JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTHAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech (ENERGY SYSTEMS)</u> (4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D32101	Energy Management	4	-	4
15D32102	Direct Energy Conversion Systems	4	-	4
15D32103	Renewable Energy Sources	4	-	4
15D32104	Applied Solar Energy Engineering	4	-	4
	ELECTIVE – I	4	-	4
15D32105	Energy Ecology & Environment			
15D32106	Design of Heat Transfer Equipment			
15D32107	Thermal & Nuclear Power Plants			
15D32108	Rapid Prototyping Technologies			
	ELECTIVE – II	4	-	4
15D32109	Reliability & Safety Engineering			
15D31110	Total Quality Management			
15D32110	Data Acquisition and Processing System			
15D32111	Creativity and Innovations in Design			
15D32112	Energy Utilization Lab	0	4	2
TOTAL		24	4	26

II SEMESTER :

Subject Code	SUBJECT	L	Р	С
15D32201	Energy Conservation and Audit	4	-	4
15D32202	Waste Heat Recovery Systems	4	-	4
15D32203	Energy Efficient Electrical Systems	4	-	4
15D32204	Design of Wind Energy Systems	4	-	4
	ELECTIVE – III	4	_	4
15D32205	Optimization of Engineering Design			
15D32206	Refractory Systems			
15D32207	Solar Refrigeration & Air Conditioning			
15D32208	Product Planning and Marketing			
	ELECTIVE – IV	4	-	4
15D32209	Concurrent Engineering			
15D32210	Reverse engineering			
15D32211	Energy Resources			
15D32212	Maintenance Management			
15D54201	Research Methodology (Audit Course)	3	-	-
15D32213	Energy Operations Lab	0	4	2
TOTAL		24	4	26

Code	Subject	Т	Р	С
15D32301	III Semester	0	4	2
	Seminar - I			
15D32401	IV Semister	0	4	2
	Seminar - II			
15D32302	III & IV Semester			44
	Project Work			
	Total	24	8	48

Note : All End Examinations (Theory and Practical) are of Three Hours Duration.

T – Tutorial L – Theory P- Practical / Drawing C - Credits

R15

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech (ENERGY SYSTEMS)</u> (I SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I SEMESTER :

Subject Code	SUBJECT	\mathbf{L}	Р	С
15D32101	Energy Management	4	-	4
15D32102	Direct Energy Conversion Systems	4	-	4
15D32103	Renewable Energy Sources	4	-	4
15D32104	Applied Solar Energy Engineering	4	-	4
	ELECTIVE – I	4	-	4
15D32105	Energy Ecology & Environment			
15D32106	Design of Heat Transfer Equipment			
15D32107	Thermal & Nuclear Power Plants			
15D32108	Rapid Prototyping Technologies			
	ELECTIVE – II	4	-	4
15D32109	Reliability & Safety Engineering			
15D31110	Total Quality Management			
15D32110	Data Acquisition and Processing System			
15D32111	Creativity and Innovations in Design			
15D32112	Energy Utilization Lab	0	4	2
TOTAL		24	4	26

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech : ENERGY SYSTEMS

I- SEMESTER

L P C 4 - 4

ENERGY MANAGEMENT (15D32101)

UNIT - I

ENGINEERING ECONOMICS:

Managerial objectives - steps in planning- Capital budgeting- Classification of costs-Interest- Types- Nominal and effective interest rates Discrete and continuous compounding discounting - Time value of money - Cash flow diagrams - Present worth factor, Capital recovery factor, Equal annual payments - Equivalence between cash flows.

UNIT - II

DEPRECIATION & COST ANALYSIS:

Aims-Physical depreciation-Functional depreciation- Methods of depreciation-Straight line method, Declining balance method, Sum of years digits method, Sinking fund method, Service output method- Capital recovery with return-Service life estimation- Morality curves. Break even analysis and break even chart- Minimum cost analysis- Benefit cost analysis- Life cycle cost analysis.

UNIT - III

PROJECT MANAGEMENT:

Methods of investment appraisal- Rate of return method, Payback period method, Net present value method (NPV)- Internal Rate of Return method(IRR)- Adoption of the methods in energy conservation campaign- Types of projects- Purpose of project management - Classification – Role and qualities of project manager - Types of budgets - Budget committee – budgeting.

UNIT - IV

ENERGY MANAGEMENT PROGRAMS:

Necessary steps of energy management programmer - Concepts of Energy management - General principles of energy management – Energy management in manufacturing and process industries- Qualities and functions of Energy manager - Language of Energy manager-Checklist for top management.

UNIT - V

ENERGY POLICY, SUPPLY, TRADE& PRICES:

Energy resources in India – level of power generation – transmission & distribution of power. Indian energy policy,Energy trade & its economic impacts – domestic energy production – Energy transformation & distribution & energy self sufficiency. International & National crude oil prices – domestic fuel prices – natural gas, LPG, kerosene and firewood - pricing policy.

BOOKS:

- 1. Albert Thumann, Handbook of Energy Audits, The Fairmont Press Inc., Atlanta gergia, 1979.
- 2. Murphy W.R and Mckay G, Energy Management, Butterworths, London, 1982.
- 3. Albert Thumann, Plant Engineer and Management guide to Energy Conservation, Van Nost and Reinhold Co., Newyork.
- 4. Energy Audits, E.E.O.-Book-lets, U.K. 1988.
- 5. Craig B.Smith, "Energy Management Principles", Pergamon Press.
- 6. The role of Energy Manager, E.E.O., U.K.
- 7. The Energy conservation Design Resource Hand Book-The Royal architectural Institute of Canada.
- 8. Energy Management Hand Book-Ed. By Wayne C. Turner, John Wiley and sons, 1982.

I- SEMESTER

L P C 4 - 4

DIRECT ENERGY CONVERSION SYSTEMS (15D32102)

UNIT-I

Energy Balance of the earth – The Greenhouse effect – Physical Source of sunlight – Planck's black-body radiation distribution from different black body temperatures – The earth and Solar Constant – Spectral distribution of extra-terrestrial radiation – Basic earth-sun angles – Solar time and equation of time – attenuation of solar radiation by the atmosphere – Direct and diffuse radiation at the ground – Empirical equations for predicting the availability of solar radiation.

UNIT-II

Photovoltaics (PV): Semiconductor physics and Operating principle – Silicon as PV material - Direct and indirect band-gap material – Flow of Silicon material – Single crystal Silicon Solar cell – Structure – Important electrical parameters – Ideal and approximate equivalent circuits - Manufacturing processes (wafer and cell) of single crystal, multi-crystalline and Edge Defined Film Fed Growth Silicon - Temperature and Irradiation effects – Absorption coefficient and reflectance - Silicon film, Cadmium telluride (cdTe), Copper Indium Gallium Diselenide, amorphous silicon – Comparison of 'Thin film' and 'Bulk crystal' technology – manufacturing (module making) processes of amorphous silicon on glass, stainless steel and plastic substrates – Typical materials used - Concentrator technology and the importance of tracking – Comparison of efficiencies of various technologies – Recent trends in PV technology and manufacturing.

UNIT-III

PV modules and Arrays – Design requirements of PV modules – Rating of PV modules - Standard Test Conditions (STC), Normal Operating Cell Temperature (NOCT) and Standard Operating Conditions (SOC) - Output curves ('Current-Voltage' or 'I-V' and 'Power-Voltage' or 'P-V') under various irradiance and temperature conditions - Mounting structure for PV modules/arrays - Orientation and array layout - Effects of shading - Other balance of systems (BOS) and protective devices: blocking and bypass diodes, movistors - Roof mounted arrays - Building integrated PV (BIPV) - Typical faults and diagnosis - Hot Spot problem in a PV module and safe operating area - Performance measurement of typical parameters of cells/modules under natural and simulated light - Indoor sun simulators -Outdoor PV array testers - ASTM and IEEE standards for Class A and Class B simulators -Pulsed, steady state and single flash types - Determination of temperature coefficients, series and shunt resistances, curve correction factor - Computation of efficiency and fill factor - Translation of parameters actually measured to STC - Reliability Testing: Qualification tests, IEC Standards 61215 & 61646 - Reliability test - Field stress testing

R15

UNIT-IV

PV Systems – Stand alone and grid connected – Load estimation – Daily load demand – Solar radiation/irradiance table for a particular location - Sizing of the PV array, battery, inverter and other BOS – Maximizing efficiency of sub-systems – Balance of systems – Single axis and two axis tracking at optimum inclination of the PV array – Power conditioning and control – Maximum Power Point Trackers, Charge controllers/regulators, AC/DC Converters, DC/AC inverters – Alarms, indicators and monitoring equipment – Energy Storage: Batteries, Deep cycle lead acid type, Battery Design and construction, Other types of batteries, Battery Selection criteria, Safety issues – Typical applications of PV – Hybrid systems: PV-Wind, PV-Diesel engine, PV-Mains - System Sizing examples: Domestic loads, Water pumping, Lighting (using CFLs, White LEDs) - hybrid systems, village power packs – Installation practices – Trouble shooting – Economic analysis: Life Cycle Cost analysis – Environment impacts of PV – Green buildings – Potential for GHG emission reduction of installed PV systems

UNIT-V

The Hydrogen Economy – Advantages of hydrogen as an energy carrier – Components of the hydrogen economy - Generation of hydrogen - Transport and storage of hydrogen: physical and chemical - Fuel Cells – Classification of fuel cells based on (a) Type of electrolyte (b) Type of the fuel and oxidant (c) operating temperature (d) application and (e) chemical nature of electrolyte

Reference Books:

- a. Solar Electricity /Edited by Tomas Markvart/John Wiley and Sons
- b. Solar Cells Operating Principles, Technology and System Applications /Martin A. Green/Prentice Hall Inc
- c. Modelling Photovoltaic Systems using P Spice/Luis Castaner and Santiago Silvestre/John Wiley and Sons
- d. Solar Energy Fundamentals and Applications/H.P. Garg and J. Prakash/Tata McGraw-Hill
- e. Generating Electricity from the Sun/Edited by Fred C. Treble/Pergamon Press
- f. Amorphous Silicon Solar Cells/K.Takahashi and M.Konagai/North Oxford Academic
- g. Photovoltaic Systems Engineering/Roger Messenger/CRC Press
- h. Fuel Cells/Livin Oniciu/Abacus Press 1976

I- SEMESTER

L P C 4 - 4

RENEWABLE ENERGY SOURCES (15D32103)

UNIT – I SOLAR ENERGY:

Availability of solar energy, Measurement of sunshine, solar radiation data, estimation of average solar radiation, the black body, absorptance and emittance, Kirchoff's law. Reflection from surfaces, Solar energy selection, selective surfaces, Construction of solar flat plate and evacuated tube collectors, Performance of solar energy collectors, Solar heating and cooling.

UNIT – II WIND ENERGY:

Wind mills and wind turbine systems, Classification of wind machines: Horizontal & Vertical axis configuration. High and low solidity rotors, Elements of wind mills and wind turbine systems, Aerodynamic models, Rankine Froud Actuator disc model, Betz limit, angular momentum wake rotation theory, Aerofoil sections and their characteristics, Estimation of power output and energy production.

UNIT – III

OCEAN THERMAL ENERGY:

Ocean thermal energy sources, Ocean thermal energy power plant development, Closed and open cycles. Advantages and operating difficulties.

TIDAL & WAVE ENERGY

Tidal power sources, Conventional and latest design of tidal power system, The ocean wave, Oscillating water column (Japanese) and the Dam, Atol design.

UNIT – IV

GEOTHERMAL ENERGY :

Earth as source of heat energy, stored heat and renewability of earth's heat, Nature and occurrence of geo thermal field, Classification of thermal fields, Model of Hyper thermal fields & Semi thermal fields, drilling hot water measurements.

UNIT – V

FUEL CELL ENERGY:

Description, properties and operation of fuel cells, Major components & general characteristics of fuel cells, Indirect methanol fuel cell systems. Phosphoric acid fuel cell systems and molten carbonate fuel cell systems.

R15 2015-16

BIOMASS ENERGY:

Types of conversion techniques for the production of solid, liquid and gaseous fuels by chemical and biochemical methods, and Biomass gasifiers- Selection of a model and size, Technical, Climatic, geographical and economic issues.

BOOKS:

- 1. Principles of Solar Engineering: F.Kreith&J.F.Krieder/Mc.Graw Hill Book Co
- 2. Wind Energy conversion Systems: L.C.Freris, Prentice Hall, Inc..
- 3. Non-conventional Energy Sources: G.D. Rai
- 4. Energy Technology: S. Rao & B.B. Parulekar
- 5. Geo thermal energy: H.Christopher&H.Armstead.
- 6. Photo Voltaic Energy Systems, Design&Applications: Mathew Buresch, Mc Graw Hill Book Co..
- 7. Bio Gas Technology, A Practical Hand Book: K.C.Khendelwal&S.S.Mahdi Mc Graw Hill Book Co..
- 8. Hand Book of Batteries and Fuel cells: David Linden, Mc Graw Hill Book Co..
- 9. Energy Conversion Systems: H.A.Sorenson: John Wiely & S.jons
- 10. Renewable Energy Sources & Conversion technology: Bansal.K: Leemann&Meliss
- 11. Energy technology Hand Book: EdD.M.Considine
- 12. Principles of energy conversion AW.Culp

I- SEMESTER

L P C 4 - 4

APPLIED SOLAR ENERGY ENGINEERING (15D32104)

UNIT – I SOLAR RADIATION:

Sources of radiation –sun earth relationship, Solar Time and angles, day length, angle of incidence on tilted surface; Sun path diagram, Solar Radiation: Extraterrestrial Radiation; Effect of earth atmosphere; Estimation of solar radiation on horizontal and tilted surfaces. Geographic Distribution of solar radiation, Phyrellio, pyranometer, equation of time-estimation of average radiation falling on tilled.

UNIT-II

SOLAR ENERGY TECHNOLOGIES:

Performance analysis of a liquid Flat-plate collector, Total loss coefficient and heat losses: Top loss coefficient, Bottom loss coefficient, Side loss coefficient. Solar concentrating collectors, types of concentrating collectors, Parabolic Dish System, The central power tower system, The Parabolic Trough System, Tracking CPC and Solar Swing, Performance analysis of cylindrical parabolic collector, Compound parabolic concentrator (CPC).

UNIT-III

SOLAR CELLS:

Solar cell fundamentals, solar cell classification, solar cell, module, panel array construction, maximum power pint trackers(MPPT), solar PV applications, The Recent developments in Solar cells, Role of Nano-Technology in Solar cells.

UNIT – IV ECONOMICS:

Discounted Cash Flow-light cycle, coasting of solar system, production function and optimization

UNIT – V THERMAL POWER:

The power concepts- design aspects, thermo-chemical reactor.

SOLAR POND AND SOLAR STILLS:

Working Principle-Construction-operating difficulties and remedies, Agriculture and Domestic applications: Still, timber drying, crop drying, cooker.

Reference Books:

- 1. Solar Energy Thermal Process Diffice and Beckman
- 2. Solar Heating and Cooling by Kreith and Kreider
- 3. Solar Energy Utilization by G.D.Rai
- 4. Solar Energy Utilization by G.D.Rai, Khanna Publishers.
- 5. Renewable Energy Sources and Emerging Technologies- By D.P. Kothari, PHI Pub.,
- 6. Applied Solar Energy by Meinel and Meinel
- 7. Non-Conventional Energy Resources by B.H. Khan, Tata McGraw Hill
- 8. Energy Resources Utilization and Technologies By Anjaneyulu, BS Pub.,

I-SEMESTER

Р 4 4 _

ENERGY ECOLOGY & ENVIRONMENT (Elective – I) (15D32105)

UNIT-I

Energy source for earth - sun - its radiation - its absorption and reflection. Various renewable and non-renewable resources.

UNIT-II

Boisphere - Energetics of the biosphere - Concepts of Ecology - Components of Ecosystems.

UNIT-III

Energy transactions in biosphere - photo synthesis and producers - Herbivones -Carnivones – decomposers – Energy transfers & food wells.

UNIT-IV

Dependence on abiotic systems - biogeochemical cycles. Elements of Environment -Interrelationships in environmental components.

UNIT-V

Concepts of pollution and affecting the natural balances in energy systems. Energy concepts for a sustainable world bio – systems.

