economic load ent, power plant monitoring, fault identification and security assessment etc.	01
Textbo	s:	
Spi	or Hastie, Robert Tibshirani, Jerome H. Friedman, "The Elements of Statist ger, 2 nd Edition, 2017.	
2. Ch	topher Bishop, "Pattern Recognition and Machine Learning", Springer, 1 st Ed	ition, 2006.
Refere	e Books:	
1. NP 200	adhy, "Artificial Intelligence and Intelligent Systems", Oxford University Pre-	ess, 1 st Edition,
	berg D.E. "Genetic Algorithms in Search Optimization & Machine Learn ey Co., New York, 1 st Edition, 1989.	ing", Addition
Online	earning Resources:	
1 1.44	//mtal ag in/gourges/108/104/108104112/	

1. <u>https://nptel.ac.in/courses/108/104/108104112/</u>

2. <u>https://nptel.ac.in/courses/108/104/108104049/</u>

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

Course Code	21D21104	MODELLING AND ANALYSIS OF HVDC SYSTEMS (21D21104)	L	T P	C
Semester	Ι	(21D21104) (PE-I)	3	0 0	3
Semester	L	(1 E-1)	3	UU	5
Course Ob	iectives: To 1	make the student			
	*	oncept, planning of DC power transmission.			
		onverters, Transient and Dynamic Stability.			
	-	of power flow analysis.			
	• •	namic simulation of converters and DC systems			
	0 0 .	: Student will be able to			
		ectrical requirements for HVDC lines.			
	•	erent modes of operation for six pulse & twelve pulse conver	ter i	unit ir	the
	ext of HVDC				1 1110
		edge of HVDC transmission in Power networks.			
		ppropriate HVDC transmission line parameters under diffe	ren	t phy	sical
	litions.			1 2	
UNIT – I	HVDC	CONVERTERS AND SYSTEM CONTROL	Le	ecture	
			H	rs: 10	
Analysis of	HVDC Cor	verters: Pulse number - choice of converter configuration	_	simpl	ified
analysis of	Graetz circui	t – converter bridge characteristics. Converter and HVDC sy	ster	n con	trol:
Principles o	of DC link co	ntrol – converter control characteristics – system control hier	arch	ny – f	ring
		and extinction angle control - starting and stopping of De			
control.				•	
UNIT – II	MODE	ELING FOR POWER FLOW ANALYSIS OF AC/DC	Le	ecture	
	SYSTI	EMS	H	rs:9	
Modelling of	of HVDC Con	mponents: HVDC Converter model - Converter control - Mo	dell	ing of	DC
		AC Network - Power flow analysis in AC/DC systems: Mod			
links –Mult	ti terminal D	C links- Solution of DC load flow -per unit system for D	Сç	lualiti	es –
	AC/DC powe				
UNIT - III	TRAN	SIENT AND DYNAMIC STABILITY ANALYSIS		ecture	
				rs: 10	
		sis - Converter model - Converter control models - DC netw			
	0.	Direct methods for stability Evaluation - Dynamic Stability	•	-	
		odulation for damping low frequency oscillations - Basic	-	-	
		n the application of power modulation controllers - Gamm			ctive
		er modulation in MTDC system – voltage stability in AC/DC			
UNIT – IV	HARM	IONIC AND TORSIONAL INTERACTIONS		ecture	
				rs: 10	
		l Interactions: Harmonic Interactions - Torsion Interactions			
		DC systems – counter measures to torsion interactions with		•	
		systems: System simulation – philosophy & Tools – H	VD	C sy	stem
simulation -	 modeling of 	f HVDC systems Digital dynamic simulation.			

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

UNIT – V	MODELING OF HVDC SYSTEMS	Lecture					
		Hrs:9					
Digital dynamic	Digital dynamic simulation of converters and DC systems: Valve model, Gate pulse generation -						
generation of co	ntrol voltage - transformer model - converter model - transient simu	lation of DC					
and AC systems.							
Textbooks:							
	; HVDC Power Transmission Systems - Technology & System Inter	actions, New					
	ional Publishers, 3 rd Edition, 2017						
2. S Kamaksha	iah and V Kamaraju, HVDC Transmission, Tata Mc Graw Hill, Ne	ew Delhi, 2 nd					
Edition, 202	1.						

Reference Books:

- 1. E.W. Kimbark, Direct current transmission, Wiely Inter Science New York, 1st Edition, 1971.
- 2. J. Arillaga, HVDC Transmission, Peregrinus Ltd., London UK 2nd Edition, 1998.
- 3. E. Uhlman, Power transmission by direct current, Springer Verlag, Berlin Helberg, 1st Edition, 1985.

Online Learning Resources:

https://nptel.ac.in/courses/108/106/108106160/

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Course	21D21105	POWER SYSTEM OPTIMIZATION	L	Т	P	C
Code	Ι	(21D21105) (PE-I)	3	0	0	3
Semester	I	(FE-1)	3	U	U	3
Course Ob	iaatiwaa Ta r	nates the student				
	,	nake the student				
		nental concepts of Optimization Techniques.				
		ce of optimizations in real life scenarios.				1
		f various classical and modern methods for constrained and	unco	ons	stran	nea
-	0	e and multivariable.				
•		for different optimizations techniques.				
	· · · ·	: Student will be able to	1	1		
		oncept of optimality criteria for various type of optimization p			ns.	
		ept of different optimization techniques in real world application			11	
		onstrained and unconstrained problems in single variable	e as	5 1	well	as
	tivariable.					
		ds of optimization for real life situation.			<u></u>	10
UNIT – I	CONVENT		ctu	re .	Hrs:	10
	FUNDAME					
Concentra 0		CLESWARMOPTIMIZATION(PSO)TECHNIQUES	1.		171-	
		ed to Optimization -Quadratic optimization problem - Kar				
•	· ·	and sufficient conditions for quadratic programming prob				
		optimization - linear programming-Background of PSO – O				
		crete PSO – PSO for MINLPs – Constriction Factor Appro				
-		L best Model – Adaptive PSO(APSO) Evolutionary P	30	(1	2F3(J)-
Application		IENTALSOFANTCOLONYSEARCHALGORITHMS	T.			
UNII - II	FUNDAN	IENTALSOFANTCOLONYSEARCHALGORITHWIS		rs:	ure	
Introduction	Ant Colon	y Search Algorithm – Behaviour of Real Ants– Ant Colony A			-	
		nt Colony System – The Max-Min Ant System – Major Char	-			
•		•••••				
		gorithm – Distributed Computation: Avoid Premature Cond Discovery of Good Solution – Use of Greedy Search and Cond				
	-			isu	ucu	ve
UNIT - III		nd Acceptable Solutions in the Early Stage of the Process. ENTALS OFTABUSEARCH	I.		ure	
	FUNDAM	LENTALS OF TADUSEARCH			12	
Introduction		of the Tabu Search Approach – Problem Formulation –				nd
		11			0	
-	-	orhood Structure – Characterization of the Neighborhood–Fu				
-		 ch – Recency- Based Tabu Search – Basic Tabu Search – Tabu tenure – Aspiration Criteria – The Use of Long Term 	-			
	0	ency-Based Memory – Intensification – Diversification –				
			U	Jul		5
Strategies –	raui Kelinkii	ng – Strategic Oscillation–Applications of Tabu Search.				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

UNIT – IV	APPLICATIONTOPOWERSYSTEMS	Lecture
		Hrs: 9
Introduction	to power system applications – Model identifications – Dynamic loa	d modeling –
Short term lo	ad forecasting – Distribution system applications – Network reconfigu	ration for loss
reduction – C	ptimal protection and switching devices placements – Examples.	
UNIT – V	POWERSYSTEMCONTROLS	Lecture
		Hrs: 9
Overview – I	Power system controls: Particle Swarm Technique – Problem formulat	ion of VVC –
	es - Problem formulation - Expansion of PSO for MINLP - Vo	
	VVC using PSO - Treatment of state variables - VVC algorithm	using PSO -
Numerical Ex	amples – IEEE 14 Bus system.	
Textbooks:		
1. A Ravino	Iran, K.M. Ragsdell, and G.V. Reklaitis, "Engineering optimization: Me	ethods and
application	ons", Wiley India Edition.	
	. Lee and Mohamed A. EI- Sharkawi "Modern Heuristic Optimization	
	nd Applications to Power Systems", A. John Wiley & Sons. INC. P	Publication, 1 st
edition, 2	.020	
	thari and J. S. Dhillon, "Power System Optimization", PHI Learning Pr	ivate Limited,
2 nd Editio		
Reference B		
	Zhu, "Optimization of power system operation", IEEE Press, John W	Viley & Sons,
Inc., Pub	lication, 2 nd edition, 2015.	
	dam Taylor, "Convex optimization of power systems", Cambridge Un	iversity Press,
1 st edition	n, 2015.	
Online Lear	ning Resources:	
https://np	tel.ac.in/courses/112/106/112106064/	

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21106	SOLAR & WIND ENERGY CONVERSION SYSTEM	L	Τ	Р	С
Semester	Ι	(21D21106)	3	0	0	3
Semester	I	(PE-II)	5	U	U	5
Course Ob	jectives: To	make the student				
• To intr	oduce photo	voltaic systems and principle of wind turbines.				
	-	is technologies of solar PV cells.				
		ils about manufacture, sizing and operating techniques in	sola	r en	ergy	V
	sion systems				0.	
	•	cepts of fixed speed and variable speed, wind energy con	vers	ion		
system						
•		e of design considerations and analyze grid integration iss	ues.			
		D): Student will be able to				
		fundamentals of solar cell, Solar PV Modules from sol	ar c	ells,	sys	tem
		ne PV system configuration, Maximum Power Point tr				
• •		als the concepts of fixed speed and variable speed		-		
	version syste					
CO 2: App	oly the con	cept of various technologies of solar PV cells, manufac	ture	, siz	ing	and
ope	rating techni	ques.			-	
CO 3: Ana	alyze the c	oncept of Effect of series and shunt resistance on efficient	ienc	y, E	lffec	t of
sola	ar radiation o	n efficiency, Analytical techniques, Hot spots in the mod	ule,	Alg	gorit	hms
for	MPPT.					
CO 4: Des	sign of PV p	owered DC fan without battery, Standalone system with	DC	loa	id u	sing
MP	PT, PV pow	vered DC pump, standalone system with battery and A	C/D	C l	oad	and
con	trol principle	es of Wind turbine.				
UNIT – I	SOLA	R& WINDFUNDAMENTALS		ctur	e Hr	:s:
			10			
		ergy sources -solar radiation - the sun and earth moven			-	
-		tors – sun tracking – estimating solar radiation-measur				
		ind energy conversion devices - definition - solidity, t				
-		turbine ratings and specifications-aerodynamics of wind	roto	rs -	desi	gn
	l turbine roto					
UNIT – II		RPHOTOVOLTAICMODULES				:s: 9
		n solar cells- model of a solar cell, effect of series and sl				
	•	solar radiation on efficiency - series and parallel conne				
		mismatch in series connection – hot spots in the module,				
	• •	diode – design and structure of PV modules – number of		lar o	cells	in
a module, v	vattage of me	odules, fabrication of PV module-PV module power outp	ut.			

	T . TT 10
UNIT - III PVSYSTEM DESIGNANDAPPLICATIONS	Lecture Hrs: 10
Introduction to solar PV systems - standalone PV system configuration - design	
PV systems - design of PV powered DC fan without battery, standalone system	
using MPPT, design of PV powered DC pump, design of standalone system w	•
AC/DC load - wire sizing in PV system - precise sizing of PV systems - Hybri	d PV systems –
grid connected PV systems.	
UNIT – IV WINDTURBINECONTROLSYSTEMS&SITEANALYSIS	Lecture Hrs: 10
Wind Turbine-Torque speed characteristics-Pitch angle control -stall control -p	ower electronic
control - Yaw control - Control strategy - Wind speed measurements - Wind s	peed statistics –
Site and turbine selection. Constant voltage & constant frequency- single output	system -double
output system with current converter & voltage source inverter-equivalent of	circuits-reactive
power and harmonics - reactive power compensation-variable voltage, variable	e frequency-the
self-excitation process-circuit model for the self-excited induction generator-an	alysis of steady
state operation-the excitation requirement-effect of a wind generator on the netwo	ork.
UNIT – V WIND GENERATION WITH VARIABLE SPEED	Lecture Hrs: 11
TURBINES AND APPLICATIONS	
Classification of schemes-operating area-induction generators-doubly fed induct	ion generator –
wound field synchronous generator - the permanent magnet generator - Merits an	nd limitations of
wind energy conversion systems – application in hybrid energy systems – diesel g	generator and
photovoltaic systems – wind photovoltaic systems.	
Textbooks:	
1. "Solar Photovoltaics Fundamentals, Technologies and Applications" by Chet	tan singh solanki,
PHI Publications, 3 rd edition, 2015.	C ,
2. S.N.Bhadra, D.Kastha, S.Banerjee, "Wind Electrical Systems" Oxford Uni	iversity Press, 1 st
edition, 2013.	
3. Banshi D. Shukla, "Engineering of Wind Energy", Jain Brothers, 1 st edition, 2	2018.
Reference Books:	
1. H.P. Garg, J. Prakash, Solar Energy Fundamentals and applications Tat	a McGraw-Hill
Publishers1 st edition, 2000.	
2. S.Rao & B.B. Parulekar, Energy Technology, Khanna publishers, 4 th edition, 2	2005.
3. N.K. Bansal, M. Kleemann, Michael Meliss, Renewable Energy sources	
Technology, Tata Mcgraw Hill Publishers & Co., 1 st edition, 1990.	
Online Learning Resources:	