REFERENCE BOOKS:

- 1. Renewable Energy, Environment and Development, Maheshwar Dayal, Konark Publishers Pvt. Ltd.,
- 2. Ecology and Environment, P.D. Sharma Rastogi Publications.
- 3. Energy for a sustainable world, J.Goldenberg, T.B. Johnson, Amulya K.Reddy & Robert Williams Willey Eastern Ltd.,

Concepts of Ecology, E.J.Kormondal, Prentice Hall India Ltd.,

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech : ENERGY SYSTEMS

I- SEMESTER

L P C 4 - 4

DESIGN OF HEAT TRANSFER EQUIPMENT (ELECTIVES-I) (15D32106)

UNIT - I

DESIGN OF HEAT EXCHANGERS:

Heat Exchangers-mean temperature differences for parallel and counter flow- effectiveness method (N.T.U)

DESIGN OF CONDENSERS:

Overall heat transfer coefficients- temperature distribution and heat flow in a condenserpressure drop in a condenser –extended fin surfaces-consideration of fouling factor-L.M.T.D. correction factor.

UNIT - II

DESIGN OF EVAPORATORS:

Temperature distribution and heat flow in an evaporator-pressure drop- factor to be consider in the design of heat transfer equipment-types of heat consideration of fouling factor – correction factor

DESIGN OF COMPRESSORS:

Types-equivalent shaft work-volumetric efficiency-factors affecting total volumetric efficiency –compound compression with inter cooling- rotary compressors-surging.

UNIT - III

DESIGN OF COOLING TOWERS AND SPRAY PONDS:

Classification-performance of cooling towers – analysis of counter flow cooling towersenthalpy-temperature diagram of air and water- cooling ponds- types of cooling ponds –cross flow cooling towers- procedure for calculation of outlet conditions.

UNIT - IV

DESIGN OF DUCTS:

Continuity equation-Bernoulli's equation-pressure losses-frictional charts- coefficient of resistance for fillings- duct sizing methods.

DESIGN OF FANS:

Standard air-fan horsepower-fan efficiency-similarity laws-fan laws-performance coefficients- theoretical expression for total pressure drop by a fan-centrifugal fan- axial flow fan-system resistance.

UNIT - V

PIPING SYSTEM:

Requirements of a good piping system-pressure drop in pipes-moody chart-refrigerant pipingdischarge line-liquid line-suction line-piping arrangement

REFERENCE BOOKS:

- 1. Heat and mass transfer by Arora & Domkundwar.
- 2. Refrigeration & Air-Conditioning by P.L.Ballaney
- 3. .Refrigeration & Air-Conditioning by C.P.Arora.
- 4. .Refrigeration & Air-Conditioning by Stoecker

THERMAL AND NUCLEAR POWER PLANTS (ELECTIVES: I) (15D32107)

UNIT - I:

Introduction:

Steam Power Plants: Introduction – General Layout of Steam Power Plant, Basic Steam Cycles: Rankine cycle, Mean temperature of heat addition, Regeneration, Reheat cycles, cogeneration, Efficiencies and Optimization, Modern Coal-fired Steam Power Plants, Power Plant cycles.

Fuel handling, Combustion Equipment, Ash handling, Dust Collectors.

Steam Generators: Types, Accessories, Feed water heaters, Performance of Boilers, Water Treatment, Cooling Towers, Steam Turbines, Compounding of Turbines, Steam Condensers, Jet & Surface Condensers.

UNIT - II:

Gas Turbine Power Plant: Cogeneration, Combined cycle Power Plants, Analysis and Performance of Gas Turbine Plant, Waste-Heat Recovery, IGCC Power Plants, Fluidized Bed Combustion – Advantages & Disadvantages, Principle components of Gas Turbine plant, Fuels and Materials Used for Gas Turbine Power plant.

UNIT -III:

Nuclear Power Plants: Nuclear Physics, Nuclear Reactors, Classification – Types of Reactors, Site Selection, Methods of enriching Uranium, Applications of Nuclear Power Plants.

Nuclear Power Plants Safety: By-Products of Nuclear Power Generation, Economics of Nuclear Power Plants, Nuclear Power Plants in India, Future of Nuclear Power.

UNIT -IV:

Economics of Power Generation: Factors affecting the economics, Load Factor, Utilization factor, Performance and Operating Characteristics of Power Plants. Economic Load Sharing, Depreciation, Energy Rates, Criteria for Optimum Loading, Specific Economic energy problems.

R15

UNIT - V:

Power Plant Instrumentation and Pollution: Classification, Pressure measuring instruments, Temperature measurement and Flow measurement. Analysis of Combustion gases, Pollution – Types, Methods to Control.

TEXT BOOKS:

- 1. Power Plant Engineering / P.K. Nag / TMH.
- 2. Power Plant Engineering / R.K. Rajput / Lakshmi Publications.
- 3. Power Plant Engineering / P.C.Sharma / Kotaria Publications.
- 4. Power Plant Technology / Wakil./TMH

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>Common to (M.Tech – ENERGY SYSTEMS & PRODUCT DESIGN)</u>

I- SEMESTER

L P C 4 - 4

RAPID PROTOTYPING TECHNOLOGIES (Elective – I) (15D32108)

UNIT-I

Introduction: Need for the compression in product development, History of RP systems, Survey of applications, Growth of RP industry and classification of RP systems.

Stereo Lithography Systems: Principle, Process parameter, Process details, Data preparation, Data files and machine details, Application.

Selective Laser Sintering: Type of machine, Principle of operation, Process parameters, Data preparation for SLS, Applications.

UNIT-II

Fusion Deposition Modelling: Principle, Process parameter, Path generation, Application **Solid Ground Curing:** Principle of operation, Machine details, Applications.

UNIT-III

Laminated Object Manufacturing: Principle Of Operation, LOM materials. Process details, application.

Concepts Modelers: Principle, Thermal jet printer, Sander's model market, 3-D printer. Genisys Xs printer HP system 5, Object Quadra systems.

UNIT-IV

LASER ENGINEERING NET SHAPING (LENS)

Rapid Tooling: Indirect Rapid tooling -Silicon rubber tooling –Aluminum filled epoxy tooling Spray metal tooling, Cast kirksite, 3Q keltool, etc, Direct Rapid Tooling Direct. AIM, Quick cast process, Rapid Tool, DMILS, Prometal, Sand casting tooling, Laminate tooling soft, Tooling vs. hard tooling.

UNIT-V

Rapid Manufacturing Process Optimization: Factors influencing accuracy, Data preparation errors, Part building errors, Error in finishing, Influence of build orientation.

Allied Processes: Vacuum casting, surface digitizing, Surface generation from point cloud, Surface modification-data transfer to solid models.

R15 2015-16

TEXT BOOKS:

- 1. Rapid Prototyping and Tooling by Hari Prasad & K.S. Badhrinarayan/ Page Turners
- 2. Paul F. Jacobs- "Stereo lithography and other RP & M Technologies", SME, NY 1996.
- 3. Flham D.T & Dinjoy S.S "Rapid Manufacturing" Verlog London 2001.
- 4. Lament wood, "Rapid automated", Indus press New York

I- SEMESTER

L P C 4 - 4

RELIABILITY & SAFETY ENGINEERING (ELECTIVES: II) (15D32109)

UNIT - I

Elements of probability theory, probability of union and intersection of events, mutually exclusive events, statistical independence, random variables, PDF and CDF, binomial, Poisson and Gaussian distributions.

Component reliability-definition of reliability and hazard functions, failure distributions, exponential Weibull and gama distributions, uniform distribution, bath tub curve.

UNIT - II

Reliability of non-repairable systems, reliability network, series, parallel and rout of configurations, decomposition method, cut set & tie set method , methods of improving reliability.

UNIT - III

Maintainability and availability, MTBF and MTTR, probability and frequency of failure, state space analysis, Markov process, steady state probability, and dependent failures.

Failure types and causes of failure-failure classification, case studies, human factors analysis of different causes of failures.

UNIT - IV

Fault detection, non-destructive testing, X-ray and Gamma ray radiography, Xerography, Electro magnetic methods, ultrasonic methods.

UNIT - V

Monitoring techniques Signature analysis-vibration and noise monitoring, faults and vibration modes, permissible limits of vibrations, temperature monitoring, infrared camera. Wear monitoring, analysis of wear partials, ferography, spectroscopic analysis, performance trend monitoring.

BOOKS:

- 1. "Reliability engineering" By Balaguruswamy.
- 2. "Testing and inspection of materials" by H.E.Davies.
- 3. "Instrumentation, Measurement and analysis" by Prof.B.C.NaKra
- 4. "Mechanical fault diagnosis" By R.A.Collacolt.

REFERENCE:

1. Maintenance Engineering Hand Book

TOTAL OUALITY MANAGEMENT

L P C 4 - 4

TOTAL QUALITY MANAGEMENT (ELECTIVES: II) (15D31110)

UNIT – I

TQM – Overview, Concepts, Elements – History-Quality Management Philosophies-Juran, Deming, Crosby, Feigenbaum, Ishikawa– Stages of Evolution– Continuous Improvement – Objectives – Internal and External Customers. Quality Standards – Need for Standardization - Institutions – Bodies of Standardization, ISO 9000 series – ISO 14000 series – Other Contemporary Standards – ISO Certification Process-Third Party Audit

UNIT – II

Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS – TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools.

Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis.

UNIT – III

Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.

UNIT – IV

Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-Advantages & Limitations of Benchmarking – Taguchi Analysis – Loss function - Taguchi Design of Experiments, Robust Design, Poka-yoke, Kaizen, Deming Cycle.

UNIT – V

Value Improvement Elements – Value Improvement Assault – Supplier Teaming; Business Process Reengineering & Elements of Supply Chain Management. Six Sigma Approach – Application of Six Sigma Approach to various Industrial Situations.

TEXT BOOKS:

- 1Total Quality Management, DakhBesterfield, Pearson Edu.
- 2. Total Quality Management, K.ShridharBhat, Himalaya.

REFERENCE BOOKS:

- 1. Quality management, Howard Giltow-TMH
- 2. Quality management, Evans.
- 3. Quality management, Bedi

R15

I- SEMESTER

L P C 4 - 4

DATA ACQUISITION & PROCESSING SYSTEMS (ELECTIVES: II) (15D32110)

UNIT - I TRANSDUCERS:

Basic requirements of a transducer- principle of operation, application of strain gauges, capacitive, Inductive, Photoelectric, piezoelectric & Potentiometer transducers. Resistance thermometers, thermocouples, hermistors, photoconductive & photovoltaiccells, and Electromagnetic& Turbine type flow meters.

UNIT - II

DATA REPRESENTATION:

Number systems: Decimal, Binary, Octal, Hexadecimal and conversion from one One system to the others; Logic Gates: AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR gates; Logic circuit Implementation: 'Sum of products and product of sums' Boolean equations; Boolean algebra: postulates, theorems and simplification of Boolean equations; Binary arithmetic: Addition, subtraction Circuits; Digital codes: BCD, XS-3, Gray, 2421 and ASCII codes, BCD to decimal decoders; parity checkers and generators.

DIGITAL CIRCUITS

Flip Flops: R-S, JK ,D, Master-slave, Latches – Timing Diagrams – Registers, Buffer, shift and controlled shift registers- Counters-ripple, synchronous, ring and Presettable counters; Astable and monostable multivibrators.

UNIT - III

MEMORIES & PROCESSORS:

Memories: ROMs, PROMs, EPROMs and RAMs, expanding memory size; Processors: arithmetic Logic Unit, register array- control unit, memory, input/output, system concepts, hardware & software, and low-level& high-level languages.

INSTRUMENTATION SYSTEMS:

Representation of generalized data acquisition system; single and multi channel data acquisition systems; microprocessor based data logger; microprocessor control of petrol engine.

UNIT - IV

COMPUTING SYSTEMS:

Simple computing: architecture, instruction set. Fetch & execution cycles, and Microprogramming-Advanced computing- architecture, memory & reference instructions. register instructions, jump& call instruction. Arithmetic instructions, Increments/decrements & rotates, logic instructions. Arithmetic & logic immediates, jump instructions. Extended register instructions indirect instructions. -Simple programming.

INTEL 8085 MICROPROCESSOR:

The 8085:block diagram:pinout diagram. additional instructions. minimum system and timing diagrams; I/O operations: programmed I/O, interrupt driven I/O and Direct memory access

UNIT - V

DATA CONVERSION:

Digital to analog conversion: weighted resistor; and R-2Rladder D/A converters; Analog to digital conversion: successive approximation. Single dual slope integration, and parallel conversion A/D converters, A/D converters using voltage to frequency &voltage to time conversion; sample and hold circuits; multiplexing: D/A and A/D multiplexing; de multiplexing.

BOOKS:

- 1. Electronic Instrumentation & Measurement Techniques: Willman David Cooper, Prentice-Hall of India pvt-ltd.,
- 2. Instrumentation Devices and Systems: Csrangan, OR Sharma and V.S.V Muni; Tata McGraw-Hill Publishing CO. Ltd..
- 3. Integrated Digital Electronics; Walter A. Triebel; Printice Hall.. linc..
- 4. Modern Digital Electronics: R.P. Jain, Tata Mc Graw-Hill Publishing Co., ltd..
- 5. Digital Computer Electronics, An Introduction To Microcomputers: Albert.Paull, Malvino;Tata Mc Graw-Hill Publishing Co.,Ltd.,

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING Common To <u>M.Tech – PRODUCT DESIGN & ENERGY SYSTEMS</u>

I- SEMESTER

L P C 4 - 4 CREATIVITY AND INNOVATIONS IN DESIGN (Elective – II) (15D32111)

UNIT I INTRODUCTION

Need for design creativity – creative thinking for quality – essential theory about directed creativity

UNIT II MECHANISM OF THINKING AND VISUALIZATION

Definitions and theory of mechanisms of mind heuristics and models : attitudes, Approaches and Actions that support creative thinking - Advanced study of visual elements and principles- line, plane, shape, form, pattern, texture gradation, color symmetry.Spatial relationships and compositions in 2 and 3 dimensional space - procedure for genuine graphical computer animation – Animation aerodynamics – virtual environments in scientific Visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization benchmarking

UNIT III CREATIVITY

Methods and tools for Directed Creativity – Basic Principles – Tools of Directed Creativity – Tools that prepare the mind for creative thought – stimulation of new ideas – Development and Actions: - 16 Processes in creativity ICEDIP – Inspiration, Clarification, Distillation, Perspiration, Evaluation and Incubation – Creativity and Motivation The Bridge between man creativity and the rewards of innovativeness – Applying Directed Creativity to the challenge of quality management

UNIT IV DESIGN

Process Design, Emotional Design – Three levels of Design – Viceral, Behavioral and Reflective-Recycling and availability-Creativity and customer needs analysis – Innovative product and service designs, future directions in this application of creativity thinking in quality management

UNIT V INNOVATION

Achieving Creativity – Introduction to TRIZ methodology of Inventive Problem Solving - the essential factors – Innovator's solution – creating and sustaining successful growth – Disruptive Innovation model – Segmentive Models – New market disruption - Commoditation and DE-commoditation – Managing the Strategy Development Process – The Role of Senior Executive in Leading New Growth – Passing the Baton

REFERENCES

1. Rousing Creativity: Think New NowFloydHurr, ISBN 1560525479, Crisp Publications Inc. 1999

2. Geoffrey Petty," how to be better at Creativity", The Industrial Society 1999

3. Donald A. Norman," Emotional Design", Perseus Books Group New York, 2004

4. Clayton M. Christensen Michael E. Raynor," The Innovator"s Solution", Harvard Business School Press Boston, USA, 2003

5. Semyon D. Savransky," Engineering of Creativity - TRIZ", CRC Press New YorkUSA," 2000

R15 2015-16

I- SEMESTER

L P C 0 4 2

ENERGY UTILIZATION LABORATORY (15D32112)

List of Experiments

S.No.

Experiment Name

- 1. Survey of alternative Energy Sources
- 2. Estimation of energy Saving by Solar Water Heating
- 3. Flat-Plate Collector Requirement Calculations
- 4. Estimation of Discharge of Centrifugal pump using Solar Power
- 5. Demonstration of Wind Tunnel
- 6. Study of Biomass plant
- 7. Study of Bio-Gasifier
- 8. Performance of Solar Cocker

L P C 4 - 4

EFFECTIVE FROM THE YEAR 2015-16

	EFFECTIVE FROM THE TEAR 2013-	10		
I <u>SEMESTER:</u>				
Subject Code	SUBJECT	L	Р	С
15D32201	Energy Conservation and Audit	4	-	4
15D32202	Waste Heat Recovery Systems	4	-	4
15D32203	Energy Efficient Electrical Systems	4	-	4
15D32204	Design of Wind Energy Systems	4	-	4
	ELECTIVE – III	4	-	4
15D32205	Optimization of Engineering Design			
15D32206	Refractory Systems			
15D32207	Solar Refrigeration & Air Conditioning			
15D32208	Product Planning and Marketing			
	ELECTIVE – IV	4	-	4
15D32209	Concurrent Engineering			
15D32210	Reverse engineering			
15D32211	Energy Resources			
15D32212	Maintenance Management			
15D54201	Research Methodology (Audit Course)	3	-	-
15D32213	Energy Operations Lab	0	4	2
TOTAL		24	4	26

R15

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech : ENERGY SYSTEMS

II- SEMESTER

L P C 4 - 4

ENERGY CONSERVATION AND AUDIT (15D32201)

UNIT - I

THERMODYNAMICS

Availability, energy and Anergy-Exergy, energy, entropy relationship- Degradation of energy – exergy analysis- exergy conservation- combustion, thermal efficiency, thermal losses; thermal balance sheets.

HEAT EXCHANGER THEORY:

Types Of heat exchangers - overall heat transfer coefficient – fouling factor - Design of heat Exchangers, L.M.T.D. and N.T.U. methods.

UNIT - II

ENERGY CONSERVATION:

Rules for efficient energy conservation – technologies for energy conservation – outline of waste heat and material reclamation, load management.

ENERGY AUDITING:

A definition- Level of responsibility- Control of Energy- Uses of Energy - Energy index - Cost index - Pie charts-sankey diagrams Load profiles - Types of energy audits- General energy audit- Detailed energy audit.

UNIT - III

THERMAL INSULATION & REFRACTORIES:

Heat loss through un insulated and insulated surfaces; effect of insulation on current carrying wires – economic thickness of insulation – critical radius of insulation – properties of thermal insulators – classification of insulation materials – classification of refractories – properties of refractories – Criteria for good refractory material – application of insulating & refractory materials.

UNIT - IV

WASTE HEAT RECOVERY SYSTEMS:

Guideline to identify waste heat – feasibility study of waste heat – shell and tube heat exchangers – Thermal wheel – heat pipe heat exchanger – Heat pump – waste heat boilers – Incinerators.

UNIT - V

HEAT RECOVERY SYSTEMS:

Liquid to liquid heat exchangers – regenerators, recuperaters, rotating regenerators – selection of materials for heat exchangers, U- tube heat exchanger, fluidized bed heat exchanger –economizer.

References :

- 1. The role of Energy Manager, E.E.O., U.K.
- 2. The Energy conservation Design Resource Hand Book-The Royal architectural Institute of Canada.
- 3. Conduction Heat Transfer-
- 4. Conduction of Heat in Solids
- 5. Fundamentals of heat and mass transfer

-Schneder Addition Wieslthy

- -Carslaw & Jaeger.
- -R.C. Sachdev New Age International

Publishers

6. Heat Transfer By R.K. Rajput/ laxmi publication

II- SEMESTER

L P C 4 - 4

Waste Heat Recovery Systems (15D32202)

UNIT-I

Introduction

Rankine Cycle, Coupled cycles and combined plants, Energy resources and use, Potential for energy conservation, Optimal utilization of fossil fuels. Total energy approach.

UNIT-II

Waste Heat Recovery Systems

selection criteria for waste heat recovery technologies - recuperators - Regenerators - economizers - plate heat exchangers - thermic fluid heaters - Waste heat boilersclassification, location, service conditions, design Considerations - fluidized bed heat exchangers - heat pipe exchangers - heat pumps – sorption systems.

UNIT-III

Prime Mover Exhausts; incineration plants; heat pump systems; thermoelectric devices. Utilization of low grade reject heat from power plants, Utilization of waste heat in refrigeration, heating, ventilation and air conditioning systems. Thermoelectric system to recover waste heat.

UNIT-IV

Energy Storage Systems:

Need for energy storage, Thermal, electrical, magnetic and chemical storage systems.

UNIT-V

Economic Analysis

Investment cost – economic concepts – measures of economic performance – procedure for economic analysis – examples – procedure for optimized system selection and design – load curves - sensitivity analysis – regulatory and financial frame work for cogeneration and waste heat recovery systems

R15 2015-16

REFERENCES:

[1] Goswami, D. Y., and Kreith, F. Energy Conversion . CRC Press, 2007.

[2] Hewitt, G. F., Shires, G. L., and Bott, T. R. Process Heat Transfer . CRC Press, Florida, 1993.

[3] Li, K. W., and Priddy, A. P. Power Plant System Design . John Wiley and Sons, New York, 1985.

[4] Nag, P. K. Power Plant Engineering . Tata McGraw-Hill, New Delhi, 2001.

[5] El-Wakil, Power Plant Engineeirng, Mcgraw-Hill

- [6] HoSung Lee, Thermal Design
- [7] Dincer, Rosen, Thermal Energy Storage Systems

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech : ENERGY SYSTEMS

II- SEMESTER

L P C 4 - 4

ENERGY EFFICIENT ELECTRICAL SYSTEMS (15D32203)

UNIT - I

THREE PHASE INDUCTION MOTROS:

Cage motors-equivalent circuit-speed-torque characteristics-performance characteristics-voltage unbalance-over motoring-slip ring induction motor characteristics multi speed motors.

SINGLE PHASE INDUCTION MOTORS:

Starting & running performance-split phase-capacitor type motor-characteristics-reluctance motor.

UNIT - II

ENERGY EFFICIENT MOTORS:

Constructional details-factors affecting efficiency-losses distribution-characteristicscalculation of pay back period.

ECONOMICS OF POWER FACTOR IMPROVEMENT:

Simple pay back method-return on investment-life cycle analysis.

UNIT - III

ENERGY EFFICIENT LIGHTING:

Terminology-cosine law of illumination-types of lamps-characteristics-design of illumination systems-good lighting practice-lighting control-steps for lighting energy conservation.

UNIT - IV

ECONOMICS OF ELECTRICAL ENERGY GENERATION:

Definitions-connected load, maximum demand-demand factor-curve-base load and peck load.

UNIT - V

ECONOMICS OF ELECTRICAL ENERGY DISTRIBUTION:

Electrical load analysis-type of consumers& tariffs-line losses-corner losses-types of distribution systems- Kevin's law-loss load factor.

ECONOMICS OF ELECTRICAL DRIVES:

Selection of motors-types of loads-energy consumption during starting of ac and dc motorsbraking of motors-plugging-regenerative braking.

BOOKS:

- 1. Electrical Machinery: Fitzerland, Kingsley, Kusko-MC Graw Hill Ltd.
- 2. Energy-Efficient Electrical motors: John C.Andreas-Marcel Decker Inc.
- 3. Electrical Technology: Edward Hughes-ElLBS.

Energy Management and good lighting practice: Fuel Efficiency Booklet 12-eeo.

II- SEMESTER

L P C 4 - 4

R15 2015-16

DESIGN OF WIND ENERGY SYSTEMS

(15D32204)

UNIT-I

Historical developments, latest developments, state of art of wind energy technology, turbine rating, cost of energy, wind power plant economics, installation and operation costs, decommissioning, Indian scenario and worldwide developments, present status and future trends

UNIT-II

Nature of atmospheric winds; wind resource characteristics and assessment; anemometry; wind statistics; speed frequency distribution, effect of height, wind rose, Weibull distribution, atmospheric turbulence, gust wind speed, effect of topography.

UNIT-III

Design of wind turbine blade; effect of stall and blade pitch on coefficient of power vs tip speed ratio and cut-out wind speeds, blade materials, design characteristics, multiple stream tube theory, vortex wake structure; tip losses; rotational sampling, wind turbine design programs, aerodynamic loads, tower shadow, wind shear, blade coning, gyroscopic, transient and extreme loads.

UNIT-IV

Pitch control, yaw control, Electrical and Mechanical aerodynamic braking, teeter mechanism. Wind turbine dynamics with DC and AC generators: induction and synchronous generators, variable speed operation, effect of wind turbulence. Power electronics Converter and Inverter interfaces for wind energy utilization system for isolated and grid connected system.

UNIT-V

Wind farm electrical design, Planning of wind farms, special application for developing countries, maintenance and operation, wind farm management, site selection. Environmental assessment; noise, visual impact etc. Instrumentation, data loggers, remote monitoring and control.

REFERENCES:

1. Paul Gipe, Wind Energy Comes of Age, John Wiley & Sons Inc.

- 2. Ahmed: Wind Energy Theory and Practice, PHI, Eastern Economy Edition, 2012
- 3. L.L. Freris, Wind Energy Conversion System, Printice Hall.
- 4. Tony Burton et al, Wind energy Hand Book, John Wiley & Sons Inc.
- 5. Directory, Indian Wind Power 2004, CECL, Bhopal.

II- SEMESTER

L P C 4 - 4

OPTIMIZATION OF ENGINEERING DESIGN (Elective – III)

(15D32205)

UNIT I

SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION:

One dimensional Optimization methods:- Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods.

UNIT II

Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. **Variable** metric method.

UNIT III

GEOMETRIC PROGRAMMING:

Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P

DYNAMIC PROGRAMMING:

Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.

UNIT IV

Linear programming – formulation – Sensivity analysis. Change in the constrints, cost coefficients , coefficients of the constraints, addition and deletion of variable, constraints.

Simulation – Introduction – Types – Steps – application – inventory – queuing – thermal system.

UNIT V

Integer Programming – introduction – formulation – Gomory cutting plane algorithm – Zero or one algorithm, branch and bound method.

STOCHASTIC PROGRAMMING:

R15

Basic concepts of probability theory, random variables – distributions – mean, variance, Correlation, co variance, joint probability distribution – stochastic linear, dynamic programming.

REFERENCES:

- 1. Optimization theory & Applications/ S.S Rao/ New Age International
- 2. Introductory to operation research/Kasan & Kumar/Springar
- 3. Optimization Techniques theory and practice / M.C Joshi, K.M Moudgalya/ Narosa Publications.
- 4. S.D Sharma/Operations Research
- 5. Operation Research/H.A. Taha/TMH
- 6. Optimization in operations research/R.L Rardin
- 7. Optimization Techniques/Benugundu & Chandraputla/Person Asia.

II- SEMESTER

L P C 4 - 4

REFRACTORY SYSTEMS (Elective – III)

(15D32206)

UNIT-I

INTRODUCTION

Definition – Survey of Refractories and their Uses – Layout of a refractory plant – Classification of Refractories – Fundamental Properties of Refractories namely Physical, Thermal, Mechanical, Chemical and Electrical Properties.

UNIT-II

ALUMINO SILICATE REFRACTORIES

Silica – Raw materials – Manufacturing Steps – Properties – Applications.

 $Al_2O_3 - SiO_2$ Phase diagram – Types of Raw materials – Types of Alumino-Silicate Refractories – Manufacturing Steps – Properties – Applications.

UNIT-III

BASIC REFRACTORIES

Raw materials, Manufacturing Steps, Properties and Applications of Forsterite, Dolomite Magnesite, Magnesia Carbon, and Chrome based refractories.

UNIT-IV

SPECIAL REFRACTORIES AND MONOLITHICS

Carbide based, Nitride based, Zirconia, Thoria, Beryllia Refractories – Raw materials, Manufacturing Steps, Properties and Applications. Fused cast refractories – Ceramic Fibers. Types of Castables – Ramming Mass – Gunning Mixes.

R15 2015-16

UNIT-V

APPLICATIONS OF REFRACTORIES

Refractories for coke oven, blast furnace, open hearth furnace, LD converter, THF, EAF, IF, Ladle furnace, slide plate system, nozzle, shroud, continuous casting; Monolithic Applications – gunning technique; Refractory, slag and metal interactions.

BOOKS FOR REFERENCE

- 1. D.N.Nandi, Handbook of Refractories, Tata McGraw Hill Publishing Co, New Delhi, 1991.
- Chesters J.H, Refractroies: Production & Properties, Iron & Steel Institute, London, 1973.
- 3. Chester, J.H., Steel Plant Refractories, Second Edition., 1973, The United Steel Companies Ltd., Sheffield, UK.
- 4. Chester, J.H. Refractories, Production and Properties, 1973, Iron and Steel Institute, London.
- 5. Robert E.Fisher, Advances in Refractory Technology, Ceramic Transaction, Vol.4, 1990, American Ceramic Society, Westerville, Ohio, USA.
- 6. Handbook of Monolithics, 1980, Plibrico, Japan.
- 7. Modern Refractories Practice, 1961, Harbison Walker Comp., Pittsburgh.

II- SEMESTER

L P C 4 - 4

SOLAR REFRIGERATION & AIR CONDITIONING (Elective III) (15D32207)

UNIT - I

Review of Psychometric and (Air-conditioning) cooling load calculations-outline of Vapour Compression Refrigeration Systems – Cycle on p-h and T-o charts – C.O.P – Simple problems using property tables.

UNIT - II

Principle of working of working of vapour Absorption Refrigeration, steam jet refrigeration, thermoelectric refrigeration – classification of refrigerants – Desirable properties of ideal refrigerant - Properties of solvent - Solvent refrigerant combination properties.

UNIT - III

Solar cooling systems: vapour compression systems, Rankine cycle, Striling cycle, using P.V.Modules. Solar operated vapour absorption systems – vapour jet refrigeration systems.

UNIT - IV

Solar thermal energy storage - Active and passive systems TROMBE wall - equivalent thermal circuit - Solar green houses.

Solar cooling and dehumidification: Desiccant cooling - Solid and liquid desiccants - improving desiccant cycles - hybrid systems.

UNIT - V

Non –mechanical systems - Australian Rock system – Solar assisted Heat Pump – Economics of solar cooling systems.

Simulation of solar thermal systems - Salient features of DYNSYS, TRNSYS - model formulation - flow diagram of cooling systems.

REFERENCE BOOKS:

- 1. A course in Refrigeration & Air –conditioning, S.Domakundwar & S.C.Arora
- 2. Principles of Solar engineering, F.Kreith &J.F.Kreider, Mc Graw Hill Book company
- 3. Solar Cooling & Heating Volumes, I,II,III., T.Negat Vezirogulu
- 4. Entrepreneurship Development in New & Renewable Energy Technologies APPC & IREDA

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>Common to M.Tech – PRODUCT DESIGN & ENERGY SYSTEMS</u>

II- SEMESTER

R L P C 4 - 4 PRODUCT PLANNING AND MARKETING (Elective-III) (15D32208)

UNIT-I

Classification of New Products: New products success and failure. Definition of success and failure, the latent Factors Behind the Marketing Success of New Products, Failure of New product, Factors Influencing Failure, Failures preventing new product Failure, New Product Development process and models, Model 1-The Cyclical Approach, Model 11-New product process Management

Concept Development and Statistical Tools Used : Introduction Common Sources for Product Ideas, Concept Development Methods, Idea Screening, idea Screening Approaches, Concept Testing, Definition, Methodology of Data Collection for Concept Testing, Data Analysis Techniques for Concept Testing, Concept Screen Test Method, Weighted Scoring Method, Concept Screening Matrix

UNIT-II

Diffusion of Innovation and Adoption Process : Introduction, Adoption Process, Five Stage Process, Time of Adoption, Characteristics of Adopters, Characteristics Affecting Adoption Rate, Diffusion of Innovation, Product Life Cycle Introduction, Basics of PLC, 3 Types of PLCs, Identification of Stages in a PLCSigma Method of Tracing the Product Life Cycle and Stages Identification.,

Product Mix : Introduction, Width, Length, Depth, And Consistency of Product mix, Product Lines, Product Strategies, Introduction, Types of Naming, Problem Faced due to Linguistic Differences, Branding Naming Strategies, Brand Naming Strategies, The Naming Process, The Dos and Don'ts While Naming Brands, Brand Names, Generalization.

UNIT-III

Test Marketing: Introduction, Objectives of Test Marketing-What to look for?, Pros and Cons of test Marketing, Decision Variables for Test Markets, Test Marketing Approaches, Types of Test Marketing Producers, Statistical Models for Analyzing Test Market Data, Data Project Method, Product Launch and Commercialization, The Product Launch Cycle, The Launch Mix, Issues in Launch, The Product Launch Process, Effective Plan for Product Launch, Product Launch Mistakes

Brand Identity: Introduction, What Identity is not ? Dimensions and Identity, Inner and Outer Identity, The Six Sided Prism, How to find Identity? Multiple Identities, Conclusion, Brand Image, Brand Images of Some of the Indian Brands, Techniques Used for Identifying the Brand Image, Brand Networking Techniques, Focus Groups, Constructive Techniques, Factor Analysis.