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21107	SMARTGRIDTECHNOLOGIES (21D21107)	L	Т	Р	C
Semester	Ι	(PE-II)	3	0	0	3
	_			Ŭ	Ŭ	
Course Obje	ectives: To ma	ake the student				
To know	the importan	ce of smart grid technology functions over the pres	ent grid	1.		
• To get th grid.	e knowledge	about the measurement system and communication	techno	ology	of Sn	ıart
U	nce the quality	y, efficiency and security of power supply.				
	art an under	standing of economics, policies and technical	regula	tions	for 1	DG
		Student will be able to				
		portance of smart grid technology functions over the	e prese	nt gric	1.	
		dge about the measurement system and commun				y of
smart					U	
CO 3: Deter	mine the qual	ity, efficiency and security of power supply.				
CO 4: Impar	rt an understa	nding of economics, policies and technical regulation	ons for	DG ir	itegra	tion.
UNIT – I	SMART G	RIDS	Lectu	ıre Hr	s: 10	
Smart grid o	verview- age	ing assets and lack of circuit capacity- thermal c	onstrai	nts, o	perati	onal
		pply- national initiatives- early smart grid initiativ				
		lant- other initiatives and demonstrations- overvie	w of t	he tec	hnolo	ogies
required for t						
UNIT – II		SSION AND DISTRIBUTION	Lectu	ire Hr	s: 10	
	MANAGE		<u> </u>			
		anagement System-Wide Area Applications, Visu				
		ed External Systems- SCADA- Customer Informat	•			0
•		bution System Modeling- Topology Analysis- Lo			-	
-		culations- State Estimation- Applications-System M		-	Jpera	t10n-
		agement System-Overview of energy storage techn ETERING AND DEMAND SIDE	-	s. 1re Hr	~. 11	
UNIT - III	INTEGRA		Lecu	Ire Hr	S: 11	
Overview- St		g – Evolution of electricity metering- key compone	nts of a	smart	meter	ring-
	-	of the hardware used – signal acquisition- signal				-
		putation-input/output and communication. Commu				
		metering - Home area network, Neighborhood				
-		management system- Protocols for communic				
		vided by DSI-Implementation of DSI- Hardward				
-		om the Demand Side- System Support from DSI.	11			2
UNIT – IV		ICATION TECHNOLOGIES FOR THE	Lectu	ıre Hr	s: 10	
	SMART G					
Data Commu	unications: D	edicated and Shared Communication Channels, S	witchi	ng Te	echnic	jues,
Circuit Swite	ching, Messag	ge Switching, Packet Switching- Communication (Channe	els, In	troduc	ction

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

to TCP/IP - Communication Technologies: IEEE 802 Series- Mobile Communications-Multi-Protocol Label Switching-Power line Communication.

UNIT - VINFORMATION SECURITY FOR THE SMART GRIDLecture Hrs: 10Overview- Encryption and Decryption, Symmetric Key Encryption- Public Key Encryption-
Authentication- Authentication Based on Shared Secret Key- Authentication Based on Key
Distribution Center- Digital Signatures- Secret Key Signature-Public Key Signature-
Message
Digest-Impact of Stability.Lecture Hrs: 10

Textbooks:

- 1. Janaka Ekanayake, Kithsiri Liyanage, et.al., Smart Grid Technology and Applications, Wiley Publications, 1st edition, 2012.
- 2. James Momoh, Smart Grid: Fundamentals of Design and Analysis, Wiley, IEEE Press, 1st edition, 2012.
- 3. Bharat Modi, Anuprakash, Yogesh Kumar, Fundamentals of Smart Grid Technology, S.K Kataria& Sons, 1st edition, 2019.

Reference Books:

- 1. Eric D. Knapp, Raj Samani, Applied Cyber Security and the Smart Grid-Implementing Security Controls into the Modern Power Infrastructure, Syngress Publishers, 1st edition, 2013.
- 2. Nouredine Hadjsaid, Jean Claude Sabonnadiere, Smart Grids, Wiley Blackwell Publications, 1st edition, 2012.
- 3. Peter-Fox Penner, Smart Power: Climate Changes, the Smart Grid and the future of electric utilities, Island Press, 1st edition, 2010.

Online Learning Resources:

www.indiasmartgrid.org

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21108	ELECTRIC VEHICLE ENGINEERING (21D21108)	L	Т	Р	С
Semester	Ι	(PE-II)	3	0	0	3
			U	v	v	
Course Obj	ectives: To ma	ake the student				
		tand the differences between conventional Vehicle and E	lectr	ic Ve	ehicle	es,
electro n	nobility and en	nvironmental issues of EVs.				
		onfigurations, parameters of EV systems and Electric veh	icle o	lyna	mics	•
Analyze	the basic con	struction, operation and characteristics of fuel cells and b	attery	/ cha	rging	5
-	es in HEV sys					
		e various control structures for Electric vehicle.				
		Student will be able to				
		differentiate between Conventional Vehicle and Electr	ic V	ehicl	es, e	lectro
	-	onmental issues of EVs.				
		understand various configurations in parameters of EV s	yster	n an	d dyı	namic
1	ts of EV.					
	•	l technologies in EV and HEV systems.				
		ery charging and controls required of EVs.	T		11	10
UNIT – I		n to EV Systems and Energy Sources			Hrs:	
		of EV - EV Concept- EV Technology- State-of-the n- Fixed and Variable gearing- Single and multiple mot				
		eight, size, force and energy, performance parameters.	or u	100-	111-	wheel
-		nvironment- History of Electric power trains- Carbon er	nissi	ons f	rom	fuels-
		ants- Comparison of conventional, battery, hybrid an				
systems.	ind poind	and comparison of conventional, battery, hybrid an	u iu			cettie
UNIT – II	EV Propuls	ion and Dynamics	Leo	ture	Hrs:	10
		on system- Block diagram- Concept of EV Motors- Sing	le an	d m	ulti-	motor
		variable geared transmission- In-wheel motor configurat				
		rrent vehicle applications - Recent EV Motors- Vehicle le				
acceleration.						
UNIT - III	Fuel Cells		Leo	cture	Hrs:	10
Introduction	of fuel cells-	Basic operation- Model - Voltage, power and efficiency-	Pow	er pl	ant s	ystem
		Example of fuel cell electric vehicle - Introduction to H				
fuel consump	ption - Compa	rison of Series-Parallel hybrid systems- Examples.	-			
UNIT – IV	Battery Cha	arging and Control	Leo	eture	Hrs:	12
		requirements- Charger architecture- Charger functions-	Wire	eless	cha	rging-
Power factor						
		odeling of electro mechanical system- Feedback controll		-		
	00	Torque-loop, Speed control loop compensation- Acc	elera	tion	of b	attery
electric vehic	ele.					

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

UNIT – V Energy Storage Technologies

Lecture Hrs: 10

Role of Energy Storage Systems- Thermal- Mechanical-Chemical- Electrochemical- Electrical -Efficiency of energy storage systems- Super capacitors-Superconducting Magnetic Energy Storage (SMES)- SOC- SoH -fuel cells - G2V- V2G- Energy storage in Micro-grid and Smart grid- Energy Management with storage systems- Battery SCADA

Textbooks:

- 1. C.C Chan, K.T Chau: Modern Electric Vehicle Technology, Oxford University Press Inc., New York 2001,1st Edition
- 2. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2017,1st Edition

Reference Books:

- 1. Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, CRC Press 2021, 3rd Edition.
- Francisco Díaz-González, Andreas Sumper, Oriol Gomis-Bellmunt," Energy Storage in Power Systems" Wiley Publication, ISBN: 978-1-118-97130-7, Mar 2016,1st Edition
- 3. A.G.Ter-Gazarian, "Energy Storage for Power Systems", the Institution of Engineering and Technology (IET) Publication, UK, (ISBN 978-1-84919-219-4), Second Edition, 2011.
- 4. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, "Modern Elelctric, Hybrid Elelctric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2004,1st Edition
- 5. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2003,2nd Edition.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/108/102/108102121/
- 2. https://nptel.ac.in/syllabus/108103009

Course Code		Research Methodology and IPR	L	Т	Р	C
Semester	Ι	(21D11109)	2	0	0	2
~		<u>(21D11103)</u>		-		
Course Objecti	ves:	This Course Will Enable Students:				
Course Outcom	nes (CO): Student will be able to				
At the end of thi	s co	urse, students will be able to				
Understand re	esear	rch problem formulation.				
Analyze researched	arch	related information				
Follow resear	ch e	thics				
• Understand th	nat to	oday's world is controlled by Computer, Information				
		omorrow world will be ruled by ideas, concept, and crea	tivit	y.		
• Understanding that when IPR would take such important place in growth of individuals &						
	0	lless to emphasis the need of information about Intel				
Right to be pr	omo	oted among students in general & engineering in particul	ar.		-	•
• Understand t	hat	IPR protection provides an incentive to inventors for	furtl	her 1	esea	rch
work and inv	estm	ent in R & D, which leads to creation of new and better	proc	ducts	, and	l in
turn brings ab	out,	economic growth and social benefits.				
UNIT - I		Le	ectui	re Hı	s:	
Meaning of rese	earcl	h problem, Sources of research problem, Criteria Cha	ract	eristi	cs o	fa
good research p	orobl	em, Errors in selecting a research problem, Scope an	nd o	bjec	tives	of
_		Approaches of investigation of solutions for research	n pr	oble	m, d	ata
	sis,	interpretation, Necessary instrumentations				
UNIT - II			ectu	re Hı	s:	
Effective literatu	ire s	tudies approaches, analysis Plagiarism, Research ethics,				
UNIT - III			Lect	ure l	Hrs:	
Effective techni	cal	writing, how to write report, Paper Developing a Res	searc	h P	ropo	sal,
Format of resear	ch p	roposal, a presentation and assessment by a review com-	mitte	ee		
UNIT - IV			Lect	ure	Hrs:	
Nature of Intelle	ctua	l Property: Patents, Designs, Trade and Copyright. Proc				ing
		echnological research, innovation, patenting, developme				-
-		al cooperation on Intellectual Property. Procedure for g				
Patenting under						,
UNIT - V			Le	cture	e Hrs	:
Patent Rights:	Sco	pe of Patent Rights. Licensing and transfer of tec	hnol	ogy.	Pat	ent
information and	d d	latabases. Geographical Indications. New Develop	men	ts i	n Il	PR:
		atent System. New developments in IPR; IPR of Biol	ogic	al S	yste	ms,
	are	etc. Traditional knowledge Case Studies, IPR and IITs.				
Textbooks:						
	-	namics for Earthquake Engineering, A.K.Chopra, Pearso	n Pu	bilic	atior	ıs
		Structures by Clough & Penziem				
3. Structura	l Dy	namics by Roy. R. Craig John willy & fours.				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>COMMON SUBJECTS TO ALL THE SPECIALIZATIONS</u>

Reference Books:

- Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & engineering students""
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide• for beginners"
- Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- Mayall, "Industrial Design", McGraw Hill, 1992.
- Niebel, "Product Design", McGraw Hill, 1974.
- Asimov, "Introduction to Design", Prentice Hall, 1962.
- Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
- T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

Course Code		ENGLISH FOR RESEARCH PAPER WRI	TING	L	Т	Р	C
Semester	Ι	(21D1110)		2	0	0	0
	1						
Course Objecti	ves:	This Course Will Enable Students:					
v							
Course Outcon	nes (CO): Student will be able to					
At the end of thi	is co	rse, students will be able to					
1. Understand th	nat h	w to improve your writing skills and level of re	adabilit	у			
2. Learn about w	vhat	o write in each section					
3. Understand th	ne sk	lls needed when writing a Title Ensure the good	l quality	of p	aper	at v	ery
first-time submi	ssio						
UNIT - I			L	ectu	e Hı	s:	
Planning and Pr	repar	tion, Word Order, Breaking up long sentences	, Structi	uring	g Par	agraj	ohs
and Sentences,	Bei	ng Concise and Removing Redundancy, Av	oiding	Am	bigu	ity a	ind
Vagueness							
UNIT - II				ectu			
		d What, Highlighting Your Findings, He		and	Cri	ticisi	ng,
Paraphrasing an	d Pla	giarism, Sections of a Paper, Abstracts. Introduce	ction 4				
UNIT - III				Lect			
Review of the L	itera	ure, Methods, Results, Discussion, Conclusions	, The Fi	inal	Chec	k.	
UNIT - IV				Lect	ure	Hrs:	
key skills are no	eede	when writing a Title, key skills are needed with	hen wri	ting	an A	bstra	act,
key skills are ne	eedeo	when writing an Introduction, skills needed w	hen wri	ting	a Re	view	of
the Literature							
UNIT - V						e Hrs	
		en writing the Methods, skills needed when w	-				
		ting the Discussion, skills are needed when v	-				
-	how	to ensure paper is as good as it could pos	sibly be	e the	e firs	st- ti	me
submission							
Textbooks:							
		5) Writing for Science, Yale University Pres					-
	X (20	06) How to Write and Publish a Scientific Pape	r, Camb	oridg	e Un	ivers	ity
Press						a - ·	
		98), Handbook of Writing for the Mathematical	atical S	cien	ces,	SIA	М.
Highman'sbook		English for Weider D. J. D. C.	NT	V	1_ D	1	-1-4
		, English for Writing Research Papers, Spring	er New	Yor	кDo	ordre	cht
Heidelberg Lone	don,	2011					