UNIT-IV

Brand Personality: Introduction, Tools to Build/Understand Brand Personality, Brand personality Scale, Three Models to Build Brand Personality, Building Brand Personality Via the 4P's and Packaging, Building Brand Personality Bottom-up. Brand Positing and Repositioning Introduction, Grabbing the Mind Space, Positioning Statement, Determine the Positioning, The MDS Way, Image and Profile Analysis, Positioning through Correspondence Analysis, By factor Analysis, Positioning Analysis, by Discriminate Mapping, Repositioning, Brand Loyalty, Definition, Brand Loyalty Measurement Models, Preference Behavior Model, Purchase Probability Model, Brand Loyalty Analysis with Markov Chains, Strategies to Build Brand Loyalty, Building Loyalty Through Strategic Differentiation

UNIT-V

Line Extension: Introduction, Why Line Extension is so hard to resist ? A Good Marketing Strategy, Extension, Measuring the Line Extension Success Brand Extension Introduction, Asker and Keller's Success Factors, Internal and External Factors Affecting Firm, Inter Brand Success Factors, Sequential Introduction of Brand Extension, Process of Brand Extension, Brand Harvesting Introduction, Types of Harvesting, Activities Adopted during Harvesting Strategy, Planning the Harvesting Strategy Implementation.

TEXT BOOKS :

- 1. Gien L. Urban. John R. Hauser "Design and Marketing of new products"
- 2. William L. Moore&Edgar "Product Planning and Management", A. Pessemier AGILE MANUFACTURIN
- 3. Dr.C. Anandan "Product Management". Tata Mc Graw Hill Education Pvt. Ltd.,
- 4. Philip Kotler. "Marketing Management " Person Eduction Pvt Ltd.,
- 5. Dr. Venu Gopal Rao. "Product and Brand Management" Himalaya Publications.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING **M.Tech : ENERGY SYSTEMS** L

II-SEMESTER

Р С 4 4 _

CONCURRENT ENGINEERING (Elective IV) (15D32209)

UNIT-I

definition of Introduction-Extensive CE. CE design methodologies-Organising for CE- CE Tool box Collaborative product development Use of Information Technology: IT Support- Solid Modelling-Product Data management-Collaborative product commerce.

UNIT-II

Artificial Intelligence- Expert Systems-Software hardware co-design

Design Stage: Life cycle design of products- opportunity for manufacturing enterprisesmodality of concurrent engineering design.

UNIT-III

Automated analysis idealization control- concurrent engineering in optimal structural designreal time constraints

Manufacturing competitiveness- Checking the design process-conceptual design process mechanism –Qualitative, physical approach – an intelligent design for manufacturing for manufacturing system

UNIT-IV

JIT system- low inventory- Modular- Modelling and reasoning for computer based assembly planning-Design of automated manufacturing

Project Management Life Cycle Semi Realisation- Design for Economics- Evaluation of design for manufacturing cost

UNIT-V

Concurrent Mechanical design- Decomposition in concurrent Design-Negotiation in Concurrent Engineering Design studies - Product Realisation Taxonomy -Plan for project management on new product development- bottle neck technology development.

TEXT BOOKS:

- 1. Anderson M M and Hein, L Berlin, Springer Verlog-"Integrated Product **Development**"
- 2. Cleetus J Concurrent research Centre, Morgan Town-"Design for Concurrent **Engineering**"

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

Common to M.Tech (ENERGY SYSTEMS & PRODUCTION DESIGN)

II- SEMESTER

L P C 4 - 4

REVERSE ENGINEERING (Elective-IV) (15D32210)

UNIT I INTRODUCTION

Scope and tasks of RE - Domain analysis- process of duplicating

UNIT II TOOLS FOR RE

Functionality- dimensional- developing technical data - digitizing techniques - construction of surface model - solid-part material- characteristics evaluation -software and application- prototyping - verification

UNIT III CONCEPTS

History of Reverse Engineering – Preserving and preparation for the four stage process – Evaluation and Verification- Technical Data Generation, Data Verification, Project Implementation

UNIT IV DATA MANAGEMENT

Data reverse engineering – Three data Reverse engineering strategies – Definition – organization data issues - Software application – Finding reusable software components – Recycling real-time embedded software – Design experiments to evaluate a Reverse Engineering tool – Rule based detection for reverse Engineering user interfaces – Reverse Engineering of assembly programs: A model based approach and its logical basics

UNIT V INTEGRATION

Cognitive approach to program understated – Integrating formal and structured methods in reverse engineering – Integrating reverse engineering, reuse and specification tool environments to reverse engineering – coordinate measurement – feature capturing – surface and solid members

REFERENCES

1. Design Recovery for Maintenance and Reuse, T J Biggerstaff, IEEE Corpn. July 1991

- 2. White paper on RE, S. Rugaban, Technical Report, Georgia Instt. of Technology, 1994
- 3. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994

4. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996

5. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996

6. Co-ordinate Measurment and reverse engineering, Donald R. Honsa, ISBN 1555897, American Gear Manufacturers Association

С

4

L

4

Р

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech : ENERGY SYSTEMS

II- SEMESTER

ENERGY RESOURCES (Elective IV) (15D32211)

UNIT I COMMERCIAL ENERGY

Coal, Oil, Natural Gas, Nuclear power and Hydro - their utilization pattern in the past, present and future projections of consumption pattern - Sector-wise energy consumption – environmental impact of fossil fuels – Energy scenario in India – Growth of energy sector and its planning in India.

UNIT II SOLAR ENERGY

Solar radiation at the earth's surface – solar radiation measurements – estimation of average solar radiation - solar thermal flat plate collectors - concentrating collectors – solar thermal applications - heating, cooling, desalination, drying, cooking, etc – solar thermal electric power plant - principle of photovoltaic conversion of solar energy, types of solar cells - Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping etc - solar PV power plant – Net metering concept.

UNIT III WIND ENERGY

Nature of the wind – power in the wind – factors influencing wind – wind data and energy estimation - wind speed monitoring - wind resource assessment - Betz limit - site selection - wind energy conversion devices - classification, characteristics, applications – offshore wind energy – Hybrid systems - safety and environmental aspects – wind energy potential and installation in India - Repowering concept.

UNIT IV BIO-ENERGY

Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - direct combustion – biomass gasification - pyrolysis and liquefaction – biochemical conversion - anaerobic digestion - types of biogas Plants - applications - alcohol production from biomass – bio diesel production – Urban waste to energy conversion - Biomass energy programme in India.

UNIT V OTHER TYPES OF ENERGY

Ocean energy resources - principle of ocean thermal energy conversion (OTEC) - ocean thermal power plants - ocean wave energy conversion - tidal energy conversion - small hydro - geothermal energy - geothermal power plants - hydrogen production and storage - Fuel cell - principle of working - various types - construction and applications.

REFERENCES

- 1. Sukhatme, S.P., Solar Energy, Tata McGraw Hill, 1984.
- 2. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986.
- 3. Kishore VVN, Renewable Energy Engineering and Technology, Teri Press, New Delhi, 2012
- 4. Peter Gevorkian, Sustainable Energy Systems Engineering, McGraw Hill, 2007
- 5. Kreith, F and Kreider, J. F., Principles of Solar Engineering, McGraw-Hill, 1978.
- 6. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford

University Press, U.K, 1996

2015-16 **JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech: ENERGY SYSTEMS** L

II-SEMESTER

Р С

4 **MAINTENANCE ENGINEERING AND MANAGEMENT (Elective IV)** (15D32212)

UNIT-I:

Maintenance engineering objectives-Basic principles and approaches-Types of maintenance-Specifications and functions-Systems approach-performance indices-planning and control-Strategy.

UNIT-II:

Maintenance management and control-functions and organization-critical maintenanceeffective elements-project control methods-control indices - Maintainability-Concepts-tasksmodeling and allocation-prediction-FMECA-reliability and maintainability trade off-Design for maintainability-design methods.

UNIT-III:

Preventive maintenance-elements and principle-measures-mathematical models-Advantages and disadvantages - Corrective maintenance-types-measures-mathematical models-effective failure rate equations - Reliability Centered Maintenance-goals and principles-componentspredictive testing and Inspection techniques-effective measurement indicators-Advantages.

UNIT-IV:

Quality in Maintenance-Processes-Control Charts-Post maintenance testing-Maintenance Safety-maintenance tasks-improving safety-personnel safety.

UNIT-V:

Maintenance costing-factors-budget type and approaches-labor cost estimation-material cost estimation-cost estimation model-cost related indices-economic analysis-Convex and Concave costs-profit and life cycle cost tradeoffs.

REFERENCS BOOKS:

- 1. A. K. Gupta, Reliability, Maintenance and Safety Engineering,
- 2. B. S. Dhillon, Engineering Maintenance A Modern Approach, CRC Press.
- 3. Charles E. Ebeling, Reliability and Maintainability Engineering, Tata McGraw Hill, 2000.

4

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech : ENERGY SYSTEMS

II- SEMESTER

L P C 0 4 2

ENERGY OPERATIONS LAB (15D32213)

List of Experiments

S.No. Experiment Name

- 1 Estimation of Load & Solar Panel Requirement for an house hold
- 2 Study of plant location of wind mills
- 3 Calculation of payback period for domestic solar water heater A case study
- 4 Industrial visit of mind mills
- 5 Study on captive power generation of an industry
- 6 Study of Energy efficient building
- 7 Estimation of drag force by using wind tunnel
- 8 Estimation of lift force by using wind tunnel

R15

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ENERGY SYSTEMS

I SEMESTER

S.No.	Course Code	Subject Name	Cate	-	urs I Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D31103	Conduction and Radiation Heat Transfer	PC	3	0	0	3
2	21D32101	Renewable Energy Sources	PC	3	0	0	3
3	Profession	al Elective – I					
	21D32102	Energy Management					
	21D32103	Direct Energy Conversion Systems	PE	3	0	0	3
	21D32104	Applied Solar Energy Engineering					
4	Profession	al Elective – II					
	21D32105	Reliability & Safety Engineering					
	21D32106	Data Acquisition and Processing System	PE	3	0	0	3
	21D32107	Design of Heat Transfer Equipment					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies					
7	21D32108	Energy Utilization Lab	PC	0	0	4	2
8	21D32109	Thermal Energy Lab	PC	0	0	4	2
	<u> </u>	Total	I	16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ENERGY SYSTEMS

II SEMESTER

S.No.	Course Code	Subject Name	Cate	-	urs] Weel	-	Credits
	Code		Gory	L	Т	Ρ	
1	21D32201	Energy Conservation and Audit	PC	3	0	0	3
2	21D32202	Energy Efficient Electrical Systems	PC	3	0	0	3
3	Profession	al Elective – III				I	
	21D32203	Waste Heat Recovery Systems					
	21D32204	Total Quality Management	PE	3	0	0	3
	21D32205	Solar Refrigeration & Air Conditioning					
4	Profession	al Elective – IV				1	
	21D32206	Design of Wind Energy Systems					
	21D32207	Energy Resources	PE	3	0	0	3
	21D32208	Optimization of Engineering Design	-				
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga					
7	21D32209	Energy Operations Lab	PC	0	0	4	2
8	21D32210	Renewable Energy Systems Laboratory	PC	0	0	4	2
<u> </u>	I	Total	L	14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

ENERGY SYSTEMS

III SEMESTER

S.No.	Course	Subject Name	Cate		urs I Weel		Credits
	Code	•	Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D32301	Energy Ecology & Environment					
	21D32302	Product Planning and Marketing	PE	3	0	0	3
	21D32303	Rapid Prototyping Technologies					
2	Open Elect	tive			•		
	21D30301	Mechatronics	OE	3	0	0	3
3	21D32304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
	Total						18

IV SEMESTER

S.No.	Course Code	Subject Name	Cate Gory				Hours Per Week		Credits
	Coue		GOLA	L	Т	Ρ			
1	21D32401	Dissertation Phase – II	PR	0	0	32	16		
	•	Total		00	00	16			

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course Code	21D31103	CONDUCTION AND RADIATION HEAT	L	Т	P	С
Semester	Ι	TRANSFER	3	0	0	3
		(21D31103)				
Course Objecti						
		s of heat transfer.				
		through spherical shells.				
		ing of bodies with negligible internal resistance.				
		thermal radiation.				
		etwork for an absorbing and transmitting mediur	n.			
		adent will be able to				
	eat transfer p	roblems by applying appropriate governing equa	atior	is an	d boı	ındary
conditions.						
		solve various Conduction formulations.				
		understand and analyze physical systems.				
		nd assumptions for analyze radiation heat transfer	-		18.	
	knowledge t	o develop systems suitable for Industrial application				10
UNIT – I					Hrs:	
		tion of three modes of heat transfer, steady,	unst	eady	stat	e heat
		quations and boundary conditions			C	
		e conduction, semi-infinite and finite flat plate;	tem	perat	ure f	ield in
infinite and finit	e cylinders.		т		T T	10
UNIT – II	1 1 .				Hrs:	
problems.	ougn spheric	cal shells. Numerical method: finite differenc	e m	etho	a - 9	simple
UNIT – III			Le	cture	Hrs:	10
	oling of bodi	es with negligible internal resistance, sudden ch				
		, cylinders and semi-infinite bodies-simple probl				
UNIT – IV			Le	cture	Hrs:	10
RADIATION :						
Review of the th	nermal radiat	ion - gas radiation, mean beam length exchange	betw	veen	gas v	olume
and black enclose	sure, heat exc	change between gas volume and gray enclosure,	orob	lems		
UNIT – V			Le	cture	Hrs:	10
Radiation netwo	ork for an abs	orbing and transmitting medium, radiation excha	inge	with	spec	ular
		with transmissivity and reflecting absorbing med	-		-	
for numerical so						
Solar radiation	: Radiation	properties of environment, effect of radiati	on	on 1	empe	erature
measurement, th	ne radiation h	eat transfer coefficient, problems.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Textbooks:

1) Heat transfer -J.P. Holman, International Student Edition, TMH.

2) Heat Transfer -Gibhart - Mc. Graw Hill.

3) Conduction Heat Transfer- -Schneider Addison -Wiesthly

4) Conduction of Heat in Solids -Carslaw& Jaeger, ASME

Reference Books:

1) Fundamentals of Heat and Mass Transfer -R.C. Sachdev New Age International

2) Heat and Mass Transfer by R. K. Rajput, S.Chand Technical Publishers

Online Learning Resources:

https://nptel.ac.in/courses/112/105/112105271/

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course Code	21D32101	RENEWABLE ENERGY SOURCES	L	Т	P	С
Semester	Ι	(21D32101)	3	0	0	3
	e a survey of	the most important renewable energy resources narnessing these resources within the framework		fab	road	range of
simple to s 3. To provide 4. To under developme	state- of -the- e wind mills stand ocear ent.	art energy systems. and wind turbine systems thermal energy sources, Ocean thermal				-
-		Il energy and Biomass energy. tudent will be able to				
 Demonstrative a wo Estimate t conversion Explore the types and Illustrate of 	ate the gener rking knowle he solar ener n of it to elec ne concepts in performance ocean energy	ation of electricity from various Non-Conventied edge on types of fuel cells. rgy, Utilization of it, Principles involved in sola tricity generation. nvolved in wind energy conversion system by st	r ene tudyi	ergy ng it	colle	ction and
UNIT - I	le kilowiedge	on Geothermar energy.	Ιe	cture	Hrs	10
solar radiation, surfaces, Solar	, the black energy selec	, Measurement of sunshine, solar radiation data body, absorptance and emittance, Kirchoff's tion, selective surfaces, Construction of solar f e of solar energy collectors, Solar heating and co	law lat p	. Re late a	flecti	on from
UNIT - II			Ie	cture	Hrs	8
Wind mills and configuration. Aerodynamic r	High and lov nodels, Rank	e systems, Classification of wind machines: Ho w solidity rotors, Elements of wind mills and kineFroud Actuator disc model, Betz limit, an ctions and their characteristics, Estimation of pe	rizon win gular	tal & d tur mor	z Ver bine ment	tical axis systems, um wake
UNIT - III			Le	cture	Hrs	10
cycles. Advanta TIDAL & WA	energy source ages and oper VE ENERG	ces, Ocean thermal energy power plant develop rating difficulties.				-
-		ventional and latest design of tidal power systemapanese) and the Dam, Atol design.	tem,	The	ocea	an wave,

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

UNIT - IV		Lecture Hrs:10
GEOTHER	MAL ENERGY :	
Earth as sour	ce of heat energy, stored heat and renewability of earth's heat,	Nature and occurrence
of geo thern	al field, Classification of thermal fields, Model of Hyper th	hermal fields & Semi
thermal field	, drilling hot water measurements.	
UNIT - V		Lecture Hrs: 12
FUEL CELI	L ENERGY:	
Description,	properties and operation of fuel cells, Major components & get	neral characteristics of
fuel cells, Ir	direct methanol fuel cell systems. Phosphoric acid fuel cell	l systems and molten
carbonate fue	l cell systems.	
BIOMASS H	NERGY:	
Types of con	version techniques for the production of solid, liquid and gase	ous fuels by chemical
and biochem	ical methods, and Biomass gasifiers- Selection of a model	and size, Technical,
Climatic, geo	graphical and economic issues.	
TEXTBOO	XS:	
1. Pi	inciples of Solar Engineering: F.Kreith&J.F.Krieder/Mc.Graw I	Hill Book Co
2. W	ind Energy conversion Systems: L.C.Freris, Prentice Hall, Inc	
	on-conventionalEnergy Sources: G.D. Rai	
	nergy Technology: S. Rao& B.B. Parulekar	
	eo thermal energy: H.Christopher&H.Armstead.	
	oto Voltaic Energy Systems, Design&Applications: Mathew I	Buresch, McGraw Hill
В	ook Co	
REFERENC	E BOOKS :	
1. B	o Gas Technology, A Practical Hand Book: K.C.Khendelwa	al&S.S.MahdiMcGraw
H	ll Book Co	
	and Book of Batteries and Fuel cells: David Linden, McGraw H	ill Book Co
	hergy Conversion Systems: H.A.Sorenson: John Wiely&S.jons	
	enewable Energy Sources & Conversion technology: Bansal.K:	Leemann&Meliss
	nergy technology Hand Book: EdD.M.Considine	
	inciples of energy conversion AW.Culp	
	ning Resources:	
https:	//onlinecourses.nptel.ac.in/noc21_ch11/preview	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course Code	21D32102	ENERGY MANAGEMENT	L	Т	Р	С
Semester	I	(21D32102)	3	0	0	3
		PE – I				
Course Objective	•					
	0 0	ing and process industry.				
		tional depreciation				
	investment app					
		nanagement programmer				
	ver generation					
Course Outcome						
		gy management for conservation.				
	he energy rate s					
		aluation of energy conservation solutio	ns.			
	qualities of proje					
.	insformation &	distribution & energy self sufficiency				
UNIT - I		-	Lect	ure Hr	s:10	
ENGINEERING					_	
•	-	planning- Capital budgeting- Classif				
		erest rates Discrete and continuous cor				
		v diagrams - Present worth factor, Capi	tal reco	very fa	actor, I	Equal
	Equivalence be	etween cash flows.	-			
UNIT - II			Lect	ure Hr	s:8	
DEPRECIATION				·	• • •	
		ctional depreciation- Methods of c				
		od, Sum of years digits method, Sink				
±	1 v	with return-Service life estimation- Mo	•			
-	k even chart- I	Minimum cost analysis- Benefit cost	analysis	- Liie	cycle	cost
analysis.	1		T4			
UNIT - III			Leci	ure Hr	\$:10	
PROJECT MAN		Data of nations mathed Davidable no	uiad maa	44.0.1	NTat an	
		- Rate of return method, Payback pe			-	
		ate of Return method(IRR)- Adoption				
		projects- Purpose of project manageme			110n –	Role
	oject manager -	Types of budgets - Budget committee	U	0	10	
UNIT - IV		OCDAME.	Lect	ure Hr	s:10	
ENERGY MANA					+ C-	morel
		ement programmer - Concepts of Ener				
		- Energy management in manufacturing				
-	cuons of Energ	gy manager - Language of Energy m	lanager-	Check	11st 10	i top
management.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u>

(ENERGY SYSTEMS)

UNIT - V	Lecture Hrs: 12
ENERGY POLICY, SU	JPPLY, TRADE& PRICES:
Energy resources in Ind	lia – level of power generation – transmission & distribution of power.
Indian energy policy, Ene	ergy trade & its economic impacts – domestic energy production – Energy
transformation & distribution	ution & energy self-sufficiency. International & National crude oil prices –
domestic fuel prices - na	tural gas, LPG, kerosene and firewood - pricing policy.
TEXTBOOKS:	
1. Albert Thumann,	, Handbook of Energy Audits, The Fairmont Press Inc., Atlanta gergia,
1979.	
2. Murphy W.R and	Mckay G, Energy Management, Butterworths, London, 1982.
3. Albert Thumann,	Plant Engineer and Management guide to Energy Conservation, Van Nost
and Reinhold Co.	., Newyork.
4. Energy Audits, E	.E.OBook-lets, U.K. 1988.
REFERENCE BOOKS	:
1. Craig B.Smith, "I	Energy Management Principles", Pergamon Press.
2. The role of Energ	yy Manager, E.E.O., U.K.
3. The Energy cons	ervation Design Resource Hand Book-The Royal architectural Institute of
Canada.	
4. Energy Managem	nent Hand Book-Ed. By Wayne C. Turner, John Wiley and sons, 1982.
Online Learning Resou	rces:
https://www.ametuniv.ac	.in/naac/C6/6_3/634/Professional_Development_Programme_attended.pdf

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course Code	21D32103	DIRECT ENERGY CONVERSION SYSTEMS (21D32103)	L	T	Р	C
Semester	Ι	$\mathbf{PE} - \mathbf{I}$	3	0	0	3
	1		_		-	
Course Ob	jectives:					
		oncepts of Planck's black-body radiation distribution fro	m di	ffer	ent b	ack
bod	У					
2. Und	erstand Manu	ifacturing processes (wafer and cell) of single crystal				
3. To p	provide Desig	n requirements of PV modules.				
		oncepts of energy conversion in solar cells				
		arious approaches used to generation of hydrogen				
Course Ou	tcomes (CO)	: Student will be able to				
1. Spec	ctral distributi	ion of extra-terrestrial radiation				
2. Abs	orption coeffi	icient and reflectance				
	0 1	ents of PV modules				
		grid connected and load estimation.				
	sport and sto	rage of hydrogen: physical, chemical &Fuel Cells.	1			
UNIT - I					Hrs:	-
black-body Constant – and equation	radiation dis Spectral distr on of time –	earth – The Greenhouse effect – Physical Source of su stribution from different black body temperatures – The fibution of extra-terrestrial radiation – Basic earth-sun ar attenuation of solar radiation by the atmosphere – D Empirical equations for predicting the availability of solar	e ear igles irect	th a – S and	nd S olar t d dif	olar ime
UNIT - II					Hrs:	8
Direct and i Structure – Manufactur Fed Growth Silicon film Comparison processes of used - Con various tech	ndirect band- Important ing processes Silicon - Te , Cadmium t of 'Thin fi of amorphous centrator tecl	miconductor physics and Operating principle – Silicon gap material – Flow of Silicon material – Single crystal S electrical parameters – Ideal and approximate equi (wafer and cell) of single crystal, multi-crystalline and E emperature and Irradiation effects – Absorption coefficient telluride (cdTe), Copper Indium Gallium Diselenide, am ilm' and 'Bulk crystal' technology – manufacturing s silicon on glass, stainless steel and plastic substrates – hnology and the importance of tracking – Comparison ecent trends in PV technology and manufacturing	ilico valer dge 1 t and orph (mod Typi of et	n So nt c Defi refl ous lule cal ficio	lar ce ircuit ned F ectan silicc mak mater encie	ell – Film Ice - On – ing) rials s of
UNIT - III					Hrs:	
Test Condi Conditions under vario	tions (STC), (SOC) – Ou us irradiance	s – Design requirements of PV modules – Rating of PV m Normal Operating Cell Temperature (NOCT) and Statitput curves ('Current-Voltage' or 'I-V' and 'Power-V and temperature conditions – Mounting structure for PV yout – Effects of shading - Other balance of systems (BC)	anda oltag mod	rd (ge' (lules	Dpera or 'P- /arra	ting -V') ys –
		ypass diodes, movistors – Roof mounted arrays – Buildi		-		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

(BIPV) – Typical faults and diagnosis – Hot Spot problem in a PV module and safe operating area -Performance measurement of typical parameters of cells/modules under natural and simulated light – Indoor sun simulators - Outdoor PV array testers – ASTM and IEEE standards for Class A and Class B simulators – Pulsed, steady state and single flash types – Determination of temperature coefficients, series and shunt resistances, curve correction factor - Computation of efficiency and fill factor – Translation of parameters actually measured to STC – Reliability Testing: Qualification tests, IEC Standards 61215 & 61646 – Reliability test – Field stress testing

UNIT - IV

Lecture Hrs:10

PV Systems – Stand alone and grid connected – Load estimation – Daily load demand – Solar radiation/irradiance table for a particular location - Sizing of the PV array, battery, inverter and other BOS – Maximizing efficiency of sub-systems – Balance of systems – Single axis and two axis tracking at optimum inclination of the PV array – Power conditioning and control – Maximum Power Point Trackers, Charge controllers/regulators, AC/DC Converters, DC/AC inverters – Alarms, indicators and monitoring equipment – Energy Storage: Batteries, Deep cycle lead acid type, Battery Design and construction, Other types of batteries, Battery Selection criteria, Safety issues – Typical applications of PV – Hybrid systems: PV-Wind, PV-Diesel engine, PV-Mains - System Sizing examples: Domestic loads, Water pumping, Lighting (using CFLs, White LEDs) - hybrid systems, village power packs – Installation practices – Trouble shooting – Economic analysis: Life Cycle Cost analysis – Environment impacts of PV – Green buildings – Potential for GHG emission reduction of installed PV systems

UNIT - V

Lecture Hrs: 12

The Hydrogen Economy – Advantages of hydrogen as an energy carrier – Components of the hydrogen economy - Generation of hydrogen - Transport and storage of hydrogen: physical and chemical - Fuel Cells – Classification of fuel cells based on (a) Type of electrolyte (b) Type of the fuel and oxidant (c) operating temperature (d) application and (e) chemical nature of electrolyte

TEXTBOOKS:

- 1. Solar Electricity /Edited by Tomas Markvart/John Wiley and Sons
- 2. Solar Cells Operating Principles, Technology and System Applications /Martin A. Green/Prentice Hall Inc
- 3. Modelling Photovoltaic Systems using P Spice/Luis Castaner and Santiago Silvestre/John Wiley and Sons
- 4. Solar Energy Fundamentals and Applications/H.P. Garg and J. Prakash/Tata McGraw-Hill

REFERENCE BOOKS :

- 1. Generating Electricity from the Sun/Edited by Fred C. Treble/Pergamon Press
- 2. Amorphous Silicon Solar Cells/K.Takahashi and M.Konagai/North Oxford Academic
- 3. Photovoltaic Systems Engineering/Roger Messenger/CRC Press
- 4. Fuel Cells/LivinOniciu/Abacus Press 1976

Online Learning Resources:

https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2016/Issue-43/Article8.pdf

R21 Regulations

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

Course	21D32104	APPLIED SOLAR ENERGY ENGINEERING	L	Т	Р	C
Code	T	(21D32104)	-	0	•	
Semester	I	PE – I	3	0	0	3
	•					
Course Ob	0					
	-	oncept of various forms of solar energy				
		ion aspects and utilization of solar energy sources fo	r bo	th do	omes	stics
	industrial ap					
		ne various Solar cell fundamentals.				
	-	n discounted Cash Flow				
		ts, thermo-chemical reactor.				
): Student will be able to				
	-	orking principle of various solar energy systems				
-	•	basic design of solar energy systems				
		arious Role of Nano-Technology				
	sting of solar	-				
	l, timber dryi	ng, crop drying, cooker	T			10
UNIT - I			Le	cture	e Hrs	:10
	ADIATION		_	_		
		sun earth relationship, Solar Time and angles, day				
		face; Sun path diagram, Solar Radiation: Extraterre				ion;
		ere; Estimation of solar radiation on horizontal and til				
		n of solar radiation, Phyrellio, pyranometer, eq	uatio	on c	of ti	me-
	of average ra	diation falling on tilled.	-			
UNIT - II			Le	cture	e Hrs	:8
		CHNOLOGIES:				
	•	of a liquid Flat-plate collector, Total loss coefficient				
-		Bottom loss coefficient, Side loss coefficient. Sol				0
		centrating collectors, Parabolic Dish System, The cen				
-		rough System, Tracking CPC and Solar Swing, Perfe	orma	ince	anal	ysis
	cal parabolic	collector, Compound parabolic concentrator (CPC).				
UNIT - III			Le	cture	e Hrs	:10
SOLAR C						
		, solar cell classification, solar cell, module, panel ar				
		rackers(MPPT), solar PV applications, The Recent	deve	elopi	nent	s in
	Role of Nan	o-Technology in Solar cells.	l.			
UNIT - IV			Le	cture	e Hrs	:10
ECONOM						
		v-light cycle, coasting of solar system, production	on f	unct	ion	and
optimizatio	on					

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

UNIT - V		Lecture Hrs:12
THERMAL P	OWER:	
The power cond	cepts- design aspects, thermo-chemical reactor.	
SOLAR PONI) AND SOLAR STILLS:	
Working Prine	ciple-Construction-operating difficulties and remedies,	Agriculture and
Domestic appli	cations: Still, timber drying, crop drying, cooker.	
TEXTBOOKS	:	
1. Solar Energ	y Thermal Process Diffice and Beckman	
2. Solar Heatin	ng and Cooling by Kreith and Kreider	
3. Solar Energ	y Utilization by G.D.Rai	
4. Solar Energy	Utilization by G.D.Rai ,Khanna Publishers.	
REFERENCE	BOOKS :	
1. Renewable E	nergy Sources and Emerging Technologies- By D.P. Kothar	i, PHI Pub.,
2. Applied Sola	r Energy by Meinel and Meinel	
3. Non-Conven	tional Energy Resources by B.H. Khan, Tata McGraw Hill	
4. Energy Reso	urces Utilization and Technologies By Anjaneyulu, BS Pub.	,
Online Learni	ng Resources:	
1.44	no isos ang/abatas at/da ana ant/9520022	

https://ieeexplore.ieee.org/abstract/document/8529033

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

Course Code	21D32105	RELIABILITY & SAFETY ENGINEERING (21D32105)	L	Т	Р	C
Semester	Ι	$\mathbf{PE} - \mathbf{II}$	3	0	0	3
Semester	l	$\mathbf{I} \mathbf{E} - \mathbf{H}$	3	U	U	3
	•					
Course Ob		1 1. 1. 1.				1/
		e approaches and techniques to assess and improv	e pr	oces	s an	d/or
-	1	und reliability.				
		rinciples and techniques of Statistical Quality C	ontro	ol a	nd t	heir
		product and/or process design and monitoring				
		ic concepts and techniques of modern reliability engi	neer	ing t	ools	
		ult detection, non-destructive testing.				
		Monitoring techniques Signature analysis-vibra	ition	an	d n	oise
	nitoring,					
): Student will be able to				
1. Kno	owledge on E	lements of probability theory, probability of union a	nd in	terse	ectio	n of
ever						
		ity of non-repairable systems, reliability network				
3. Ana	lysing Main	tainability and availability,				
		detection, non-destructive testing				
5. Dev	eloping the N	Monitoring techniques Signature analysis-vibration				
UNIT - I			Lee	cture	e Hrs	:10
Elements of	of probability	theory, probability of union and intersection of	ever	nts, 1	nutu	ally
exclusive	events, statis	stical independence, random variables, PDF and	CD	F, b	inon	nial,
Poisson and	d Gaussian di	stributions.				
Componen	t reliability-o	definition of reliability and hazard functions, faile	ure	distr	ibuti	ons,
exponentia	l Weibull and	l gama distributions, uniform distribution, bath tub cu	urve.			
UNIT - II			Lee	cture	e Hrs	:8
Reliability	of non-repa	airable systems, reliability network, series, paral	lel	and	rout	of
configurati	ons, decomp	osition method, cut set & tie set method, metho	ds o	of in	iprov	ving
reliability.						-
UNIT - III			Lee	cture	e Hrs	:10
Maintainab	bility and avai	ilability, MTBF and MTTR, probability and frequenc	y of	failı	are, s	state
		process, steady state probability, and dependent failu				
		s of failure- failure classification, case studies, huma		tors	anal	ysis
• -	t causes of fai					-
UNIT - IV			Lee	cture	Hrs	:10
	ction. non-de	structive testing, X-ray and Gamma ray radiograp				
		ls, ultrasonic methods.	,,		- 01	<i>,</i> ,