Course Code		VALUE EDUCATION	L	Т	Р	C			
Semester	Ι	<u>(21D11111)</u>	2	0	0	0			
Course Objecti	ves:	This Course Will Enable Students:							
		CO): Student will be able to							
		of education and self- development							
2. Imbibe good values in students									
-	1 kno	ow about the importance of character							
UNIT - I			Lecture						
Values and self-development -Social values and individual attitudes, Work ethics, Indian									
vision of humanism. Moral and non- moral valuation. Standards and principles., Value									
judgements	1								
UNIT - II			Lecture						
1		vation of values., Sense of duty. Devotion, Self-relia							
		hfulness, Cleanliness. Honesty, Humanity. Power o	f faith	, N	atio	nal			
	<u>m. L</u>	ove for nature ,Discipline							
UNIT - III			Lectu	-					
-		navior Development - Soul and Scientific attitude, P				0			
		ine. Punctuality, Love and Kindness. Avoid fault Thi	nking.	Fre	e fr	om			
	of lab	our., Universal brotherhood and religious tolerance.							
UNIT - IV			Lectu	-					
1		appiness Vs suffering, love for truth. Aware of self-d	estruct	ive	hab	its.			
Association and	Coc	peration. Doing best for saving nature							
UNIT - V			Lect	ture	Hrs	:			
Character and C	Comp	betence –Holy books vs Blind faith. Self-management	and Go	boc	hea	lth.			
Science of rein	carna	ation. Equality, Nonviolence, Humility, Role of Wom	en. Al	ll re	ligio	ons			
and same messa	ge. N	Aind your Mind, Self-control. Honesty, Studying effect	ively		-				
Textbooks:		· · · · ·				_			
1 Chakroborty,	S.K	. "Values and Ethics for organizations Theory and I	oractice	e", (Oxf	ord			
University Press	s, Ne	w Delhi							

Course Code		PEDAGOGY STUDIES	L	Т	Р	C
Semester	Ι	(21D11112)	2	0	0	0
Course Objecti	ves:	This Course Will Enable Students:				
		evidence on the review topic to inform programme de	sign	and	l pol	icy
U U		by the DfID, other agencies and researchers.				
		ridence gaps to guide the development				
-	nes (CO): Student will be able to				
UNIT - I				e Hr		
		Aethodology, Aims and rationale, Policy background			-	
		rminology Theories of learning, Curriculum, Teac				on.
	lewc	rk, Research questions, Overview of methodology and S				
UNIT - II				$\frac{1}{1}$		1
		Pedagogical practices are being used by teachers in form	nal a	na 11	nfori	nai
	veic	pping countries. Curriculum, Teacher education.	r .			
UNIT - III	66			ure I		
		ctiveness of pedagogical practices, Methodology for the		-		-
1 1		of included studies. How can teacher education (
-		school, curriculum and guidance materials best su				
		of change. Strength and nature of the body of eviden es. Pedagogic theory and pedagogical approaches. Tea				
and beliefs and l			acrie	15 a	unu	162
UNIT - IV	cuu		[ect	ure I	Irs	
	velor	oment: alignment with classroom practices and followu				eer
		om the head teacher and the community. Curriculum				
		limited resources and large class sizes				
UNIT - V			Le	cture	Hrs	:
Research gaps	and	future directions Research design Contexts Peda	gog	у 7	Геас	her
education Curri	culu	m and assessment Dissemination and research impact.				
Textbooks:						
1. Ackers J,	Ha	rdman F (2001) Classroom interaction in Kenyan p	rima	ry s	schoo	ols,
1 '	`	2): 245-261.				
		004) Curricular reform in schools: The importance of eva	aluat	ion,	Jour	nal
		Studies, 36 (3): 361-379.				
		K (2003) Teacher training in Ghana - does it count? M		-site	teac	her
		arch project (MUSTER) country report 1. London: DFID				
		K, Lussier K, Pryor J, Westbrook J (2013) Improvin				
		asic maths and reading in Africa: Does teacher pre	para	tion	cou	nt?
		ournal Educational Development, 33 (3): 272–282.	0.000	:		
		(2001) Culture and pedagogy: International comparis ford and Boston: Blackwell.	SOIIS	ш]	hum	ary
		03) Read India: A mass scale, rapid, 'learning to read' ca	mn	aion		
		org/images/resource%20working%20paper%202.pdf.	unpo	11 <u>5</u> 11.		
	alli	015/1110505/105001007020working/020paper/0202.pdf.				

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21109	MACHINES & POWER	R SYSTEMS	L	Т	P	С
Semester	Ι	LAB		0	0	4	2
		(21D21109)					
	T 1	4 4 1 4					
Course Objecti			•				
	-	nts ensuring the safety of equ	ipment and pers	sonne	el.		
•	•	n data fault studies.					
-	-	results and correlating them	-	cal po	ower	syste	em.
		er system protection purpose					
	~ /	ent will be able to					
		t of different experiments.					
		nd compute the data to obtain					
11.	1	al results to solve the origination	al power system	prot	lems	5.	
· · ·		ys to identify various faults.					
List of Experim							
		cansient Reactance of a Salie					
	-	ence Impedances of a Cylind	lrical Rotor Syn	chro	nous	Mac	hine
3. Fault An	•						
/	G Fault	ii) LL Fault iii)	LLG Fault	i	v) L	LLG	Fault
		Three Winding Transformer					
-		losses of a Three Phase Squ	0		Mot	or	
	0	ristics of a Salient Pole Sync		ne			
		c/Numeric Over Current Rel	ay				
		c Negative Sequence Relay					
		ic/Numeric Over Voltage Re	•	_			
		c/Numeric Percentage Biase	d Differential R	elay			
-	of Buchholz re	-					
0	of Frequency I	•					
	of Reverse Pov						
	of Earth fault l						
Web Sources: h	ttps://www.vl	ab.co.in					

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21110	PO	WER SYS	ER SYSTEMS SIMULATION LA (21D2111)						Τ	Р	C
Semester	Ι			(21)	D2111))			0	0	4	2
Course Objecti	ives: To make	e the stu	udent									
• Understand	how to write	the co	ding in sin	nulatio	n							
• Analyze the	e data related	to loa	d flows, e	econom	ic disp	atch j	problem	n and t	ransi	ent	stabi	lity
analysis.					-	_						-
• Apply the c	omputational	results	s in real lif	fe powe	r syste	m pro	blems.					
• Have the ca	pabilities to d	levelop	new softw	ware's	to optin	mize t	he resu	lts.				
Course Outcon	nes (CO):Stud	dent wi	ill be able	to								
CO 1: Understa	and the coding	g in sin	nulation.									
CO 2: Analyze												
CO 3: Apply co												
CO 4: Develop	software for p	power	system inc	dustry t	o solve	e vario	ous issu	es.				
List of Experin												
1. Y - Bus 1												
	Seidel Load F											
	coupled Load I		•									
	coupled Load I		Analysis fo	or Distr	ibution	n Syste	ems					
•	Point Method											
-	ation of Availa		ransfer Ca	pabiliti	es.							
0	ency analysis.		1, 17		1.	1	11		.1 1			
	timation using	0 0		-								
	on of power q	quality	problems	(Sag/S	well, ir	iterru	ption, tr	ansien	ts, ha	irmo	nics,	,
flickers e	/	1.01.1	- (14			4 . 1					
	ic analysis and	-			-	-						
	ic analysis and			mer de	sign to	ming	ale nari	momes	•			
Web Sources: h	https://www.vl	lab.co.	1N									

Course Code	21D21201	POWER SYSTEM STABILITY & CONTROL	L	Т	Р	C	
Semester	II	TOWER STSTEM STABILITT & CONTROL	3	0	0	3	
	viectives: To	make the student					
	0	ear and nonlinear models of multi-machine power sys	tome				
		ear and nonlinear models of multi-machine power sys	tems.				
-		em models from dynamic data and simulate exci	totion	maah	oniom	a in	
	nous machine		lation	meen	amsm	5 111	
• Design	excitation sys	stems and their state space model equations for further	stabil	ity app	olicatio	ons.	
Course Ou	itcomes (CO): Student will be able to					
CO 2: Ana sys CO 3: Ap CO 4: Des	alyze system tem stabilizer ply the variou sign the state	concepts of single and multi-machine systems connector responses to small disturbances and concept of dynam rs. Its stability methods to evaluate the stability of the syst re space model equations for excitation systems and gle instability.	nic sta æm.	bility	and po	ower	
		IENTARYMATHEMATICALMODEL	Loot	uro U	rs: 10		
		rea criteria – Power Angle curve of a Synchronous					
		ed to an infinite bus – Model of multi-machine system					
		-machine system – Effect of the excitation system on 7				Car	
UNIT - II		RESPONSE TO SMALL DISTURBANCES AND			•		
01111 - 11		C STABILITY	Lett	ui e II	15.0		
The unreg		conous Machine – Modes of oscillation of an unreg	ulated	multi	-mach	ine	
system – F one time l system cor	Regulated syn ag – Problen nnected to in	chronous machine – Voltage regulator with one time ns -Concept of Dynamic stability – State-space mod finite bus – Effect of excitation on Dynamic stabili uth-Hurwitz criterions.	lag – lel of	Gove: single	rnor w mach	ith ine	
UNIT - II		SYSTEMSTABILIZERS	Lect	ure H	rs: 12		
		mentary stabilizing signals – Block diagram of					
		the complete exciter – Generator system – Lead com					
analysis us		lue approach.					
UNIT - IV	EXCITA	TIONSYSTEMS	Lect	ure H	rs:12		
Introductio	on to excitation	on systems-Non-continuously, Continuously regulate	d syst	ems–E	Excitati	ion	
system cor	npensation –	State-space description of the excitation system - Sim	plifie	d linea	r mod	el–	
Effect of e	xcitation on g	generator power limits. Type-2, Type-3 and Type-4 e	xcitati	on sys	tems a	ınd	
their state-	space modeli	ng equations.					
UNIT - V	STABIL	ITYANALYSIS	Lect	ure H	rs:10		
	• •	stability of non-liner systems using energy concept – I					
		ed on first integrals - Zubov's method - Popov's					
function for single machine connected to infinite bus – Voltage stability–Factors affecting voltage							
		e - Comparison of Angle and Voltage stability -	-Analy	vsis of	f volta	ige	
instability	and collapse–	-Control of voltage instability.					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. Vijay Vittal, James D. McCalley, Paul M. Anderson "Power System Control and Stability", Jhon Willey and Sons, 3rd edition, 2019.
- 2. Prabha Kundur, "Power System Control and Stability", McGraw Hill Education India, 1st edition, 5th reprint, 2008.

Reference Books:

- 1. Dr Jan Machowski, Dr Janusz W. Bialek, Dr Jim Bumby · "Power System Dyanmics: Stability and Control", Jhon willey and Sons, 2nd Edition, 2011.
- 2. M.A. Pai, Power System Stability Analysis by the direct method of Lyapunov, North Holland Publishing Company, NewYork, 1st edition, 1981.

Online Learning Resources:

Course Code	21D21202		L	Т	Р	C
Semester	II	FACTS CONTROLLERS	3	0	0	3
Course Objecti	ves: To make	the student				
		mentals of FACTS Controllers, Importance o	f contr	ollable	param	eters
		trollers & their benefits.				
• To explain STATCOM		STATCOM and SVC and their comparison	n and	the reg	gulation	n of
To remember	er the objectiv	ves of Shunt and Series compensation.				
• To analyze	the functionir	ng and control of GCSC, TSSC and TCSC.				
		dent will be able to				
		control techniques for the purpose of identi	fying t	he sco	pe and	l for
	-	ACTS controllers.				
		types of controllable VAR generation a	ind va	riable	imped	ance
techniqu						
-	-	ters using FACTS controllers.				
		ion of Unified Power Controller and Hybrid A	-		10	
		CEPTS, VSI AND CSI		re Hrs:		
		ns power flow in an AC system, loading ca				
•	· •	ortance of controllable parameters basic type				
		llers. Single phase three phase full wave bridg				
		and 48 pulse operation. Three level voltage basic concept of current source Converters, and				
		e source converters.		iparisor		IICIII
	-	MPENSATION	Lectu	re Hrs:	8	
		ation - Methods of controllable var generation				ance
		switching converter type var generators -				
Comparison of S				, un B	ciiciato	10
•		MPENSATION	Lectu	re Hrs:	12	
Objectives of se	eries compens	sation-GTO Thyristor Controlled Series Cap	acitor	(GCSC)-Thyr	istor
		(TSSC) - Thyristor Controlled Series Capa				
schemes for TC			·			
		OWER FLOW CONTROLLER (UPFC)	Lectu	re Hrs:	12	
Introduction - 7	The Unified	Power Flow Controller - Basic Operating P	rincipl	es - Co	onventi	onal
		lities - Independent Real and Reactive Power	-			
Structure – Basi	ic Control Sy	stem for P and Q Control-Hybrid Arrangeme	nts: Ul	PFC W	ith a P	hase
Shifting Transfo	ormer.					
		POWER FLOW CONTROLLER (IPFC)		re Hrs:		
		principle and characteristics of IPFC, control		ture, pr	actical	and
application cons	iderations, ge	eneralized and multifunctional FACTS control	lers			

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. Understanding FACTS–Concepts and technology of Flexible AC Transmission systems, Narain G. Hingorani, Laszlo Gyugyi, IEEEPress, WILEY,1st Edition,2000, Reprint2015.
- 2. FACTS Controllers in Power Transmission and Distribution, Padiyar K.R., New Age International Publishers, 1st Edition, 2007.

Reference Books:

- 1. Flexible AC Transmission Systems: Modelling and Control, Xiao–Ping Zhang, Christian Rehtanz, Bikash Pal, Springer, 2012, First Indian Reprint, 2015.
- 2. FACTS–Modelling and Simulationin Power Networks, Enrigue Acha, Claudio R. Fuerte Esquival, Huge Ambriz –perez, Cesar Angeles –Camacho, WILEY, 1st edition, 2004.

Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Course	21D21203	POWER SYSTEM WIDE AREA MONITORING &	L	Т	P	С
Code		CONTROL				
Semester	II	(PE–III)	3	0	0	3

Course Objectives: To make the student

- To know the necessity of real-time computer control of power systems and wide area measurement system.
- To get the knowledge of different automation systems.
- To know the complete fundamentals of SCADA and its importance in real time power systems.
- To get the knowledge about Substation Automation, New Digital Substation and traditional approach and IED-based approach of Integrated Protective Functions.
- To study about Voltage stability, prevention of voltage collapse and dynamic stability analysis. **Course Outcomes (CO):** Student will be able to
- **CO1:** Know the necessity of real-time computer control of power systems and wide area measurement system.
- **CO 2:** Get the knowledge of different automation systems.
- CO 3: Know the complete fundamentals of SCADA and its importance in real time power systems.
- **CO 4:** Get the knowledge about Substation Automation, New Digital Substation and traditional approach and IED-based approach of Integrated Protective Functions.

CO 5: Study about Voltage stability, prevention of voltage collapse and dynamic stability analysis.

UNIT - I COMPUTER CONTROL OF POWER SYSTEMS

Need for computer control of power systems, Operating states of a power system, Supervisory Control and Data Acquisition system, Energy control centers.

Wide Area Measurement system (WAMS): Architecture, Components of WAMS, Applications: Voltage Stability Assessment, Frequency stability Assessment, Power Oscillation Assessment, Communication needs of WAMS, Wide Area Monitoring Protection & Control, and Remedial Action Scheme.

UNIT - II POWER SYSTEM AUTOMATION

Lecture Hrs: 8

Lecture Hrs: $1\overline{0}$

Introduction, Evolution of Automation Systems, History of Automation Systems, Supervisory Control and Data Acquisition (SCADA) Systems, Components of SCADA Systems, SCADAApplications,SCADAinPowerSystems,SCADABasicFunctions,SCADAApplicationFuncti ons, Advantages of SCADA in Power Systems, Deferred Capital Expenditure, Optimized Operation and Maintenance Costs, Equipment Condition Monitoring (ECM), Sequence of Events (SOE) Recording, Power Quality Improvement, Data Warehousing for Power Utilities, Power System Field, Transmission and Distribution Systems, Customer Premises, Types of Data and Signals in Power Systems, Flow of Data from the Field to the SCADA Control Center

UNIT - IIISCADA FUNDAMENTALSLecture Hrs: 12Introduction, Open System: Need and Advantages, Building Blocks of SCADA Systems, Remote
Terminal Unit (RTU), Evolution of RTUs, Components of RTU, Communication Subsystem,
Logic Subsystem Termination Subsystem, Testing and Human-Machine Interface (HMI)
Subsystem, Power Supplies, Advanced RTU Functionalities, Intelligent Electronic Devices
(IEDs), Evolution of IEDs, IED Functional Block Diagram, Hardware and Software Architecture
of the IED, IED Communication Subsystem, IED Advanced Functionalities, Tools for Settings,

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Commissioning, and Testing, Programmable LCD Display, Typical IEDs, Data Concentrators and Merging Units, RTUs, IEDs, and Data Concentrator, Merging Units and IEDs.

UNIT - IV SUBSTATION AUTOMATION Lecture Hrs:12
Substation Automation: Technical Issues, System Responsibilities, System Architecture,
Substation Host Processor, Substation LAN, User Interface, Communications Interfaces, Protocol
Considerations. The New Digital Substation, Process Level, Protection and Control Level, Station
Bus and Station Level, Substation Automation Architectures, Legacy Substation Automation
System, Digital Substation Automation Design, New versus Existing Substations. Drivers of
Transition, Migration Paths and the Steps Involved, Value of Standards in Substation Automation,
Substation Automation (SA) Application Functions, Integrated Protection Functions: Traditional
Approach and IED-Based Approach. Automation Functions, Enterprise-Level Application
Functions.
UNIT - V VOLTAGE STABILITY Lecture Hrs:10
Basic concepts, Voltage collapse-general characterization, classification, Voltage stability
analysis-modeling, dynamic analysis, static analysis, shortest distance to instability, continuation
power flow analysis, prevention of voltage collapse – design measures, operating measures.
Textbooks:
1. AllenJ.WoodandBruceWoolenberg,PowerSystemGeneration,OperationandControl,JohnWiley andSons, 3 rd edition, 2013.
2. Prabha Kundur, "PowerSystem Control andStability", McGraw Hill Education India, 1 st
edition, 5 th reprint, 2008.
3. MiniS.ThomasandJohnDouglasMcDonald,PowerSystemSCADAandSmartGrids,CRCPress, 1 st edition, 2015.
Reference Books:
1. E.Handschin,Real-timeControlofElectricalPowerSystems,ElsevierPublications&Co,1 st
edition,1988.
2. SpecialIssueonComputerControlofPowerSystems,IEEEProc,July1974.
Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D23104	MODERN CONTROL THEORY	L	T]	P	С
Semester	1025104 I	(21D23104)	3		0	$\frac{c}{3}$
Semester	1	(PE-III)	5	U	U	5
Course Objec	$\frac{1}{\mathbf{tives:}}$ To ma		l			
v		lerstand the concept of state space representation, Sol	utio	n of	sta	ate
		nearization of nonlinear systems, controllability and				
		of duality, concepts of optimal and Lyapunov stability.	000		0111	205
-	· • •	ncepts to analyze controllability, Observability and pole	pla	ceme	nt	hv
	edback.	neepts to unuigze controlluonity, coservuonity unu pole	più	cente	iii t	J
		pt of regulator, stability and sensitivity using various	me	thods	ะล	nd
-	ance rejection		me	mous	· a	nu
	•	oserver and reduced order observer.				
		tudent will be able to				
	. ,		1:+++			ta
		the space representation, controllability and observability	IIIty	cont	ep	us,
	•	, concepts of optimal and Lyapunov stability.				
	-	tions, pole placement by state feedback.				
2		lity & observability of state models.				
Ŭ		server and reduced order observer.	1			
UNIT - I		ARIABLE DISCRIPTION		c Hrs		
		ra and linear Vector Space, State space representatio				
		ar System- Solution of state equations- Evaluation of S	tate	Tran	siti	on
Matrix (STM).						
	RANSFORM CONTROLL	MATION, POLE PLACEMENT AND ABILITY	Le	c Hrs	:: 1	.0
		and invariance of system properties due to similarity tr	ansf	orma	tio	ns.
		O, SIMO and MISO transfer functions. Discretization o				
		nversion of state space model to transfer function model				
-		eorem of feedback control - Controllability and Controll		0		
		state feedback using Ackermann's formula- Eigen struct				
problem.	0 1	6		0		
UNIT - III	OPTIMAL	CONTROL	Le	c Hrs	s: 1	0
		(LQR) problem and solution of algebraic Riccati equation				
-	•	hods- iterative method- Controller design using output fee		U	0	
UNIT - IV	OBSERVE			c Hrs	: 9)
		ble canonical form-Design of full order observer using				
•		ithm- Duality between controllability and observability				
	0	esign- Reduced order observer design.	5			
UNIT - V		Y ANALYSIS AND SENSITIVITY	Le	c Hrs	: 1	0
		em- Stability in the sense of Lyapunov- Asymptotic stal				
	• •	and discrete time systems- Solution of Lyapunov type eq	-			
		ipling by state feedback- Disturbance rejection- so				
complementary			-11010	.1 v 11 y	u	
complemental.	y sensitivity I	unvuono.				

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, India, 5th edition, 2010.
- 2. T. Kailath, "Linear Systems", Perntice Hall, 2016.
- 3. N.K. Sinha, "Control Systems", New Age International, 4th edition, 2013.

Reference Books:

- 1. Panos J Antsaklis, and Anthony N.Michel,"Linear Systems", New-age international (P) LTD. Publishers, 2009.
- 2. John JDAzzoand C. H. Houpis, "LINEAR Control System Analysis And Design With Matlae", Marcel Dekker, Inc., 5Th edition, 2003.
- 3. B.N.Dutta, "Numerical Methods for linear Control Systems", Elsevier Publication, 2007.
- 4. C.T. Chen "Linear System Theory and Design- Oxford Series 3rdEdition, ,1998.
- 5. Richard C. Dorf and Robert H. Bishop, "Modern Control Systems", 12th Edition, Pearson Edu., India, 2014

Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21204	REACTIVE POWER COMPENSATION & MANAGEMENT	L	T	' P	C
Semester	II	(PE-III)	3	0	0	3
¥			_			
	v	make the student sity of reactive power compensation.				
	•	compensation and various types of reactive power co	mnon	cof	tion	in
	ssion systems		mpen	Isai	.1011	ш
	•	power coordination system.				
		ibution side and utility side reactive power management.				
): Student will be able to				
		mportance of load compensation in symmetrical as well as v	insym	m	etric	.al
load		inportance of four compensation in symmetrical as wen as c	msym		Jun	ai
		compensation methods in transmission lines.				
	•	r reactive power coordination.				
		nand side reactive power management & user side re	active	e i	bow	er
	agement.			- 1	2011	••
	<u> </u>	MPENSATION L	ectur	e F	Irs:	10
I					aciti	
5	1	Load compensator as a voltage regulator – Phase balancin				
		mmetrical loads-Examples.	0			
UNIT - II			Lectur	e I	Irs:	8
		COMPENSATION IN TRANSMISSION SYSTEM				-
Uncompens		Types of compensation - Passive shunt and series and d	ynam	ic	shu	nt
		ristic time periods-Passive shunt compensation-Static of				
		sation-Compensation using synchronous condensers -Example				
UNIT - III			ecture	e H	Irs:	12
	MANAG	EMENT				
Objective-N	Mathematica	l modeling-Operation planning-Transmission benefits-Basi	c cor	nce	pts	of
quality of p	ower supply	v – Disturbances - Steady – state variations – Effects of und	ler Vo	olta	iges	, —
Frequency -	– Harmonics	, radio frequency and electromagnetic interferences. Load pa	tterns	s –	Bas	sic
methods - l	oad shaping	- Power tariffs - KVAR based tariffs - penalties for voltag	e flic	ke	rs a	nd
	oltage levels					
UNIT - IV	DISTRIE MANAG		Lectu	ire	Hrs	:12
System loss		eduction methods – Examples – Reactive power planning –	Ohie	ect	ives	
		pacitor placement–Retrofitting of capacitor banks-KVAR rec				
	U 1	Purpose of using capacitors – Selection of capacitors –Dec	•			
		racteristics and Limitations.	laing	Iu	0101	5
UNIT - V	1 /		ecture	еF	Irs	0
		ON SYSTEMS AND ARC FURNACES		- 1		
Typical lay	out of tractio	n systems-Reactive power control requirements-Distribution	n tran	sfc	orme	ers
- Electric an	rc furnaces -	Furnaces transformer - Filter requirements - Remedial mea	asures	s —]	Pow	<i>'er</i>
factor of an	arc furnace.					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. T.J.E.Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, 5th edition, 2017.
- 2. D.M.Tagare, Reactive power Management, Tata Mc Graw Hill, 1st edition, 2004.

Reference Books:

- 1. Dr. Hidaia alassouli, "Reactive Power Compensation", Kindle Edition.2018.
- 2. Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, Wiely publication, 4th edition, April, 2012.

Online Learning Resources:

http://nptel.iitm.ac.in

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21205	POWER QUALITY	L	Т	P	C			
Semester	II	(PE-IV)	3	0	0	3			
Course Object	ives. To make t	hastudant							
 Course Objectives: To make the student To understand power quality definition, power quality standards. 									
	1 1	solving power quality problems.							
	U U	of linear and nonlinear loads.							
	• 1	odology, mitigation techniques and cas	e study						
		ent will be able to	e study.						
		entals & terminology of power quality.							
		power frequency disturbances, typ		sients	& tra	nsient			
wavefor									
CO 3: Analyze	e the harmonic r	nethodology & Electromagnetic Interfe	erence conc	epts.					
•		y of grounding and methods of groundi		1					
		chniques of measuring & solving powe	0	oblems	5.				
UNIT - I		TION TO POWER QUALITY		re Hrs:					
Definition of P		Power Quality Progression - Power Q	Duality Ter	minolo	gy - Po	ower			
		s of Power Suppliers and Users-Power	- •						
		UENCY DISTURBANCE&TRANS			re Hrs:	8			
		ency Disturbance - Common Power		y Dist	urbance	es –			
Characteristics	of Low Frequ	ency Disturbances - Voltage Tolera	nce Criteri	a- ITI	C Gra	ph -			
Introduction to	Transients -Tr	ansient System Model - Examples of	Transient	Models	and T	heir			
Response - Po	wer System Tr	ansient Modeling-Types and Causes	of Transie	nts -E	xample	s of			
Transient Wave					-				
UNIT - III H	IARMONICS	& ELECTRO-MAGNETIC INTER	FERENCE	E Lec	ture Hr	s: 12			
	EMI)								
		monic Number (h) - Odd and Even C							
		ngle - Voltage and Current Harmon							
		ic Signatures - Effect of Harmonics (
		ltage and Current Limitation - Har							
		quency Classification -Electrical F	0						
	-	y Fields-High Frequency Interferer	nce-EMI S	uscept	ibility-	EMI			
-	*	alth Concerns of EMI.							
		ANDBONDING			ture Hr				
	-	Bonding-Shock and Fire Hazards-NE		-	-				
	•	em-Ground Electrodes-Earth Resistan							
•	•	em-Signal Reference Ground(SRG)			0				
-	ounding –Grou	nd Loops –Electro chemical Reactio	n -Examp	les of	Groun	ding			
Anomalies.									
	EASURING	AND SOLVING POWER	QUALIT	'Y Le	cture H	Irs:10			
	ROBLEMS		_						
		Measurements-Power Quality Measure			ver Qu	ality			
Measurements	Test Locations-	Test Duration-Instrument Setup- Instru	ment Guid	elines					

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. Power quality by C. Sankaran, CRC Press, 1st Edition, 2001.
- Electrical Power Systems Quality, Roger C. Dugan, Mark F. Mc Granaghan, Surya Santoso, H. Wayne Beaty, 2nd Edition, TMH Education Pvt. Ltd, 1996.