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

	TT	
UNIT - V	Lec	ture Hrs: 12
Monitoring to	echniques Signature analysis-vibration and noise monitoring,	faults and
vibration mode	es, permissible limits of vibrations, temperature monitoring, infra	red camera.
Wear monitori	ing, analysis of wear partials, ferography, spectroscopic analysis, p	performance
trend monitoring	ng.	
TEXTBOOK	S:	
1. Reliabi	lity engineering" By Balaguruswamy.	
2. "Testin	g and inspection of materials" by H.E.Davies.	
3. "Instru	mentation, Measurement and analysis" by Prof.B.C.NaKra	
4. "Mecha	anical fault diagnosis" By R.A.Collacolt.	
REFERENCE	E BOOKS :	

Maintenance Engineering Hand Book

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc20_mg43/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course Code	21D32106	DATA ACQUISITION & PROCESSING SYSTEMS (21D32106)	L	T	P	C
Semester	I	$\frac{(21D32100)}{PE - II}$	3	0	0	3
Semester	I	I E – II	5	U	U	5
Course Obj	laatiwaa.					
		principles of transducer				
					from	
		er systems: Decimal, Binary, Octal, Hexadecimal and con	versi	.on 1	ITOII	1 One
•	to the others					
	· · · · · · · · · · · · · · · · · · ·	es &processors				
	, ,	: Student will be able to				
	· 1	electric & Potentiometer transducers				
	tand Boolean	•				
U	of 8085:bloc	ck diagram				
UNIT - I			Leo	cture	e Hr	s:10
TRANSDU						
		transducer- principle of operation, application of strain ga				
		e, piezoelectric &Potentiometer transducers. Resistanc				
thermocoup	les, hermistor	rs, photoconductive & photovoltaiccells, and Electromagnet	tic&	Tur	bine	typ
flow meters	•					
UNIT - II			Leo	cture	e Hr	s:8
DATA REF	PRESENTAT	TION:				
Number sys	tems: Decima	al, Binary, Octal, Hexadecimal and conversion from one O	ne s	yste	m to	o th
others; Log	ic Gates: A	ND, OR, NOT, NAND, NOR, EX-OR, EX-NOR gat	es; I	Logi	ic c	ircui
Implementa	tion: 'Sum of	of products and product of sums' Boolean equations;	Bool	ean	alg	ebra
postulates,	theorems an	nd simplification of Boolean equations; Binary arith	meti	c: ,	Add	itior
		gital codes: BCD, XS-3, Gray, 2421 and ASCII codes,				
		s and generators.				
DIGITAL		6				
Flip Flops:	R-S, JK ,D,	Master-slave, Latches – Timing Diagrams – Registers,	Buff	er.	shift	t an
		Counters-ripple, synchronous, ring and Presettable coun				
	multivibrator		,			
UNIT - III			Leo	eture	e Hr	s:10
	ES &PROCE	ESSORS:				
		Ms, EPROMs and RAMs, expanding memory size; Proce	ssors	с a	rith	meti
		ray- control unit, memory, input/output, system conce				
		z high-level languages.	200,			
		SYSTEMS:				
		alized data acquisition system; single and multi-channel	dat	a ac	mie	sitio

Representation of generalized data acquisition system; single and multi-channel data acquisition systems; microprocessor based data logger; microprocessor control of petrol engine.

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES

DEPARTMENT OF MECHANICAL ENGINEERING

(ENERGY SYSTEMS)

UNIT - IV **COMPUTING SYSTEMS:** Simple computing: architecture, instruction set. Fetch & execution cycles, and Microprogramming-Advanced computing- architecture, memory & reference instructions. register instructions, jump& call instruction. Arithmetic instructions, Increments/decrements & rotates, logic instructions. Arithmetic & logic immediates, jump instructions. Extended register instructions indirect instructions. -Simple programming. **INTEL 8085 MICROPROCESSOR:** The 8085:block diagram:pinout diagram. Additional instructions. minimum system and timing diagrams; I/O operations: programmed I/O, interrupt driven I/O and Direct memory access UNIT - V Lecture Hrs: 12 **DATA CONVERSION:** Digital to analog conversion: weighted resistor; and R-2Rladder D/A converters; Analog to digital conversion: successive approximation. Single dual slope integration, and parallel conversion A/D converters, A/D converters using voltage to frequency &voltage to time conversion; sample and hold circuits; multiplexing: D/A and A/D multiplexing; de multiplexing. **TEXTBOOKS:** 1. Electronic Instrumentation & Measurement Techniques: Willman David Cooper, Prentice-Hall of India pvt-ltd., 2. Instrumentation Devices and Systems: Csrangan, OR Sharma and V.S.V Muni; Tata McGraw-Hill Publishing CO. Ltd.. 3. Integrated Digital Electronics; Walter A. Triebel; Printice Hall.. linc.. **REFERENCE BOOKS:** 1. Modern Digital Electronics: R.P. Jain, TataMcGraw-Hill Publishing Co., ltd... 2. Digital Computer Electronics, An Introduction To Microcomputers: Albert.Paull, Malvino;TataMcGraw-Hill Publishing Co.,Ltd.,

Online Learning Resources:

http://nitttrc.edu.in/nptel/courses/video/108105088/L07.html

Lecture Hrs:10

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

Course	21D32107	DESIGN OF HEAT TRANSFER EQUIPMENT	L	Т	Р	С
Code		(21D32107)				
Semester	Ι	PE – II	3	0	0	3
Course Ol	ojectives:					
1.To Unde	rstand theprin	nciples of heat exchangers				
2.To know	the condense	ers evaporators and compressors				
3. To analy	se the coolir	ng towers, ductsfans and pipe systems				
Course Ou	utcomes (CC): Student will be able to				
1. Design (Of Heat Excl	hangers, condensers evaporators, compressors, cooling	g towe	ers,dı	icts,	fans
and pipin	ng systems					
UNIT - I			Lect	ure F	Irs:1	0
	OF HEAT E	XCHANGERS:	2000			
		temperature differences for parallel and counter	flow-	effe	ctive	ness
method (N	-	i temperature anterenees for paraner and counter	10 11	ente	01110	11000
	OF CONDE	NSERS:				
		befficients- temperature distribution and heat flow in a	conde	nser-	pres	sure
		extended fin surfaces-consideration of fouling factor-I				
factor.						
UNIT - II			Lect	ure F	Irs:8	
	OF EVAPO	RATORS:	2000			
		on and heat flow in an evaporator-pressure drop- factor	or to l	be co	onside	er in
		sfer equipment-types of heat consideration of fouling				
factor						
	OF COMPR	ESSORS:				
		work-volumetric efficiency-factors affecting total volu	metric	effi	cienc	v –
		with inter cooling- rotary compressors-surging.				5
UNIT - III	1		Lect	ure H	Irs:1	0
DESIGN	OF COOLIN	NG TOWERS AND SPRAY PONDS:	1			
		ance of cooling towers – analysis of counter flo	w co	oling	tov	vers-
		liagram of air and water- cooling ponds- types of co				
1.	1	ocedure for calculation of outlet conditions.	U	1		
UNIT - IV			Lect	ure H	Irs:1	0
DESIGN	OF DUCTS:		1			
		Bernoulli's equation-pressure losses-frictional char	ts- c	oeffi	cient	of
		luct sizing methods.				
DESIGN	U					
		power-fan efficiency-similarity laws-fan laws-perfori	nance	coe	fficie	ents-
		for total pressure drop by a fan-centrifugal fan- axi				
resistance.	Ŧ				2	

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING

(ENERGY SYSTEMS)

UNIT - V

Lecture Hrs: 12

PIPING SYSTEM:

Requirements of a good piping system-pressure drop in pipes-moody chart-refrigerant pipingdischarge line-liquid line-suction line-piping arrangement

TEXTBOOKS:

1. Heat and mass transfer by Arora&Domkundwar.

2. Refrigeration & Air-Conditioning by P.L.Ballaney

REFERENCE BOOKS :

1. Refrigeration & Air-Conditioning byC.P.Arora.

2. .Refrigeration & Air-Conditioning by Stoecker

Online Learning Resources:

/nptel.ac.in/courses/103/107/103107207/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u>

(ENERGY SYSTEMS)

Course Code	21D32108	ENERGY UTILIZATION LABORATORY (21D32108)	L	Т	Р	С
Semester	Ι		3	0	0	3

Course Objectives:

- 1. The basic principles of Renewable and non-renewable energy sources with emphasis on their analysis and application to practical engineering problems.
- 2. Renewable resources include solar energy, wind, hydro, the heat of the earth (geothermal), plant materials (biomass), waves, ocean currents, temperature differences in the oceans and the energy of the tides.
- 3. Renewable energy technologies produce power, heat or mechanical energy by converting those resources either to electricity.

Course Outcomes (CO): Student will be able to

- 1. Understanding the estimation of energy saving
- 2. Develop the flat plate collector
- 3. Estimate the solar power by centrifugal pump
- 4. Develop the biomass plant
- 5. Design of solar cooker

List of Experiments

- 1. Survey of alternative Energy Sources
- 2. Estimation of energy Saving by Solar Water Heating
- 3. Flat-Plate Collector Requirement Calculations
- 4. Estimation of Discharge of Centrifugal pump using Solar Power
- 5. Demonstration of Wind Tunnel
- 6. Study of Biomass plant
- 7. Study of Bio-Gasifier
- 8. Performance of Solar Cooker
- 9. Study of Geothermal energy
- 10. Study of Tidal and wave energy

REFERENCE BOOKS :

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_ch11/preview

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u>

(ENERGY SYSTEMS)

COURSE CODE	21D32109	THERMAL ENERGY LABORATORY (21D32109)	L	Т	Р	C
Semester	Ι		3	0	0	3

Course Objectives:

1.To understand the heat pipe

- 2. To estimate the heat transfer rate
- 3. To estimate the cop from solar refrigeration system
- 4. Knowledge on solar collectors
- 5. To study the energy audit

Course Outcomes (CO): Student will be able to

1.Create the heat pipe for heat flow

2.Create the solar collector for collecting the heat

3. analyse the energy audit

List of Experiments

- 1. Performance analysis of Heat Pipe
- 2. Parallel flow and counter flow heat exchanger.
- 3. To estimate the COP of a vapour compression refrigeration system by solar(Refrigerator).
- 4. To find the solar flat plate collector efficiency.
- 5. To find direct solar incident flux absorbed by using Pyranometer orconcentraticparabolic collector.
- 6. Case study for energy audit.
- 7. Study of shell and tube heat exchanger
- 8. Study of fuel cell energy
- 9. Study of ocean thermal energy
- 10. Study of Solar cell fundamentals

REFERENCE BOOKS :

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_ch11/preview

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

Course 21D22201		т	Т	р	C
Course 21D32201 ENERGY CONSERVATION AND AU	DIT	L	I	Р	С
(21032201)		3	0	0	3
Semester II (21002201)		3	U	U	3
Course Objectives:	1.	. 1	•		
1. To impart knowledge on Thermodynamics systems and entrop	by relat	ionsh	ups.		
2. To understand the heat exchanger for heat flow.					
3. To develop the technologies for energy conservation					
4. To understand the thermal insulation and refractories					
5. To design of waste heat recovery systems.					
Course Outcomes (CO): Student will be able to					
1. To apply the knowledge of mathematics, science and engin	eering	fund	ame	ntals	to
model the energy conversion phenomenon.					
2. To investigate the effectiveness of energy conversion proces					
generation for the benefit of mankindappreciate concepts lear				ls go	bod
refractories and insulationapply the knowledge of waste heat	ecover	syste	ems.		
3. Design of heat recovery systems.					
UNIT – I		Lect	ure l	Irs:	10
THERMODYNAMICS					
Availability, energy and Anergy-Exergy, energy, entropy relation					
energy - exergy analysis- exergy conservation- combustion, there	nal eff	icien	cy, 1	herr	nal
losses; thermal balance sheets.					
HEAT EXCHANGER THEORY:					
Types Of heat exchangers - overall heat transfer coefficient - fouling	g factor	- De	sign	of h	eat
Exchangers, L.M.T.D. and N.T.U. methods.					
UNIT - II		Lee	cture	Hrs	:8
ENERGY CONSERVATION:					
Rules for efficient energy conservation – technologies for energy co	onserva	tion	– ou	tline	of
waste heat and material reclamation, load management.					
ENERGY AUDITING:					
A definition- Level of responsibility- Control of Energy- Uses of E					
Cost index - Pie charts-sankey diagrams Load profiles - Types of	energy	audi	its- (Gene	eral
energy audit- Detailed energy audit.					
UNIT - III THERMAL INSULATION & REFRACTORIES:		Lect	ture	Hrs:	10
Heat loss through un insulated and insulated surfaces; effect of insula	tion on	curr	ent c	arry	ing
wires - economic thickness of insulation - critical radius of ins		-	-		
thermal insulators - classification of insulation materials - classifi					
properties of refractories - Criteria for good refractory material - app	olication	n of i	nsul	ating	g &
refractory materials.					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

UNIT - IV WASTE HEAT RECOVERY SYSTEMS:	Lecture Hrs:10
Guideline to identify waste heat - feasibility study of waste heat - she	ell and tube heat
exchangers – Thermal wheel – heat pipe heat exchanger – Heat pump – wa	aste heat boilers –
Incinerators.	
UNIT - V HEAT RECOVERY SYSTEMS:	Lecture Hrs: 12
Liquid to liquid heat exchangers - regenerators, recuperaters, rotating	g regenerators –
selection of materials for heat exchangers, U- tube heat exchanger, fl	uidized bed heat
exchanger –economizer.	
TEXTBOOKS:	
1. The role of Energy Manager, E.E.O., U.K.	
2. The Energy conservation Design Resource Hand Book-The Ro	oyal architectural
Institute of Canada.	
3. Conduction Heat Transfer-Schneder Addition Wieslthy	
REFERENCE BOOKS :	
1. Conduction of Heat in Solids-Carslaw& Jaeger.	
2. Fundamentals of heat and mass transfer-R.C. Sachde	ev New Age
InternationalPublishers	-
3. Heat Transfer By R.K. Rajput/ laxmi publication	
Online Learning Resources:	
https://onlinecourses.nptel.ac.in/noc20_mm20/preview	

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING

(ENERGY SYSTEMS)

Course	21D32202	ENERGY EFFICIENT ELECTRICAL	L	Т	Р	С
Code		SYSTEMS				
Semester	Π	(21D32202)	3	0	0	3

Course Objectives:

- 1. To make students conversant about the underlying energy conversion theory between electrical and mechanical systems by introducing electromechanical energy conversion principles.
- 2. To expose the students to the concepts of various types of electrical machines and applications of electrical machines.
- 3. To acquaint the student with the concept of generation of electricity in power plant.

Course Outcomes (CO): Student will be able to

- 1. Use modeling/simulation parameters with standard equivalent circuit models to predict correctly the expected performance of various general-purpose electrical machines.
- 2. Compare accepted standards and guidelines to select appropriate electrical machines to meetspecified performance requirements.
- 3. Demonstrate an understanding of the fundamental control practices associated with rotating machines (starting, reversing, braking, speed control etc.
- 4. Set up testing strategies to evaluate performance characteristics of electrical machines.Design of autonomous systems using special electrical machines.Justify contemporary issues within and outside the electrical engineering profession.
- 5. Access the techniques, skills, and modern engineering tools necessary for electrical engineering practice. Choose the scope of applicability of various types of electrical machines in real life

UNIT – I

Lecture Hrs:10

THREE PHASE INDUCTION MOTROS:

Cage motors-equivalent circuit-speed-torque characteristics-performance characteristics-voltage unbalance-over motoring-slip ring induction motor characteristics multi speed motors.

SINGLE PHASE INDUCTION MOTORS:

Starting & running performance-split phase-capacitor type motor-characteristics-reluctance motor.