Reference Books:

- 1. Understanding Power quality problems by Math H. J.Bollen IEEE Press, 1st edition, 2000.
- 2. Power quality enhancement using custom power devices by Arindam, Ghosh, Gerard Ledwich, Kluwer, Academic publishers, 1st edition, 2002.

Online Learning Resources:

Ananthapuramu – 515 002, Andhra Pradesh, India

Semester II (PE-IV) 3 0 0 3 Course Objectives: To make the student • Able to know about the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. • Able to understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. • Able to analyze the impact of Micro grid & Active distribution network management system on various factors. • Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 2: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 3: Understand the concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 4: Understand the concept of distributed generation, distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10	Course Code	21D21206	DISTRIBUTED GENERATION AND MICRO GRID CONTROL	L	Т	Р	C	
 Course Objectives: To make the student Able to know about the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. Able to understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. Able to analyze the impact of Micro grid & Active distribution network management system on various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 Microgrid configuration - Interconnection of Microgrid welopment-Management and operational issues of a Microgrid - Active distribution network - Concept of Microgrid - Interoduction of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid - low voltage DC grid. UNIT - I INTRODUCTION TO DISTRIBUTED ONERGY ESOURCES I Lecture Hrs: 12 Microgrid - Dynamic interactions of Microgrid with main grid - low voltage DC grid. UNIT - I MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 MiANAGEMENT SYSTEM Introduction		II		3	0	0	3	
 Able to know about the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. Able to understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. Able to analyze the impact of Micro grid & Active distribution network management system on various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MICRO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid - Onlagent and Imitations of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy sources –Storage devices. UNIT - II MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Imp					v			
 Micro grid, its configuration, advantages & limitations. Able to understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. Able to analyze the impact of Micro grid & Active distribution network management system on various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT 1 INTRODUCTION TO DISTRIBUTED GENERATION AND Interconnection of Microgrid - Distributed generation - Active distribution network - Concept of Microgrid - Microgrid - Ontegration - Interconnection of Microgrid development-Management and operational distues of a Microgrid - Dynamic interactions of Microgrid with main grid - low voltage DC grid. UNIT 1 I DISTRIBUTED ENERGY RESOURCES I Lecture Hrs: 12 MICRO GRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 MICROGRID AND ACTIVE DISTRIBUTION NETWORK I Lecture Hrs: 12 MICROGRID AND ACTIVE DISTRIBUTION NETWORK I		v		0- 41-			t of	
 Able to understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. Able to analyze the impact of Micro grid & Active distribution network management system on various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. CO1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO3: The impact of Micro grid & Active distribution network management system on various factors. CO4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MICRO GRID CONCEPT Introduction to distributed generation of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - I IDISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy sources –Storage devices. UNIT - II MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 MICROGRID AND ACTIVE DISTRIBUTION NETWORK I Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment - Impact on distribution system - Control of DNO SCADA systems - SCADA in Microgrid - Micro systems - SCADA in Microgrid - Micro systems (DCS) - Sub-station communication standards an				& the	e cor	icepi	I OI	
 systems, solar photo voltaic systems & other renewable energy sources. Able to analyze the impact of Micro grid & Active distribution network management system on various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to Co 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT • I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MICRO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid -Dallenges and limitations of Microgrid with main grid – low voltage DC grid. UNT • I DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT • II MICROGRID AND ACTIVE DISTRIBUTION NETWORK MACGEMENT SYSTEM Introduction - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT • I				arau	00 n	Vore	ion	
 Able to analyze the impact of Micro grid & Active distribution network management system on various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 Micro grid - Distributed generation - Active distribution network - Concept of Microgrid - Microgrid - Distributed generations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid - low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - II MICROGRID AND ACTIVE DISTRIBUTION NETWORK [Lecture Hrs: 12 MICROGRID AND ACTIVE DISTRIBUTION NETWORK [Lecture Hrs: 12 Introduction - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid -				leigy	COI	vers	1011	
 various factors. Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO I: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MICRO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid - Onfiguration - Interconnection of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources - Storage devices. UNIT - II MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEM Introduction - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardwa	-	-		emer	nt sve	stem	on	
 Able to know the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT -1 INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MiCrO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrid with main grid – low voltage DC grid. UNIT -1 I DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Impact on market – Impact on neutron distribution system - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT -1 I DISTRIBUTED CONCEPT III MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 Introduction - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid – Micr		-	impact of theory grid to receive distribution network manag	emen	it by	,tem	on	
improvement technologies & issues of premium power in DC integration. Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid - Challenges and limitations of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANGEMENT SYSTEM Lecture Hrs: 12 MANAGEMENT SYSTEM <t< td=""><td></td><td></td><td>fect of SCADA & understand the concept of Power qua</td><td>litv d</td><th>istur</th><td>banc</td><td>es.</td></t<>			fect of SCADA & understand the concept of Power qua	litv d	istur	banc	es.	
Course Outcomes (CO): Student will be able to CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT -1 INTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid c-hallenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK				iity a	100001	oune	,	
CO 1: Understand the concept of distributed generation, distribution network & the concept of Micro grid, its configuration, advantages & limitations. CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 Microgrid configuration - Interconnection of Microgrid - Technical and economical advantages of Microgrid - Challenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - I DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources - Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller.								
CO 2: Understand the basic concepts in combined heat and power, Wind energy conversion systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPT Lecture Hrs: 10 Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrids - Technical and economical advantages of Microgrid - Dynamic interactions of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. Lecture Hrs: 12 UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MAAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - M	CO1: Un	derstand the	concept of distributed generation, distribution network &	k the	con	cept	of	
systems, solar photo voltaic systems & other renewable energy sources. CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPT Lecture Hrs: 10 Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrid a velopment-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCA						1		
CO 3: The impact of Micro grid & Active distribution network management system on various factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MICRO GRID CONCEPT Introduction - to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 MANAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. Lecture Hrs: 12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardiza	CO 2: Un	iderstand the	basic concepts in combined heat and power, Wind en	lergy	con	vers	ion	
factors. CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND Lecture Hrs: 10 MICRO GRID CONCEPT Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 MANAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controler - Central controller. UNIT - IV <th -="" colspan:="" control="" dno="" of="" scada="" systems="" systems<="" td=""><td>sys</td><td>stems, solar p</td><td>hoto voltaic systems & other renewable energy sources.</td><td></td><th></th><td></td><td></td></th>	<td>sys</td> <td>stems, solar p</td> <td>hoto voltaic systems & other renewable energy sources.</td> <td></td> <th></th> <td></td> <td></td>	sys	stems, solar p	hoto voltaic systems & other renewable energy sources.				
CO 4: Understand the effect of SCADA & understand the concept of Power quality disturbances, improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPT Lecture Hrs: 10 Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrid a development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs: 12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization – Impact on remover interval.			Micro grid & Active distribution network management sy	/stem	on	vario	ous	
improvement technologies & issues of premium power in DC integration. UNIT - I INTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPT Lecture Hrs: 10 Introduction to distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrids - Technical and economical advantages of Microgrid-Challenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. Lecture Hrs: 12 UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller. Lecture Hrs:12 UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-stati								
UNIT - IINTRODUCTION TO DISTRIBUTED GENERATION AND MICRO GRID CONCEPTLecture Hrs: 10Introductionto distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrids - Technical and economical advantages of Microgrid-Challenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid - low voltage DC grid.UNIT - IIDISTRIBUTED ENERGY RESOURCESLecture Hrs: 8Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices.Lecture Hrs: 12UNIT - IIIMICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEMLecture Hrs: 12Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller.Lecture Hrs: 12UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKS Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -			1 1	lity d	istur	banc	es,	
MICRO GRID CONCEPTIntroductionto distributed generation - Active distribution network - Concept of Microgrid - Microgrid configuration - Interconnection of Microgrids - Technical and economical advantages of Microgrid-Challenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid.UNIT - IIDISTRIBUTED ENERGY RESOURCESLecture Hrs: 8Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy 			* * * *	-	-		1.0	
Introductiontodistributedgeneration- Activedistributionnetwork- ConceptofMicrogrid-Microgridconfiguration- InterconnectionofMicrogrids- Technical and economical advantages ofMicrogrid-ChallengesandlimitationsofMicrogriddevelopment-Managementand operationalissues of aMicrogrid- Dynamicinteractions ofMicrogrid development-Managementand operationalissues of aMicrogrid- Dynamicinteractions ofMicrogrid development-Managementand operationalUNIT - IIDISTRIBUTED ENERGY RESOURCESLectureHrs: 8Introduction- Combined heat and power (CHP) systems:Micro-CHP systems - Wind energyconversionsystems (WECS):Wind turbine operating systems - Solar photovoltaic (PV) systems:Classificationof PV cell - Small-scale hydroelectric power generation - Other renewable energysources-Storage devices.Lecture Hrs: 12UNIT - IIIMICROGRID AND ACTIVE DISTRIBUTION NETWORKLecture Hrs: 12Introduction - Impact on heat utilization - Impact on process optimization - Impact on market -Impact on communication standards andprotocols - Networkmanagementneeds of Microgrid - Micro source controller - Centralcontroller.UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKSLecture Hrs: 12Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA inMicrogrids - Human-machine interface (HMI) - Hardware components - Communication trends in<	UNIT - I			Lecti	ure F	Irs:	10	
Microgrid configuration - Interconnection of Microgrids - Technical and economical advantages of Microgrid-Challenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid.UNIT - IIDISTRIBUTED ENERGY RESOURCESLecture Hrs: 8Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices.Lecture Hrs: 12UNIT - IIIMICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEMLecture Hrs: 12Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller.Lecture Hrs:12UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKSLecture Hrs:12Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –	Introduction			of N	licro	grid	_	
Microgrid-Challenges and limitations of Microgrid development-Management and operational issues of a Microgrid - Dynamic interactions of Microgrid with main grid – low voltage DC grid. UNIT - II DISTRIBUTED ENERGY RESOURCES Lecture Hrs: 8 Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. Lecture Hrs:12 UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –			•			-		
UNIT - IIDISTRIBUTED ENERGY RESOURCESLecture Hrs: 8Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices.Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices.UNIT - IIIMICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEMLecture Hrs: 12Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller.Lecture Hrs: 12UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKSLecture Hrs: 12Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -								
Introduction - Combined heat and power (CHP) systems: Micro-CHP systems - Wind energy conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. VNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEM Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs: 12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -	issues of a l	Microgrid - D	ynamic interactions of Microgrid with main grid – low vol	tage]	ĴC و	grid.		
conversion systems (WECS): Wind turbine operating systems - Solar photovoltaic (PV) systems: Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources -Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -	UNIT - II	DISTRIBU	TED ENERGY RESOURCES	Lec	cture	Hrs	: 8	
Classification of PV cell - Small-scale hydroelectric power generation - Other renewable energy sources –Storage devices. UNIT - III MICROGRID AND ACTIVE DISTRIBUTION NETWORK Lecture Hrs: 12 Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –	Introduction	n - Combine	d heat and power (CHP) systems: Micro-CHP systems	- Wi	nd e	energ	зу	
sources –Storage devices. Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –	conversion	systems (WE	CCS): Wind turbine operating systems - Solar photovoltaid	c (PV	') sy	stem	IS:	
UNIT - IIIMICROGRID AND ACTIVE DISTRIBUTION NETWORK MANAGEMENT SYSTEMLecture Hrs: 12Introduction - Impact on heat utilization - Impact on process optimization - Impact on market - Impact on environment- Impact on distribution system - Impact on communication standards and protocols - Network management needs of Microgrid - Micro source controller - Central controller.Lecture Hrs: 12UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKSLecture Hrs: 12Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -				newa	ble e	energ	зу	
MANAGEMENT SYSTEMIntroduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller.UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKSLecture Hrs:12Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –								
Introduction - Impact on heat utilization - Impact on process optimization - Impact on market – Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –	UNIT - III			Lecti	ure H	Irs:	12	
Impact on environment- Impact on distribution system – Impact on communication standards and protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –								
protocols - Network management needs of Microgrid – Micro source controller – Central controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –		-						
controller. UNIT - IV SCADAANDACTIVEDISTRIBUTION NETWORKS Lecture Hrs:12 Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –								
UNIT - IVSCADAANDACTIVEDISTRIBUTION NETWORKSLecture Hrs:12Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -		network in	lanagement needs of Microgrid – Micro source contr	oner	– C	entr	al	
Introduction - Existing DNO SCADA systems - Control of DNO SCADA systems - SCADA in Microgrids - Human–machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization –		SCADAA	NDACTIVEDISTRIBUTION NETWORKS	Lec	oturo	Hre	.12	
Microgrids - Human-machine interface (HMI) - Hardware components - Communication trends in SCADA - Distributed control system (DCS) - Sub-station communication standardization -								
SCADA - Distributed control system (DCS) - Sub-station communication standardization -								
South a communication and control a controlation Communication in a control.				uul	~12U			

UNIT - V	IMPACT OF DG INTEGRATION ON POWER QUALITY	Lecture Hrs:10
	AND RELIABILITY	
Introductio	n - Power quality disturbances - Power quality sensitive customer	rs - Power quality
improveme	nt technologies-Impact of DG integration-Issues of premium power in	n DG integration.
Textbooks		
1. S.Che	owdhury, S.P.ChowdhuryandP.Crossley,"Microgrid sand Act	ive Distribution
Netw	orks", the Institution of Engineering and Technology,2009.	
	v Kumar Chuahan, Kalpana Chuahan, "Distributed Energy Resource	
Integ	ration, Chalenges and Optimization", Academic Press, 1 st Edition, 20	19.
Reference	Books:	
1. Magdi	S. Mahmoud, "MICROGRID Advanced Control Methods and	Renewable Energy
System	Integration", Joc Hayton, 1 st Edition, 2016.	
Online Lea	arning Resources:	