UNIT – II

ENERGY EFFICIENT MOTORS:

Constructional details-factors affecting efficiency-losses distribution-characteristicscalculation of payback period.

ECONOMICS OF POWER FACTOR IMPROVEMENT:

Simple pay back method-return on investment-life cycle analysis.

Lecture Hrs:8

Ananmapuranu – 515 002, Andrira Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

UNIT – III Lecture Hrs:10
ENERGY EFFICIENT LIGHTING:
Terminology-cosine law of illumination-types of lamps-characteristics-design of
illumination systems-good lighting practice-lighting control-steps for lighting energy
conservation.
UNIT – IV Lecture Hrs:10
ECONOMICS OF ELECTRICAL ENERGY GENERATION:
Definitions-connected load, maximum demand-demand factor-curve-base load and peck
load.
UNIT – V Lecture Hrs: 12
ECONOMICS OF ELECTRICAL ENERGY DISTRIBUTION:
Electrical load analysis-type of consumers& tariffs-line losses-corner losses-types of
distribution systems- Kevin's law-loss load factor.
ECONOMICS OF ELECTRICAL DRIVES:
Selection of motors-types of loads-energy consumption during starting of ac and dc motors-
braking of motors-plugging-regenerative braking.
TEXTBOOKS:
1. Electrical Machinery: Fitzerland, Kingsley, Kusko-MCGraw Hill Ltd.
2. Energy-Efficient Electrical motors: John C.Andreas-Marcel Decker Inc.
REFERENCE BOOKS :
1. Electrical Technology: Edward Hughes-ElLBS.
2. Energy Management and good lighting practice: Fuel Efficiency Booklet 12-eeo.
Online Learning Resources:
https://nptel.ac.in/courses/108/106/108106022/

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course	21D32203	Waste Heat Recovery Systems	L	Τ	Р	С
Code		(21D32203)				
Semester	II	PE - III	3	0	0	3

Course Objectives:

- 1. To gain fundamental knowledge in energy generation, heat transfer in thermal engineering.
- 2. To reduce the impact global warming for betterment of living things to serve healthy life.

Course Outcomes (CO): Student will be able to

- 1. The students will acquire fundamental knowledge in energy generation, heat transfer in thermal engineering.
- 2. Students will get the ability solve problems using mathematical concepts and to use modern engineering tools, software and equipment to analyze and solve complex engineering problems.
- 3. The students will be able to solve real world problems and reduce the impact global warming for betterment of living things to serve healthy life.

UNIT - I Introduction Lecture Hrs:10 Rankine Cycle, Coupled cycles and combined plants, Energy resources and use, Potential for energy conservation, Optimal utilization of fossil fuels. Total energy approach. UNIT - II Waste Heat Recovery Systems Lecture Hrs:8 selection criteria for waste heat recovery technologies - recuperators - Regenerators economizers - plate heat exchangers - thermic fluid heaters - Waste heat boilersclassification, location, service conditions, design Considerations - fluidized bed heat exchangers - heat pipe exchangers - heat pumps - sorption systems. UNIT - III Prime Mover Exhausts Lecture Hrs:10 Incineration plants; heat pump systems; thermoelectric devices. Utilization of low grade reject heat from power plants, Utilization of waste heat in refrigeration, heating, ventilation and air conditioning systems. Thermoelectric system to recover waste heat. **UNIT - IV** Energy Storage Systems Lecture Hrs:10 Need for energy storage, Thermal, electrical, magnetic and chemical storage systems. UNIT - V Economic Analysis Lecture Hrs: 12

Investment cost – economic concepts – measures of economic performance – procedure for economic analysis – examples – procedure for optimized system selection and design – load curves - sensitivity analysis – regulatory and financial frame work for cogeneration and waste heat recovery systems

TEXTBOOKS:

1. Goswami, D. Y., and Kreith, F. Energy Conversion . CRC Press, 2007.

- 2. Hewitt, G. F., Shires, G. L., and Bott, T. R. Process Heat Transfer . CRC Press, Florida, 1993.
- 3. Li, K. W., and Priddy, A. P. Power Plant System Design . John Wiley and Sons, New

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

York, 1985.

REFERENCE BOOKS :

- 1. Nag, P. K. Power Plant Engineering . Tata McGraw-Hill, New Delhi, 2001.
- 2. El-Wakil, Power Plant Engineeirng, Mcgraw-Hill
- 3. HoSung Lee, Thermal Design
- 4. Dincer, Rosen, Thermal Energy Storage Systems

Online Learning Resources:

https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-mm20/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course	21D32204	TOTAL QUALITY MANAGEMENT	L	Τ	Р	С
Code		(21D32204)				
Semester	II	PE - III	3	0	0	3

Course Objectives:

- 1. The overall purpose of the course is to provide an understanding of the process of managing quality and managing services.
- 2. The principles of Quality, Quality Assurance, and Total Quality Management willprovide an insight into the concepts of Excellence and Best Value and the contribution of quality to strategic management.
- 3. This course aims to show how all the fundamental disciplines of business are intrinsically linked with the concepts of service excellence and quality. Because these concepts are so interrelated they can be shown to have a strategic importance to the culture and success of any organization.
- 4. There are many tools and doctrines that can be used for assessing product/service quality and selection of these tools can help in the pursuit of excellence. This course is designed to provide a valuable perspective for future business managers.

Course Outcomes (CO): Student will be able to

- 1. Understand the fundamental principles of Total Quality Management.
- 2. Choose appropriate statistical techniques for improving processes.
- 3. Develop research skills that will allow them to keep abreast of changes in the field of Total Quality Management

UNIT - I

Lecture Hrs:10

TQM – Overview, Concepts, Elements – History-Quality Management Philosophies-Juran, Deming, Crosby, Feigenbaum, Ishikawa– Stages of Evolution– Continuous Improvement – Objectives – Internal and External Customers. Quality Standards – Need for Standardization - Institutions – Bodies of Standardization, ISO 9000 series – ISO 14000 series – Other Contemporary Standards – ISO Certification Process-Third Party Audit UNIT - II Lecture Hrs:8 Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS – TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools. Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis. UNIT - III Lecture Hrs:10 Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts. UNIT - IV Lecture Hrs:10 Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types- Advantages & Limitations of Benchmarking – Taguchi Analysis – Loss function - Taguchi		200000000000					
 Objectives – Internal and External Customers. Quality Standards – Need for Standardization - Institutions – Bodies of Standardization, ISO 9000 series – ISO 14000 series – Other Contemporary Standards – ISO Certification Process-Third Party Audit UNIT - II Lecture Hrs:8 Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS – TQM Tools & Techniques - 7 QC Tools - 7 New QC Tools. Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence – System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis. UNIT - III Lecture Hrs:10 Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts. UNIT - IV Lecture Hrs:10 Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types- 	TQM – Overview, Concepts, Elements – History-Quality Management Philosophies-Juran,						
Standardization - Institutions – Bodies of Standardization, ISO 9000 series – ISO 14000 series – Other Contemporary Standards – ISO Certification Process-Third Party AuditUNIT - IILecture Hrs:8Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS – TQM Tools & Techniques - 7 QC Tools - 7 New QC Tools.Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis.UNIT - IIILecture Hrs:10Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.UNIT - IVLecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	Deming, Crosby, Feigenbaum, Ishikawa– Stages of Evolution– Continuous Improvement						
series – Other Contemporary Standards – ISO Certification Process-Third Party AuditUNIT - IILecture Hrs:8Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS – TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools.Developing and Other Cools.Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis.Lecture Hrs:10UNIT - IIILecture Hrs:10Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.Lecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-Item Statistical Process Properties	- Objectives - Internal and External Customers. Quality Standards - Need for						
UNIT - IILecture Hrs:8Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS – TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools.Developing and Developing and Implementing CMS – TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools.Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis.UNIT - IIILecture Hrs:10Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.UNIT - IVLecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	Standardization - Institutions - Bodies of Standardization, ISO 9000 series - ISO 14000						
ProcessManagement-QualityMeasurementSystems(QMS)–DevelopingandImplementingQMS – TQM Tools & Techniques - 7 QC Tools- 7 New QC Tools.ProblemSolvingTechniques - ProblemSolvingProcess – CorrectiveAction – Order ofPrecedence–SystemFailureAnalysisApproach – FlowChart – FaultTreeAnalysis –FailureModeAssessmentandAssignmentMatrix – OrganizingFailureModeAnalysis –PedigreeAnalysis.LectureHrs:10QualityCircles – Organization – FocusTeamApproach – StatisticalProcessControl –ProcessChart – IshikawaDiagram – Preparingand usingControl Charts.UNIT - IVLectureHrs:10QualityFunctionDevelopment(QFD) – ElementsofQFD – Benchmarking-Types-	series – Other Contemporary Standards – ISO Certification Process-Third Party Audit						
Implementing QMS –TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools.Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis.UNIT - IIILecture Hrs:10Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.UNIT - IVLecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	UNIT - II	Lecture Hrs:8					
Problem Solving Techniques - Problem Solving Process - Corrective Action - Order of Precedence- System Failure Analysis Approach - Flow Chart - Fault Tree Analysis - Failure Mode Assessment and Assignment Matrix - Organizing Failure Mode Analysis - Pedigree Analysis.UNIT - IIILecture Hrs:10Quality Circles - Organization - Focus Team Approach - Statistical Process Control - Process Chart - Ishikawa Diagram - Preparing and using Control Charts.UNIT - IVLecture Hrs:10Quality Function Development (QFD) - Elements of QFD - Benchmarking-Types-	Process Management- Quality Measurement Systems (QMS) -	Developing and					
Precedence-System Failure Analysis Approach - Flow Chart - Fault Tree Analysis - Failure Mode Assessment and Assignment Matrix - Organizing Failure Mode Analysis - Pedigree Analysis.UNIT - IIILecture Hrs:10Quality Circles - Organization - Focus Team Approach - Statistical Process Control - Process Chart - Ishikawa Diagram - Preparing and using Control Charts.UNIT - IVLecture Hrs:10Quality Function Development (QFD) - Elements of QFD - Benchmarking-Types-	Implementing QMS – TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools.						
Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis. UNIT - III Lecture Hrs:10 Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts. UNIT - IV Lecture Hrs:10 Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	Problem Solving Techniques - Problem Solving Process - Corrective Action - Order of						
Pedigree Analysis. Lecture Hrs:10 UNIT - III Lecture Hrs:10 Quality Circles - Organization - Focus Team Approach - Statistical Process Control - Process Chart - Ishikawa Diagram - Preparing and using Control Charts. UNIT - IV Lecture Hrs:10 Quality Function Development (QFD) - Elements of QFD - Benchmarking-Types-	Precedence- System Failure Analysis Approach - Flow Chart - Fault Tree Analysis -						
UNIT - IIILecture Hrs:10Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.Lecture Hrs:10UNIT - IVLecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis –						
Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.Process Control – Lecture Hrs:10UNIT - IVLecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	Pedigree Analysis.						
Process Chart – Ishikawa Diagram – Preparing and using Control Charts. UNIT - IV Lecture Hrs:10 Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	UNIT - III	Lecture Hrs:10					
UNIT - IVLecture Hrs:10Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-	Quality Circles - Organization - Focus Team Approach - Statistical Process Control -						
Quality Function Development (QFD) - Elements of QFD - Benchmarking-Types-	Process Chart – Ishikawa Diagram – Preparing and using Control Charts.						
	UNIT - IV	Lecture Hrs:10					
Advantages & Limitations of Benchmarking – Taguchi Analysis – Loss function - Taguchi	Quality Function Development (QFD) - Elements of QFD - Benchmarking-Types-						
Advantages & Elimitations of Deneminarking Tagaeni Tinarysis Loss function Tagaeni							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Design of Experiments, Robust Design, Poka-yoke, Kaizen, Deming Cycle	е.
UNIT - V	Lecture Hrs: 12
Value Improvement Elements – Value Improvement Assault – Supplier	Teaming; Business
Process Reengineering & Elements of Supply Chain Management. Six	Sigma Approach –
Application of Six Sigma Approach to various Industrial Situations.	
TEXTBOOKS:	
1. Total Quality Management, DakhBesterfield, Pearson Edu.	
2. Total Quality Management, K.ShridharBhat, Himalaya.	
REFERENCE BOOKS :	
1. Quality management, Howard Giltow-TMH	
2. Quality management, Evans.	
3. Quality management, Bedi	
Online Learning Resources:	
https://onlinecourses.nptel.ac.in/noc21_mg03/preview	

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (ENERGY SYSTEMS)

Course	21D32205	SOLAR REFRIGERATION & AIR	L	T	P	С
Code		CONDITIONING				
Semester	II	(21D32205)	3	0	0	3
		PE - III				L
Course Ob						
		indamental of review of psychometric				
		bus refrigeration cycles and evaluate performance usin t property tables.	g Mo	ollie	r ch	arts
3. To C	Comparative	study of different refrigerants with respect to property	les, a	ppli	cati	ons
and	environmenta	al issues.				
4. To u	inderstand the	e basic of solar thermal energy storage.				
5. To S	Study of the	various equipment-operating principles, operating and	safe	ety c	ont	rols
emp	loyed in solar	r refrigeration systems.				
Course Out	tcomes (CO)	: Student will be able to				
1. The	fundamental	principles and applications of refrigeration system.				
		apacity and coefficient of performance by conducting	g test	on	vap	our
		geration systems.			-	
3. Pres	ent the prope	rties, applications and environmental issues of differen	t ref	rige	rants	5.
5. Calc	ulate cooling	load for solar refrigeration systems.				
6. Ope	rate and analy	yze the refrigeration systems.				
UNIT – I			Lect	ure]	Hrs:	10
Review of	Psychometric	and (Air-conditioning) cooling load calculations-ou	tline	of	Vap	our
Compressio	n Refrigeration	on Systems – Cycle on p-h and T-o charts – C.O.P – S	impl	le pr	oble	ems
using prope	rty tables.					
UNIT – II			Le	ctur	e Hı	rs:8
Principle of	f working of	working of vapour Absorption Refrigeration, steam j	et re	frig	erati	on,
thermoelect	ric refrigerat	ion - classification of refrigerants - Desirable pro	perti	es c	of ic	leal
refrigerant -	Properties of	f solvent - Solvent refrigerant combination properties	•			
UNIT – III			Lect	ure	Hrs:	10
Solar cooli	ng systems:	vapour compression systems, Rankine cycle, Strilin	ng c	ycle	, us	ing
P.V.Module	es. Solar oper	ated vapour absorption systems – vapour jet refrigerati	on s	yste	ms.	
UNIT – IV			Lect	ure	Hrs:	10
Solar therm	nal energy st	torage - Active and passive systems TROMBE wa	ıll –	equ	iiva	lent
	cuit - Solar gro	•				
		umidification: Desiccant cooling - Solid and liqu	id d	esic	cant	.s -
improving c	lesiccant cycl	es - hybrid systems.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

UNIT – V	Lecture Hrs: 12
Non -mechanical systems - Australian Rock system - Solar assisted Heat Pu	ump – Economics
of solar cooling systems.	

Simulation of solar thermal systems - Salient features of DYNSYS, TRNSYS – model formulation – flow diagram of cooling systems.