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

C	21D21207		т	T	D	C
Course Code	21D21207	EHVAC TRANSMISSION SYSTEMS	L	Т	Р	C
Semester	II	(PE-IV)	3	0	0	3
Semester	11		3	U	U	3
Course Ob	iaatiyaa Ta r	nake the student				
	2	nake the student				
		basic concepts of EHVAC.				
	•	ors affecting AC-DC transmission.				
	•	ng waves and the effects of corona like audible noise.				
		intensity at any point in EHV system with the h	elp (of d	iffer	ent
	utational meth					
Course Ou	tcomes (CO)	: Student will be able to				
CO 1: Und	erstand the ba	asic concepts of EHVAC.				
CO 2: Iden	tify the factor	rs affecting AC-DC transmission.				
CO 3: Ana	lyze travelling	g waves and the effects of corona like audible noise.				
CO 4: Estin	mate field into	ensity at any point in EHV system with the help of differe	nt co	mpu	tatio	nal
metl	nod.					
UNIT - I	PRELIMIN	ARIES	Lect	ure F	Irs:	10
Necessity o	f EHV AC tra	ansmission – Advantages and problems – Power handling	capa	city a	and l	ine
		derations - Resistance of conductors - Properties of bund				
Bundle space	cing and bund	le radius - Examples.				
UNIT - II		D GROUND REACTIVE PARAMETERS	Leo	cture	Hrs	: 8
Line induct	ance and capa	citances – Sequence inductances and capacitances – Mode	es of	prop	agat	ion
		nples. Electrostatics – Field of sphere gap – Field of 1				
		potential relations for multi-conductors - Surface volt				
		of voltage gradient on sub-conductors of bundle – Examp		0		
UNIT - III			lectu	e Hr	s: 12	2
Power loss	and audible n	oise (AN) – corona loss formulae – Charge voltage diagra	.m –	Gen	erati	on,
		and measurements of AN – Relation between 1-phase a				
		ce (RI) - Corona pulses generation, properties, limits – Fre				
		- Excitation function – Measurement of RI, RIV and excit				
Examples.	r 1 8					
UNIT - IV	ELECTR	OSTATIC FIELD & TRAVELING WAVE THEORY	Leo	cture	Hrs	:12
Electrostatio		ation of electrostatic field of EHV/AC lines - Effect on				
		induction in un-energised circuit of double - circuit line -		,		
-		Traveling wave expression and solution - Source of excit			0	
		ited and short circuited end - Reflection and refraction				
	-	istributed lines - Generalized constants - No load voltag				
charging cu						
UNIT - V		E CONTROL	Leo	cture	Hrs	:10
		nd its use – Voltage control using synchronous conder				
	-	series compensation – Sub synchronous resonance in se				

Power circle diagram and its use – Voltage control using synchronous condensers – Cascade connection of shunt and series compensation – Sub synchronous resonance in series capacitor – Compensated lines – Static VAR compensating system.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. Sanjay Kumar Sharma, "EHV-AC, HVDC Transmission and Distribution Engineering" 2ndEdition, 2016.
- 2. R. D. Begamudre, "EHVAC Transmission Engineering", New Age International (p) Ltd.2nd revised edition, 2012.
- 3. M. G. Dwek, EHV Transmission, Elsevier Sc., 3rd edition, 1992.

Reference Books:

- 1. R. Padiyar, HVDCTransmission Systems, Wiley Eastern Ltd., New Delhi, 2nd revised edition, 1992.
- 2. J. Arrilaga, High Voltage Direct Current Transmission, peter pereginver Ltd. London, U.K., 2nd edition, 1998.
- 3. E.W. Kimbark, Direct Current Transmission-vol.1, Wiley Inter science, New York, 1st edition, 1971.

Online Learning Resources:

- 1. https://www.ae.pwr.wroc.pl/filez/20110606092353_HEV.pdf
- 2. https://www.afdc.energy.gov/pdfs/52723.pdf 5.https://www.leb.eei.uni
- 3. langen.de/winterakademie/2010/report/content/course03/pdf/0308.pdf

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>Audit Subjects for All Specializations</u>

Course Code			L	Т	Р	С				
Semester	II	DISASTER MANAGEMENT	2	0	0	0				
Course Objectives: Students will be able to:										
1. Learn to c	lemo	onstrate a critical understanding of key concepts in dis	aster	[.] risk	redu	uction				
		ian response.								
2. Critically	eval	uate disaster risk reduction and humanitarian response	poli	cy ar	nd pr	actice				
from mult	iple	perspectives.								
		derstanding of standards of humanitarian response and	prac	ctical	rele	vance				
		es of disasters and conflict situations.								
•		erstand the strengths and weaknesses of disaster manage	-	-						
		programming in different countries, particularly their h	ome	cou	ntry	or the				
countries t										
		(CO): Student will be able to								
UNIT - I		roduction				rs: 04				
		, Factors And Significance; Difference Between Haz		And	l Dis	saster;				
		de Disasters: Difference, Nature, Types And Magnitude								
UNIT – II		percussions Of Disasters And Hazards				<u>s: 04</u>				
	<u> </u>	Loss Of Human And Animal Life, Destruction Of I		•						
	-	kes, Volcanisms, Cyclones, Tsunamis, Floods, Droug	-							
		valanches, Man-made disaster: Nuclear Reactor Mo								
UNIT – III		s And Spills, Outbreaks Of Disease And Epidemics, Wa aster Prone Areas In India	1			s: 04				
		ones; Areas Prone To Floods And Droughts, Landslide								
		clonic And Coastal Hazards With Special Reference								
Disaster Disease	-	-	10	I Sull	ann,	1 051-				
		ster Preparedness And Management Preparedness:	L	etur	• Hı	s: 04				
		omena Triggering A Disaster Or Hazard; Evaluation O								
		g, Data From Meteorological And Other Agencies								
		Community Preparedness.	, 1			Portor				
		k Assessment Disaster Risk:	L	ectur	e Hı	:s: 04				
		nts, Disaster Risk Reduction, Global And National Disa								
1		k Assessment, Global Co-Operation In Risk Assessm								
_		on In Risk Assessment. Strategies for Survival.				-				
UNIT – VI			L	ectur	e Hı	:s: 04				
Disaster Mitiga	ntion	Meaning, Concept And Strategies Of Disaster Mi	tigat	ion,	Eme	erging				
Trends In Miti	gati	on. Structural Mitigation And Non-Structural Mitiga	tion,	Pro	gran	ns Of				
Disaster Mitigat	tion	In India.								
Suggested Read										
		gh AK, "Disaster Management in India: Perspectives, is	sues	s and	stra	tegies				
"New Royal book Company.										
	-	et.al. (Eds.), "Disaster Mitigation Experiences And Re	flect	ions	", Pr	entice				
Hall Of Indi			a							
		ster Administration and Management Text And Case	Stu	dies	΄, Dε	eep &				
Deep Public	atio	n Pvt. Ltd., New Delhi.								

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>Audit Subjects for All Specializations</u>

Course Code			L	Т	P	С
Semester	II	CONSTITUTION OF INDIA	2	0	0	0
Course Object	ives	Students will be able to:				
v		premises informing the twin themes of liberty and fre	edo	m fr	om a	civil
rights persp			C C C		0111 0	
0 1 1		e growth of Indian opinion regarding modern Ind	dian	in	tellec	tuals'
		le and entitlement to civil and economic rights as well as				
		e early years of Indian nationalism.			υ	
		role of socialism in India after the commencement	of	the	Bols	hevik
Revolution	in 19	17 and its impact on the initial drafting of the Indian Con	nstit	ution	1.	
Course Outcon	nes (CO): Student will be able to				
1. Discuss the	e gro	wth of the demand for civil rights in India for the bulk of	Inc	lians	befo	re the
arrival of C	Gand	hi in Indian politics.				
2. Discuss th	ne in	ntellectual origins of the framework of argument t	hat	inf	orme	d the
		on of social reforms leading to revolution in India.				
		cumstances surrounding the foundation of the Congre				-
		e leadership of Jawaharlal Nehru and the eventual failure	e of	the p	prope	sal of
		through adult suffrage in the Indian Constitution.				
	e pas	sage of the Hindu Code Bill of 1956.	-			
UNIT - I						<u>s: 04</u>
		of the Indian Constitution: History Drafting Committee	e, (C	Com	posit	ion &
	osopi	ny of the Indian Constitution: Preamble Salient Features	Т	4		0.4
UNIT – II		utional Diabta & Dutias, Eurodamantal Diabta, Diabtas				<u>s: 04</u>
		utional Rights & Duties: Fundamental Rights, Right to inst Exploitation, Right to Freedom of Religion, Cultur				
-	-	onstitutional Remedies, Directive Principles of State Po				
Duties		institutional Remedies, Directive Trinciples of State To	ncy	, IU	muai	licitai
UNIT – III			L	etm	e Hı	s: 04
	verna	nce, Parliament Composition, Qualifications and				
-		ons, Executive, President, Governor, Council of Mi		-		,
		ansfer of Judges, Qualifications, Powers and Functions.		,		,
UNIT – IV			L	ectu	re Hı	s: 04
Local Adminis	tratic	on: District's Administration head: Role and Important	ce,	Mun	icipa	lities:
Introduction, N	Iayo	r and role of Elected Representative, CEO of Muni	cipa	al C	orpoi	ation.
Pachayati raj:	Intro	oduction, PRI: ZilaPachayat. Elected officials and	the	ir ro	oles,	CEO
ZilaPachayat: P	ositi	on and role. Block level: Organizational Hierarchy (Diffe	eren	t dep	partm	ents),
	ole	of Elected and Appointed officials, Importance of grass re	oot	dem	ocrac	у.
UNIT – V						:s: 04
		ion: Election Commission: Role and Functioning				
		Election Commissioners. State Election Commi		on:	Role	and
		e and Bodies for the welfare of SC/ST/OBC and women	•			
Suggested Rea	0					
		of India, 1950 (Bare Act), Government Publication.		-	01-	
		Dr. B. R. Ambedkar framing of Indian Constitution, 1st E	diti	on, 2	.015.	
5. M. P. Jain.	india	n Constitution Law, 7th Edn., Lexis Nexis, 2014.				

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>Audit Subjects for All Specializations</u>

Course Code			L	Т	P	С			
Semester	II	STRESS MANAGEMENT BY YOGA	2	2 0 0 0					
Course Object	ives:	Students will be able to:							
 To achiev To overco 		erall health of body and mind stress							
Course Outcom	nes ((CO): Student will be able to							
 Develop h Improve e 		ny mind in a healthy body thus improving social health ency	also						
UNIT - I			L	ectu	e Hr	s: 04			
Definitions of E	Eight	parts of yog. (Ashtanga)	I						
UNIT – II			L	ectu	e Hr	s: 04			
Yam and Niyan	n: Do	o`s and Don'ts in life, Ahinsa, satya, astheya, bramhach	narya	and	apari	graha			
UNIT – III			L	ectu	e Hr	s: 04			
Yam and Niyan	n: Do	o`s and Don'ts in life, Shaucha, santosh, tapa, swadhya	y, ish	warp	ranid	han			
UNIT – IV			L	ectu	e Hr	s: 04			
Asan and Prana	yam	: Various yog poses and their benefits for mind & body	1						
UNIT – V			L	ectu	e Hr	s: 04			
Asan and Prana	yam	: Regularization of breathing techniques and its effects	-Туре	es of	prana	yam			
Suggested Rea	ding	s::							
1. 'Yogic As	sanas	for Group Training-Part-I" : Janardan Swami Yogabh	yasi N	Aand	al, N	agpur			
	,	conquering the Internal Nature" by Swami Vivekanand epartment), Kolkata	da, Ao	dvait	a Asł	ırama			

Course	21D21208	DENIEWADI E ENIEDCIX CIVCTEMICI AD	L	Т	Р	C
Code Semester	II	RENEWABLE ENERGY SYSTEMS LAB	0	0	4	2
Bemester	п		U	U		
Course Ob	jectives: To a	make the student				
		rite the coding in MATLAB/Mipower.				
networks	8.	ATCOM for voltage profile improvements & UPFC is	n po	ower	: syst	em
•		ted to load flows incorporating SVC & STATCOM. f TCSC, STATCOM & SSSC for a transmission line	e feo	d by	an	AC
	tcomes (CO)	Student will be able to				
CO 2: To s CO 3: To a	study the sun malyze Powe Understand	V and P-V curves and Series and Parallel connection of tracking and MPPT Charge Controllers of Solar system or, Voltage & Frequency Measurement of Wind Generat the Effect of temperature variation and Irradiation	s. or.			
	XPERIMEN	NTS:				
1. D	raw the I-V a	nd P-V curves of Solar Panel using PV Panel				
2. St	udy of Series	s and Parallel connection of Solar Panels				
3. St	udy of Sun tr	racking system				
4. M	laximum Pow	ver Point Tracking Charge Controllers				
5. In	verter contro	l for Solar PV based systems				
6. Po	ower, Voltage	e & Frequency Measurement of output of Wind Generat	or			
7. In	npact of load	and wind speed on power output and its quality				
8. Pe	erformance of	f frequency drop characteristics of induction generator a	t di	ffere	ent	
lo	ading conditi	ion				
9. C	harging and I	Discharging characteristics of Battery				
1. 2. 3. 4.	Effect of Irrad Design of sol					
Note: Con	1	xperiments from 1-9 list and minimum 3 experiment	nts f	fron	n 1-4	of

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

21D21209 Р С Course L Т **FACTS DEVICES & SIMULATION LAB** Code 2 Π 0 4 Semester 0 Course Objectives: To make the student Understand how to write the coding in MATLAB/Mipower. Apply the SVC, STATCOM for voltage profile improvements & UPFC in power system • networks. Analyze the data related to load flows incorporating SVC & STATCOM. Analyze operation of TCSC, STATCOM & SSSC for a transmission line fed by an AC supply. Course Outcomes (CO):Student will be able to **CO 1:** Understand Load balancing using compensators. **CO 2:** Apply load balancing using Compensators. CO 3: Analyse load flow incorporating SVC & STATCOM. CO 4: Develop a Simulation model for STATCOM & UPFC. LIST OF EXPERIMENTS: 1. Voltage regulation using shunt and series compensation 2. Load balancing in power system network using compensators 3. Simulation of TCSC 4. Voltage profile improvement using SVC 5. Voltage profile improvement using STATCOM 6. Transient Stability enhancement using STATCOM. 7. Simulation of UPFC with mathematical models 8. Load flow incorporating SVC 9. Load flow incorporating STATCOM 10. Simulation of DVR 11. Transmission Line Characteristics (P vs δ , Q vs δ , P vs Distance, Q vs Distance and V vs Distance) with and without Compensation 12. Sizing- simulation and operation of TCR and FC-TCR for a transmission line fed by an ac supply and feeding (a) Resistive/inductive/capacitive load one at a time

(b) A load which can have leading as well as lagging behaviour

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

- 13. Sizing- simulation and operation of TCSC for a transmission line fed by an ac supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behaviour
- 14. Sizing- simulation and operation of STATCOM for a transmission line fed by an ac supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behavior
- 15. Sizing- simulation and operation of SSSC for a transmission line fed by an AC supply and feeding
 - (a) Resistive/inductive/capacitive load one at a time
 - (b) A load which can have leading as well as lagging behaviour

Web Sources: https://www.vlab.co.in

Ananthapuramu – 515 002, Andhra Pradesh, India

Code ZEDIAGY RESTRECTIONED FOR DATE of DATE AND Semester III III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Course	21D21301	RESTRUCTURED POWER SYSTEMS	L	Т	P	С
Semester III III III III 2 Course Objectives: To make the student 1. Understand basic concepts of the restructuring of power industry and market models. 2. Analyze about the fundamental concepts of congestion management, Transfer Capability issues and ancillary service management. 3. Apply the transmission cost allocation methods to evaluate the cost. 4. Develop the operational planning activities in different competitive environment. Course Outcomes (CO):Student will be able to CO1: Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment. CO2: Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS). CO3: Apply the methods to find Available Transfer Capability (ATC) and to allocate the Transmission cost. CO4: Develop power markets and market architectural aspects and short time Price forecasting. UNIT - I KEYISUESINELECTRICUTILITIES Lecture Hrs: 9 Marketoperations-MarketPower-Standardcost-TransmissionPricing-Congestion Pricing-MarketPower-Standardcost-TransmissionPricing-Congestion Marketoperations-MarketPower-Standardcost-TransmissionPricing-Congestion Verter Hrs: 10 UNIT - II OPEN ACCESS SAME-TIME INFORMATION SYSTEM	-					_	
1. Understand basic concepts of the restructuring of power industry and market models. 2. Analyze about the fundamental concepts of congestion management, Transfer Capability issues and ancillary service management. 3. Apply the transmission cost allocation methods to evaluate the cost. 4. Develop the operational planning activities in different competitive environment. Colspan="2">Colspan="2"Colspan="2" Colspan="	Semester	III		3	0	0	3
1. Understand basic concepts of the restructuring of power industry and market models. 2. Analyze about the fundamental concepts of congestion management, Transfer Capability issues and ancillary service management. 3. Apply the transmission cost allocation methods to evaluate the cost. 4. Develop the operational planning activities in different competitive environment. Colspan="2">Colspan="2"Colspan="2" Colspan="		• • • •					
 Analyze about the fundamental concepts of congestion management, Transfer Capability issues and ancillary service management. Apply the transmission cost allocation methods to evaluate the cost. Develop the operational planning activities in different competitive environment. Course Outcomes (CO):Student will be able to CO 1: Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment. CO 2: Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS). CO 3: Apply the methods to find Available Transfer Capability (ATC) and to allocate the Transmission cost. CO 4: Develop power markets and market architectural aspects and short time Price forecasting. UNIT - I KEYISSUESINELECTRICUTILITIES Lecture Hrs: 9 Introduction-Restructuring models-Independent System Operator (ISO)-Power Exchange-MarketPower-Standardcost-TransmissionPricing-Congestion Pricing-Maragement of Inter zonal/Intra zonal Congestion. UNIT - II OPEN ACCESS SAME-TIME INFORMATION SYSTEM Lecture Hrs: 8 (OASIS) & MARKET POWER Structure of OASIS - Posting of Information - Transfer capability on OASIS - Market Power: Introduction-Different types of market Power-Mitigation of Market Power-Examples. UNIT - II AVAILABLE TRANSFER CAPABILITY (ATC) & Lecture Hrs: 10 ELECTRICITY PRICING Transfer Capability Issues - ATC - TTC - TRM - CBM Calculations - Calculation of ATC based on power flow - Electricity Pricing: Introduction - Electricity Price Volatility Electricity Price Indexes - Challenges to Electricity Pricing - Construction of Forward Price Curves -Short-time Price Forecasting. UNIT - IV POWER SYSTEM OPERATION IN COMPETITIVE Lecture Hrs: 10 Introduction -		v		1			
 issues and ancillary service management. Apply the transmission cost allocation methods to evaluate the cost. Develop the operational planning activities in different competitive environment. Course Outcomes (CO):Student will be able to CO 1: Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment. CO 2: Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS). CO 3: Apply the methods to find Available Transfer Capability (ATC) and to allocate the Transmission cost. CO 4: Develop power markets and market architectural aspects and short time Price forecasting. UNIT - I KEYISSUESINELECTRICUTLITIES Lecture Hrs: 9 Introduction–Restructuring models–Independent System Operator (ISO)–Power Exchange-MarketPower-Standardcost–Transmission-Congestion Pricing-MarketPower-Standardcost–Transmission-Congestion Pricing-MarketPower of OASIS – NarketPower Standardcost–Transfer capability on OASIS – Market Power: Introduction– Different types of market Power-Mitigation of Market Power-Examples. UNIT - II AVAILABLE TRANSFER CAPABILITY (ATC) & Lecture Hrs: 10 ELECTRICITY PRICING Transfer Capability Issues – ATC – TTC – TRM – CBM Calculations – Calculation of ATC based on power flow – Electricity Pricing: Introduction – Electricity Price Volatility Electricity Price Indexes – Challenges to Electricity Pricing – Construction of Forward Price Curves –Short-time Price Forecasting. UNIT - IV POWER SYSTEM OPERATION IN COMPETITIVE Lecture Hrs: 9 ENVIRONMENT Lecture Hrs: 10 Transfirsion Cost Allocation Methods: Postage Stamp Rate Method – Contract Path Method-MW-Mile Method – Unused Transmission Capacity Method – Kontract Path Method-MW-Mile M							1:4
 3. Apply the transmission cost allocation methods to evaluate the cost. 4. Develop the operational planning activities in different competitive environment. Course Outcomes (CO):Student will be able to CO 1: Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment. CO 2: Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS). CO 3: Apply the methods to find Available Transfer Capability (ATC) and to allocate the Transmission cost. CO 4: Develop power markets and market architectural aspects and short time Price forecasting. UNIT - I KEYISSUESINELECTRICUTILITIES Lecture Hrs: 9 Introduction-Restructuring models-Independent System Operator (ISO)-Power Exchange-MarketoperationsMarketPower-Standardcost-TransmissionPricing-Congestion Pricing-Management of Inter zonal/Intra zonal Congestion. UNIT - II OPEN ACCESS SAME-TIME INFORMATION SYSTEM Lecture Hrs: 8		•		ster	Ca	pabi	ity
4. Develop the operational planning activities in different competitive environment. Corrse Outcomes (CO):Student will be able to CO 1: Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment. CO 2: Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS). CO 4: Develop power markets and market architectural aspects and short time Price forecasting. UNIT - I KEYISSUESINELECTRICUTILITIES Lecture Hrs: 9 Introduction-Restructuring models-Independent System Operator (ISO)-Power Exchange-Marketoperations-MarketPower-Standardcost-TransmissionPricing-Congestion Pricing-Marketpower-Standardcost-TransmissionPricing-Congestion Pricing-Marketoperations-MarketPower-Standardcost-TransmissionPricing-Congestion Pricing-Marketpower: Introduction-Different types of market Power-Mitigation of Market Power-Examples. UNIT - II AVAILABLE TRANSFER CAPABILITY (ATC) & Lecture Hrs: 8 UNIT - II AVAILABLE TRANSFER CAPABILITY (ATC) & Lecture Hrs: 10 Introduction - Different types of market Power-Mitigation of Market Power-Examples. UNIT - II AVAILABLE TRANSFER CAPABILITY (ATC) & Lecture Hrs: 10 Introduction - Different types of market Power-Mitigation of Market Power-Standardcower in types of market Power-Standardcower examples. <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td>							
Course Outcomes (CO):Student will be able to CO 1: Understand the differences between the conventional power system operation and the restructured one and basics concepts of market power, electricity pricing and competitive environment. CO 2: Analyze the concepts of Independent System Operator (ISO) and Open Access Same-Time Information System (OASIS). CO 3: Apply the methods to find Available Transfer Capability (ATC) and to allocate the Transmission cost. CO 4: Develop power markets and market architectural aspects and short time Price forecasting. UNIT - I KEYISSUESINELECTRICUTILITIES Lecture Hrs: 9 Introduction-Restructuring models-Independent System Operator (ISO)-Power Exchange-Marketoperations-MarketPower-Standardcost-TransmissionPricing-Congestion UNIT - II OPEN ACCESS SAME-TIME INFORMATION SYSTEM (OASIS) & Market Power: Introduction-Different types of market Power Lecture Hrs: 8 (OASIS) & MARKET POWER Structure of OASIS - Posting of Information – Transfer capability on OASIS – Market Power: Introduction- Different types of market Power-Mitigation of Market Power-Examples. UNIT - II AVAILABLE TRANSFER CAPABILITY (ATC) & Lecture Hrs: 10							

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

Textbooks:

- 1. Kankar Bhattacharya, Math H.J. Boller and Jaap E.Daalder, Operation of Restructured Power System, Kulwer Academic Publishers, 1st Edition, 2001.
- 2. Mohammad Shahidehpour and Muwaffaq Alomoush, Restructured Electrical Power Systems, Marcel Dekker, Inc., 1st Edition, 2001.

Reference Books:

1. Loi Lei Lai, Power System Restructuring and Deregulation, John Wiley & Sons Ltd., England, 2001.

Online Learning Resources:

1. https://nptel.ac.in/courses/108/101/108101005/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D21302	RISK ASSESSMENT OF POWER SYSTEMS	L	Т	Р	C
Semester	III	(PE - V)	3	0	0	3
	1					1
Course Ol	bjectives: To	make the student				
1. Un	derstand the b	pasic concepts of risk assessment and risk evaluation	on.			
2. An	alyze the risk	evaluation methods and risk evaluation technique	s.			
3. Ap	ply the risk ev	valuation techniques and correlation methods to id	entify	the ris	k in p	ower
sys	tems.					
		evaluation models for renewable energy systems.				
): Student will be able to				
		e risk evaluation concepts, independent and	i dep	endent	out	ages,
	stribution of fa					
	•	cepts of outages, correlation measures, models, co	-	-	•	•
		ods to evaluate the frequency, correlation and load				
	-	mpling methods and risk evaluation methods	for re	enewał	ole en	lergy
	tems.					
UNIT – I		ssment and Outage Models		ecture		
	1 I	r system risk assessment: System risk evaluation, l				
		Models of independent outages: Repairable forced				
		failure, Planned outage, Semi forced outage,				
-		- Models of dependent outages: Common-Cause		-	-	
-	-	Driginated outage, Cascading outage, Environment	-			
UNIT - II		er Estimation in Outage Models		Lectur		
		lean and Variance of Failure Data - Interval Es				
		a - Estimating Failure Frequency of Individual Co	-			-
•		mial Distribution - Experimental Distribution of F	allure	Data a	nd Its	Test
		in Aging Failure Models				1.0
UNIT - II		s of Risk Evaluation Methods		ecture		
		stems: Probability Convolution, Series and Paralle				
		ions, Frequency-Duration Approaches - Methods				
		-sequential Monte Carlo Simulation, Sequential M				
		Risk Evaluation: Correlation Measures, Correlation				
		luation Techniques		ecture		
		Generation-Demand Systems: Convolution Tech				
		Sampling Method - Techniques Used in Radial			•	
•	-	State Duration Sampling Method - Technique				
-		Modes and Modelling, Connectivity Identific				
		State Duration Sampling Method - Technique			-	
		nission Systems: Basic Procedure, Component				
Curve Mo	baels, Contin	gency Analysis, Optimization Models for Loa	ia Cui	rtailme	ents,	State

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Enumeration Method, State Sampling Method **Application of Risk Evaluation to Renewable** Lecture Hrs: 10 UNIT - V **Energy Systems** Risk Evaluation of Wind Turbine Power Converter System (WTPCS): Power Losses and Temperatures of WTPCS Components, Risk Evaluation of WTPCS - Risk Evaluation of Photovoltaic Power Systems: Two Basic Structures of Photovoltaic Power Systems, Risk Parameters of Photovoltaic Inverters, Risk Evaluation of Photovoltaic Power System **Textbooks:** 1. Wenyuan Li, "Risk Assessment of Power Systems Models, Methods and Applications", Wiley Publications, 2nd Edition, 2014. 2. Billinton, Wenyuan Li, "Reliability Assessment of Electric Power Systems Using Monte Carlo Methods", Plenum Press, 1st Edition, 1994. **Reference Books:** 1. Nicholas J Bahr, "System Safety Engineering and Risk Assessment - A Practical Approach", CRC Press Publications, 2nd Edition, 2018.

Online Learning Resources:

- 1. https://cleanenergysolutions.org/training/risk-assessment-power-projects
- 2. https://www.graceport.com/help/nfpa-70e-importance-of-risk-assessment-in-electrical-safety-programs

Ananthapuramu – 515 002, Andhra Pradesh, India

Code (PE-V) 3 0 0 3 Semester III (PE-V) 3 0 0 0 3 Course Objectives: To make the student 1 Understand the basic concepts of deregulation, power system automation. 2 Analyze about the energy control centers and applications of automation. 3 To apply the techniques to solve the problems in deregulated system and automation. 4. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power system and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9	Course 21D21303	POWER SYSTEM AUTOMATION	L	Т	P	C
Course Objectives: To make the student 1. Understand the basic concepts of deregulation, power system automation. 2. Analyze about the energy control centers and applications of automation. 3. To apply the techniques to solve the problems in deregulated system and automation. 4. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems. SCADA in Power system – Building blocks of SCADA system – SCADA in Power system – Building blocks of SCADA systems. UNIT - III SUBSTATION AUTOMATI	Code III	(PE-V)	2	0		2
1. Understand the basic concepts of deregulation, power system automation. 2. Analyze about the energy control centers and applications of automation. 3. To apply the techniques to solve the problems in deregulated system and automation. 4. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - II SUBSTATION AUTOMATION Lecture Hrs: 10	Semester III		3	U	U	3
1. Understand the basic concepts of deregulation, power system automation. 2. Analyze about the energy control centers and applications of automation. 3. To apply the techniques to solve the problems in deregulated system and automation. 4. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - II SUBSTATION AUTOMATION Lecture Hrs: 10	Course Objectives Te	make the student				
 Analyze about the energy control centers and applications of automation. To apply the techniques to solve the problems in deregulated system and automation. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–Conventional automation–New smart devices for substation automation–new integrated digital substation–Technical issues new digital simulation–Substation automation–new integrated digital substation–Technical issues new digital simulation–Substation automation–new integrated digital substation applications functions–Benefits of data warehousing. UNIT - IV ENERGY CON	U					
 3. To apply the techniques to solve the problems in deregulated system and automation. 4. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–Conventional automation–New smart devices for substation automation-new integrated digital substation–Technical issues new digital simulation–Substation automation–new integrated digital substation–Technical issues new digital simulation–Substation automation–new integrated digital substation–Technical issues new digital simulation–Substation automation–Revers – EMS framework – Data acquisiti		1 0 1 1				
 4. Develop the models to control the system and energy control centers. Course Outcomes (CO):Student will be able to CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–Conventional automation–New smart devices for substation automation applications functions–Benefits of data warehousing. UNIT - IV ENERGY CONTROL CENTERS Lecture Hrs: 10 Introduction – Energy control centers – EMS framework – Data acquisition and communication 	•					
Course Outcomes (CO):Student will be able to CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation-Conventional automation-New smart devices for substation automation-new integrated digital substation automation-Substation automation applications functions-Benefits of data warehousing. UNIT - III SUBSTATION AUT				ulon	lation	1.
 CO 1: Understand the concepts of evolution of automation systems, SACADA, Congestion management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation-Conventional automation-New smart devices for substation automation architectures-Substation automation applications functions-Benefits of data warehousing. UNIT - IV ENERGY CONTROL CENTERS Lecture Hrs: 10 Introduction – Energy control centers – EMS framework – Data acquisition and communication 	Ĭ		•			
management. CO 2: Analyze the techniques to resolve problems in energy control centers, data ware housing. CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification – GSADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–Conventional automation–New smart devices for substation automation– new integrated digital substation–Technical issues new digital s		,	<u></u>	0		
CO 3: Apply the techniques to get the optimum control in the system by using automation at the substation level and distribution level. CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–Conventional automation–New smart devices for substation automation–new integrated digital substation–Technical issues new digital simulation–Substation automation applications functions–Benefits of data warehousing. UNIT - IV ENERGY CONTROL CENTERS Lecture Hrs: 10 Introduction – Energy control centers – EMS framework – Data acquisition and communication		concepts of evolution of automation systems, SAG	JADA	A, CO	onges	tion
substation level and distribution level.CO 4: Develop the real time case studies to solve the critical problems in power system automation.UNIT - IPOWER SYSTEM CONTROL AND DEREGULATIONLecture Hrs: 10Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems.Lecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation– new integrated digital substation–Technical issues new digital simulation–Substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication	CO 2: Analyze the tech	nniques to resolve problems in energy control centers,	data w	are l	iousi	ng.
CO 4: Develop the real time case studies to solve the critical problems in power system automation. UNIT - I POWER SYSTEM CONTROL AND DEREGULATION Lecture Hrs: 10 Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management. UNIT - II POWER SYSTEM AUTOMATION Lecture Hrs: 9 Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–New smart devices for substation automation– new integrated digital substation applications functions–Benefits of data warehousing. UNIT - IV EVERGY CONTROL CENTERS Lecture Hrs: 10 Introduction – Energy control centers – EMS framework – Data acquisition and communication			g auto	omati	on at	the
automation.UNIT - IPOWER SYSTEM CONTROL AND DEREGULATIONLecture Hrs: 10Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.Lecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation architectures–Substation automation applications functions–Benefits of data warehousing.Lecture Hrs: 10INIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication			in r	owei	r svs	tem
UNIT - IPOWER SYSTEM CONTROL AND DEREGULATIONLecture Hrs: 10Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.Lecture Hrs: 10UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communicationIntroduction and communication	-	al time case studies to solve the endeal problem.	- m P		. 595	tem
Introduction – Operation of power systems and modes – Organization and operator activities, Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.Lecture Hrs: 10UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communicationLecture Hrs: 10		SYSTEM CONTROL AND DERECULATION	Lect	ure F	Irs· 1	0
Investment factor and control centre experiences – Deregulation – need for deregulation and Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication						
Advantages of deregulation in power system – Restructuring Models PoolCo. Model – Bilateral Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication						
Model and Hybrid Model – Independent system operator (ISO) – Role of ISO – Congestion Management.UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADA system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication						
Management.Lecture Hrs: 9UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADAsystem – Remote terminal unit – Intelligent electronic devices – Data concentrators and mergingunits – SCADA communication systems – Master station – Human-machine interface –Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONSubstation automation–Conventional automation–New smart devices for substation automationnew integrated digital substation–Technical issues new digital simulation–Substation automationarchitectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSIntroduction – Energy control centers – EMS framework – Data acquisition and communication						
UNIT - IIPOWER SYSTEM AUTOMATIONLecture Hrs: 9Evolution of automation systems – SCADA in Power system – Building blocks of SCADAsystem – Remote terminal unit – Intelligent electronic devices – Data concentrators and mergingunits – SCADA communication systems – Master station – Human-machine interface –Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automationnew integrated digital substation–Technical issues new digital simulation–Substation automationarchitectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSIntroduction – Energy control centers – EMS framework – Data acquisition and communication	•	der macpendent system operator (150) Role of	100	CU	inges	tion
Evolution of automation systems – SCADA in Power system – Building blocks of SCADAsystem – Remote terminal unit – Intelligent electronic devices – Data concentrators and mergingunits – SCADA communication systems – Master station – Human-machine interface –Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automationnew integrated digital substation–Technical issues new digital simulation–Substation automationarchitectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication		SYSTEM AUTOMATION	Lect	ure I	Irs: 9)
system – Remote terminal unit – Intelligent electronic devices – Data concentrators and merging units – SCADA communication systems – Master station – Human-machine interface – Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation new integrated digital substation–Technical issues new digital simulation–Substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication						
units - SCADA communication systems - Master station - Human-machine interface - Classification of SCADA systems.UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation-Conventional automation-New smart devices for substation automation new integrated digital substation-Technical issues new digital simulation-Substation automation architectures-Substation automation applications functions-Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction - Energy control centers - EMS framework - Data acquisition and communication						
Classification of SCADA systems. UNIT - III SUBSTATION AUTOMATION Lecture Hrs: 10 Substation automation–Conventional automation–New smart devices for substation automation–new integrated digital substation–Technical issues new digital simulation–Substation automation applications functions–Benefits of data warehousing. UNIT - IV ENERGY CONTROL CENTERS Lecture Hrs: 10 Introduction – Energy control centers – EMS framework – Data acquisition and communication	-	-			-	
UNIT - IIISUBSTATION AUTOMATIONLecture Hrs: 10Substation automation–Conventional automation–New smart devices for substation automation– new integrated digital substation–Technical issues new digital simulation–Substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication		-			orrae	•
Substation automation–Conventional automation–New smart devices for substation automation– new integrated digital substation–Technical issues new digital simulation–Substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication			Lect	ure F	Hrs: 1	0
new integrated digital substation–Technical issues new digital simulation–Substation automation architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication						
architectures–Substation automation applications functions–Benefits of data warehousing.UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication						
UNIT - IVENERGY CONTROL CENTERSLecture Hrs: 10Introduction – Energy control centers – EMS framework – Data acquisition and communication	0 0	0				tion
Introduction – Energy control centers – EMS framework – Data acquisition and communication		**	1			0
			and co	mmi	inica	tion
Simulations – Post-event analysis and energy scheduling and accounting – Dispatcher training						
simulator – Smart transmission.			.1			0
UNIT - V DISTRIBUTION AUTOMATION Lecture Hrs: 10			Lect	ure I	Irs: 1	0
Introduction to Distribution automation-Customer, feeder and substation automation-			1			
Subsystems in a distribution control center–Distributed Management System (DMS) framework		,				

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

integration with subsystems–Advanced real-time DMS applications–Advanced analytical DMS applications–DMS coordination with other systems.

Textbooks:

- 1. M Shahidehpour, Muwaffaq Alomoush, Restructured electrical power systems operation, trading and volatility, CRC Press, 1st Edition, 2001.
- 2. Mini S Thomas and John D Mcdonald, Power System SCADA and Smart Grids, CRC Press, 1stEdition 2015.

Reference Books:

- 1. Torsten cegrell, Power systems control Technology, Prentice Hall, 1st Edition, 1986.
- 2. James Northcote-Green and Robert Wilson, Control and Automation of Electrical Power Distribution Systems, CRC Press, 1st Edition, 2013.
- 3. Edmund Handschin, Real time control of Electric Power System, Elsevier Publishing Company, 1stEdition, 1972.

Online Learning Resources:

1. <u>https://nptel.ac.in/courses/108/106/108106022/</u>

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (ELECTRICAL POWER SYSTEMS)

Course Code	21D20301	WASTE TO ENERGY	L	T	Р	С
Semester	III	(OPEN ELECTIVE)	3	0	0	3
Course Ob	iectives: To n	nake the student				
		ncept of waste to energy.				
2. To ana	lyze technical	and management principles for production of er	nergy fr	om wa	aste.	
3. To app	ly the best ava	ilable technologies for waste to energy.				
4. To de	velop the pro-	ocess for thermal conversion, bio-chemical	and v	vaste	to en	ergy
conver						
		Student will be able to				
		ncept of waste to energy.				
	•	and management principles for production of e	nergy fi	rom w	aste.	
		ilable technologies for waste to energy.				
		cess for thermal conversion, bio-chemical	and v	vaste	to en	ergy
	version.	•			0	
UNIT – I		ion to Energy from Waste		ure Hi		1117
		as fuel – Agro based – Forest residue – Ind	iustriai	waste	e- Mi	•w–
		erators – Gasifiers – Digestors.	Tast	TT.	0	
UNIT - II				ure Hi		tion
		v fast – Manufacture of charcoal – Methods – oils and gases – Yields and applications.	rielas	and a	ррпса	uon–
UNIT - III	<u> </u>	asification	Loct	ure Hi		
		ystem – Downdraft and updraft gasifiers – F				erc _
		operation – Gasifier burner arrangement for th				
•		electrical power – Equilibrium and kinetic of			0	
operation.	ingement and	erecurear porter Equinoritaria and America		1411011		511101
UNIT - IV	Biomass C	Combustion	Lect	ure Hi	rs: 10	
		ved challahs - Types, Some exotic designs -				tors-
		ombustors – Fluidized bed combustors – Des				
	-	ll the above biomass combustors.	-			
UNIT - V	Introduct	on to Biogas	Lectu	ure Hi	rs: 10	
Properties of	of biogas (Cale	prific value and composition)-Biogas plant tech	nology	and s	tatus –	Bio
energy syst	tem–Design a	nd constructional features-Biomass resources	and the	eir cla	ssifica	tion-
Biomass c	onversion pro	ocesses-Thermochemical conversion- Direct	ct com	bustic	n–Bio	mass
-	• •	and liquefaction- Biochemical conversion- an		-		• •
		ations-Alcohol production from biomass-Biod	liesel p	oroduc	tion-U	Jrban
	~ ~ ~	n – Biomass energy programme in India.				
Textbooks			t			
		l Energy, Desai, Ashok V.,WileyEasternLtd., 1 ^s				1 -
		y A Practical Hand Book- Khandelwal,K.C.	and Ma	andı, S	5.S.,Vo) I. I

& II, Tata McGraw Hill Publishing Co.Ltd., 1st Edition,1983.

R21 COURSE STRUCTURE & SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (ELECTRICAL POWER SYSTEMS)

Reference Books:

- 1. Food, Feed and Fuel from Biomass, Challal, D.S., IBH Publishing Co. Pvt. Ltd., 1st Edition, 1991.
- 2. Biomass Conversion and Technology, C.Y. WereKo-Brobby and E.B.Hagan, John Wiley & Sons, 1st Edition, 1996.

Online Learning Resources:

- 1. https://www.digimat.in/nptel/courses/video/103107125/L01.html
- 2. https://nptel.ac.in/courses/103/107/103107125/