TEXTBOOKS:

- 1. A course in Refrigeration & Air -conditioning, S.Domakundwar&S.C.Arora
- 2. Principles of Solar engineering, F.Kreith&J.F.Kreider, McGraw Hill Book company

REFERENCE BOOKS :

- 1. Solar Cooling & Heating Volumes, I,II,III., T.NegatVezirogulu
- 2. Entrepreneurship Development in New & Renewable Energy Technologies APPC & IREDA

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_me85/preview

Course Code	21D32206	DESIGN OF WIND ENERGY SYSTEMS	L	Т	P	C		
Semester	II	(21D32206)	3	0	0	3		
		$\mathbf{PE} - \mathbf{IV}$						
Course Object	ives:							
1. To knowled		nergy systems.						
		esource characteristics and assessment; ane	mon	netry	; w	ind		
		y distribution						
3. To analysis	of wind turk	bine blade; effect of stall and blade pitch on coef	fficie	ent o	f pov	ver		
4. To design o	f Wind farm	electrical design, Planning of wind farms,			-			
Course Outcor	nes (CO): St	udent will be able to						
1. Understand	the state of a	art of wind energy technology						
2. Know the at	tmospheric tu	rbulence						
3. Variable spe	eed operation	, effect of wind turbulence						
4. Design of w	vind mill.							
UNIT – I			Lec	ture	Hrs:	10		
Historical devel	lopments, late	est developments, state of art of wind energy tec	hnol	ogy,	turb	ine		
rating, cost of	energy, with	nd power plant economics, installation and	oper	atio	n co	sts,		
decommissionin	ng, Indian sc	enario and worldwide developments, present s	statu	s and	d fut	ure		
trends								
UNIT – II			-		e Hrs			
	-	ds; wind resource characteristics and assessme				•		
		quency distribution, effect of height, wind	ro	se, '	Weit	oull		
	nospheric tur	bulence, gust wind speed, effect of topography.						
UNIT – III					Hrs:1	-		
		e; effect of stall and blade pitch on coefficient						
		speeds, blade materials, design characteristics,						
		tructure; tip losses; rotational sampling, wind						
	•	s, tower shadow, wind shear, blade coning, gyro	oscop	bic, t	ransi	ent		
and extreme loa	ids.							
UNIT – IV					Irs:1			
	•	ol, Electrical and Mechanical aerodynamic		-				
	•	namics with DC and AC generators: induction		•				
•		peration, effect of wind turbulence. Power elect						
	terfaces for v	wind energy utilization system for isolated and	i gri	d co	nnec	ted		
system.			T			10		
UNIT - V	1 4 - 1 - 1 - 1	rien Diagonian of art 1 f			Hrs:			
				icati		for		
	developing countries, maintenance and operation, wind farm management, site selection.							
Environmental assessment; noise, visual impact etc. Instrumentation, data loggers, remote								
monitoring and	control.							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

TEXTBOOKS:

- 1. Paul Gipe, Wind Energy Comes of Age, John Wiley & Sons Inc.
- 2. Ahmed: Wind Energy Theory and Practice, PHI, Eastern Economy Edition, 2012
- 3. L.L. Freris, Wind Energy Conversion System, Printice Hall.

REFERENCE BOOKS :

- 1. Tony Burton et al, Wind energy Hand Book, John Wiley & Sons Inc.
- 2. Directory, Indian Wind Power 2004, CECL, Bhopal.

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_ch11/preview

Ananuapuranu – 515 002, Anunra Frauesh, muta

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course	21D32207	ENERGY RESOURCES	L	Т	Р	С
Code		(21D32207)				
Semester	Π	$\mathbf{PE} - \mathbf{IV}$	3	0	0	3

Course Objectives:

- 1. 1.To impart knowledge on commercial energy
- 2. To know the solar radiation measurements
- 3. To understand the wind data and energy estimation.
- 4. To know the Fuel cell principle of working various types construction and applications.

Course Outcomes (CO): Student will be able to

- 1. Future projections of consumption pattern Sector-wise energy consumption.
- 2. photovoltaic conversion of solar energy, types of solar cells
- 3. safety and environmental aspects
- 4. Urban waste to energy conversion

UNIT - I COMMERCIAL ENERGY

Coal, Oil, Natural Gas, Nuclear power and Hydro - their utilization pattern in the past, present and future projections of consumption pattern - Sector-wise energy consumption – environmental impact of fossil fuels – Energy scenario in India – Growth of energy sector and its planning in India.

UNIT - II | SOLAR ENERGY

Lecture Hrs:8

Lecture Hrs:10

Solar radiation at the earth's surface – solar radiation measurements – estimation of average solar radiation - solar thermal flat plate collectors - concentrating collectors – solar thermal applications - heating, cooling, desalination, drying, cooking, etc – solar thermal electric power plant - principle of photovoltaic conversion of solar energy, types of solar cells - Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping etc - solar PV power plant – Net metering concept.

UNIT - III WIND ENERGY

Lecture Hrs:10

Nature of the wind – power in the wind – factors influencing wind – wind data and energy estimation - wind speed monitoring - wind resource assessment - Betz limit - site selection - wind energy conversion devices - classification, characteristics, applications – offshore wind energy – Hybrid systems - safety and environmental aspects – wind energy potential and installation in India - Repowering concept.

UNIT - IV BIO-ENERGY	Lecture Hrs:10
Biomass resources and their classification - Biomass conversion pro-	cesses - Thermo
chemical conversion - direct combustion - biomass gasification - pyrolysi	s and liquefaction
- biochemical conversion - anaerobic digestion - types of biogas Plant	s - applications -
alcohol production from biomass – bio diesel production – Urban	waste to energy
conversion - Biomass energy programme in India.	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

UNIT - V OTHER TYPES OF ENERGY

Lecture Hrs: 12

Ocean energy resources - principle of ocean thermal energy conversion (OTEC) - ocean thermal power plants - ocean wave energy conversion - tidal energy conversion - small hydro - geothermal energy - geothermal power plants - hydrogen production and storage - Fuel cell - principle of working - various types - construction and applications.

TEXTBOOKS:

- 1. Sukhatme, S.P., Solar Energy, Tata McGraw Hill, 1984.
- 2. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986.
- 3. Kishore VVN, Renewable Energy Engineering and Technology, Teri Press, New Delhi, 2012
- 4. Peter Gevorkian, Sustainable Energy Systems Engineering, McGraw Hill, 2007

REFERENCE BOOKS :

- 1. Kreith, F and Kreider, J. F., Principles of Solar Engineering, McGraw-Hill, 1978.
- 2. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, OxfordUniversity Press, U.K, 1996

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc21_ch11/preview

Course	21D32208	OPTIMIZATION OF ENGINEERING DESIGN	L	Τ	P	C	
Code		(21D32208)		0	0		
Semester	II	PE - IV	3	0	0	3	
	• .•						
Course Ol							
	-	optimization methods.					
		he unconstrained optimization					
		lynamic programming solving the problems.					
		D): Student will be able to					
		non-linear unconstrained optimization					
	•	tic programming					
		analysis. for change in the constraints	-			1.0	
UNIT - I			Lec	cture	Hrs	:10	
	OPTIMIT						
		nization methods:-Uni-modal function, elimination m					
-	olden sectio	n method, interpolation methods- quadratic & cul	oic i	nterp	polat	ion	
methods.	1		·				
UNIT - II					Hrs		
		ear unconstrained optimization: Direct search meth					
	-	h methods – Powell's – Hook – Jeeves, Rosenbrock s					
-	-	lient of function, steepest decent method, Fletcher	reev	es 1	neth	od.	
	etric method	l					
UNIT - II			Lec	eture	Hrs	:10	
		RAMMING:					
		ic - geometric inequality - unconstrained G.P - const	raine	ed G	.P		
	C PROGRA						
-	-	ocess, principles of optimality, examples, conversion		-			
		blem, application of dynamic programming, produ	ctior	n inv	vento	ory.	
	<u> </u>	replacement.					
UNIT - IV					Hrs		
		- formulation - Sensivity analysis. Change in the				ost	
		ts of the constraints, addition and deletion of variable					
Simulation	Simulation - Introduction - Types - Steps - application - inventory - queuing - thermal						
system.							
UNIT - V		I	Lectu	re H	[rs: 1	2	
Integer Pro	ogramming –	introduction - formulation - Gomory cutting plane a	ılgor	ithm	1 - Z	ero	
		h and bound method.					
		GRAMMING:					
		bability theory, random variables - distributions -					
Correlation	n, co varia	nce, joint probability distribution – stochastic	linea	r, d	lynai	nic	
programm	ing.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

TEXTBOOKS:

- 1. Optimization theory & Applications/ S.S Rao/ New Age International
- 2. Introductory to operation research/Kasan& Kumar/Springar
- 3. Optimization Techniques theory and practice / M.C Joshi, K.M Moudgalya/ Narosa Publications.
- 4. S.D Sharma/Operations Research

REFERENCE BOOKS :

- 1. Operation Research/H.A. Taha/TMH
- 2. Optimization in operations research/R.L Rardin
- 3. Optimization Techniques/Benugundu&Chandraputla/Person Asia.

Online Learning Resources:

http://home.iitk.ac.in/~dasgupta/teaching/optim/

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D32209	ENERGY OPERATIONS LABORATORY	L	Т	P	С
Code Semester	II	(21D32209)	0	0	4	2
Semester	11		U	U	4	4
Course Ol	ojectives:					
1. To e	estimate the lo	bad and solar panel requirement				
	~ 1 ~	back period for solar water heater.				
		nergy efficiency.				
		ft force in wind tunnel.				
): Student will be able to				
	derstand the					
2. Kn	ow the drag f	orce and lift for wind tunnel				
LIST OF	EXPERIME	NTS				
1. Es	timation of L	oad & Solar Panel Requirement for an house hold				
2. Stu	udy of plant l	ocation of wind mills				
3. Ca	lculation of p	ayback period for domestic solar water heater – A ca	ase s	tudy		
4. Inc	dustrial visit o	of mind mills				
5. Stu	udy on captiv	e power generation of an industry				
6. Stu	udy of Energy	y efficient building				
7. Es	timation of d	rag force by using wind tunnel				
8. Es	timation of li	ft force by using wind tunnel				
9. Stu	udy of aerofo	il blade variables and power output				
10. Stu	udy of Solar S	Street Lighting and Lanterns				
REFERE	NCE BOOK	S :				
Online Le	arning Reso	urces:				
http	os://web.iitd.a	ac.in/~arunku/files/CVL212_Y15/Lab_CVL212v1.pd	df			

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course	21D32210	RENEWABLE ENERGY SYSTEMS	L	Τ	P	С
Code		LABORATORY				
Semester	II	(21D32210)	0	0	4	2

Course Objectives:

1. To study the solar PV systems

2. To study the wind energy generator, hydel power

Course Outcomes (CO): Student will be able to

- 1. Gain the knowledge on solar PV energy systems
- 2. Develop the hydel power and wind power systems

LISTOFEXPERIMENTS:

- 1. Study on Solar PV Energy System.
- 2. Experiment on "VI-Characteristics and Efficiency of 1kWp Solar PV System".
- Experiment on "Shadowing effect & diode based solution in1kWp Solar PV system".
- 4. Experiment on Performance assessment of Grid connected and Standalone 1kWp Solar Power System.
- 5. Study on Wind Energy Generator.
- 7. Experiment on Performance assessment of micro Wind Energy Generator.
- 8. Study on Hybrid (Solar-Wind) Power System.
- 9. Experiment on Performance Assessment of Hybrid (Solar-Wind) Power System.
- 10. Study on Hydel Power.
- 11. Study on Performance Assessment of 100W Fuel

REFERENCE BOOKS :

Online Learning Resources:

http://se.iitmandi.ac.in/energy_engg.php

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Course Code	21D32301	ENERGY ECOLOGY & ENVIRONMENT	L	Т	Р	С		
Semester	III	(PE - V)	3	0	0	3		
	1		_		_			
Course O	bjectives:							
1. To	learn about e	nergy source for earth its radiation						
	-	f biosphere and components of ecosystems.						
		nergy transaction						
	• •	e environmental components						
		ustainable world bio systems						
): Student will be able to						
1. Justi	fy a scientif	ic claim that free energy is required for living sys	stem	to r	naint	ain		
U	nization							
		nges in free energy availability affect organisms,	popu	latio	ns, a	and		
	ystems.							
	•	nd use suitable environmental components.						
	the concept of	f pollution.						
UNIT - I			Lect					
		- sun - its radiation - its absorption and reflection. V	ariou	s rei	newa	ble		
	enewable reso	burces.						
UNIT - II			Lect					
		of the biosphere – Concepts of Ecology – Components of						
UNIT - II			Lect			-		
		biosphere - photo synthesis and producers - Herbivone	es - C	Carni	vone	s –		
^	0.	ransfers & food wells.						
UNIT - IV			Lect					
		c systems - biogeochemical cycles. Elements of	Env	iron	ment	. —		
	onships in env	vironmental components.						
UNIT - V			Lectu					
-	-	nd affecting the natural balances in energy systems. Energy	rgy co	once	pts fo	or a		
	e world bio –	systems.						
TEXTBO			r					
		gy, Environment and Development, MaheshwarDayal, F	Konar	k Pu	blish	ers		
	Ltd.,							
		vironment, P.D. Sharma Rastogi Publications.						
	NCE BOOK		יחז	1_ 0	ים			
	••	stainable world, J.Goldenberg, T.B. Johnson, Amulyak	.Ked	dy&	Kot	oert		
	Williams Willey Eastern Ltd.,							
	•	logy, E.J.Kormondal , Prentice Hall India Ltd.,						
	arning Reso							
http	os://onlinecou	urses.nptel.ac.in/noc19_ge23/preview						

https://onlinecourses.nptel.ac.in/noc19_ge23/preview

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code		PRODUCT PLANNING AND MARKETING	b L	Τ	Р	С
Semester	III	Program Elective Course-V	3	0	0	3
			•			
Course Objectiv	es:					
		concept of new products				
2) To identi	fy the	basic characteristics of diffusion of innovation pro-	ocess			
3) To unders	stand t	he effective Plan for Product				
· · ·		erent brand personality				
		he Planning the Harvesting Strategy Implementati	on.			
	· ·	D): Student will be able to				
		on sourse for product ideas.				
2.Develop the Pr						
		or Analyzing Test Market Data.				
		rough Strategic Differentiation				
	oduct	ion of Brand Extension				
UNIT - I			Lecture			
Classification of New Products: New products success and failure. Definition of success and failure, the latent Factors Behind the Marketing Success of New Products, Failure of New product, Factors Influencing Failure, Failures preventing new product Failure, New Product Development process and models, Model 1-The Cyclical Approach, Model 11-New product process Management Concept Development and Statistical Tools Used : Introduction Common Sources for Product Ideas, Concept Development Methods, Idea Screening, idea Screening Approaches, Concept Testing, Definition, Methodology of Data Collection for Concept Testing, Data Analysis Techniques for Concept Testing, Concept Screen Test Method, Weighted Scoring Method, Concept Screening Matrix						for nes, ata
UNIT - II				cture		
Stage Process, T Adoption Rate, E Types of PLCs, I Cycle and Stages Product Mix : Product Lines, P Linguistic Differe	Time Diffusi dentif Ident Intro Produc ences,	ion and Adoption Process : Introduction, Ado of Adoption, Characteristics of Adopters, Chara- ion of Innovation, Product Life Cycle Introductio fication of Stages in a PLCSigma Method of Trac- ification., duction, Width, Length, Depth, And Consistend t Strategies, Introduction, Types of Naming, Pro- Branding Naming Strategies, Brand Naming Strat- Don'ts While Naming Brands, Brand Names, Gene	acteristic n, Basic ing the I cy of Pr oblem F ategies, 7	s Af s of Produ rodu aced The I	ffect PLC act I ct n due	ing 2, 3 Life nix, 2 to
UNIT - III			Lecture	Hrs:	10	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Test Marketing: Introduction, Objectives of Test Marketing-What to look for?, Pros and Cons of test Marketing, Decision Variables for Test Markets, Test Marketing Approaches, Types of Test Marketing Producers, Statistical Models for Analyzing Test Market Data, Data Project Method, Product Launch and Commercialization, The Product Launch Cycle, The Launch Mix, Issues in Launch, The Product Launch Process, Effective Plan for Product Launch, Product Launch Mistakes

Brand Identity: Introduction, What Identity is not ? Dimensions and Identity, Inner and Outer Identity, The Six Sided Prism, How to find Identity? Multiple Identities, Conclusion, Brand Image, Brand Images of Some of the Indian Brands, Techniques Used for Identifying the Brand Image, Brand Networking Techniques, Focus Groups, Constructive Techniques, Factor Analysis.

UNIT - IV

Lecture Hrs:10

Brand Personality: Introduction, Tools to Build/Understand Brand Personality, Brand personality Scale, Three Models to Build Brand Personality, Building Brand Personality Via the 4P's and Packaging, Building Brand Personality Bottom-up. Brand Positing and Repositioning Introduction, Grabbing the Mind Space, Positioning Statement, Determine the Positioning, The MDS Way, Image and Profile Analysis, Positioning through Correspondence Analysis, By factor Analysis, Positioning Analysis, by Discriminate Mapping, Repositioning, Brand Loyalty, Definition, Brand Loyalty Measurement Models, Preference Behavior Model, Purchase Probability Model, Brand Loyalty Analysis with Markov Chains, Strategies to Build Brand Loyalty, Building Loyalty Through Strategic Differentiation

UNIT - V

Lecture Hrs: 12

Line Extension: Introduction, Why Line Extension is so hard to resist? A Good Marketing Strategy, Extension, Measuring the Line Extension Success Brand Extension Introduction, Asker and Keller's Success Factors, Internal and External Factors Affecting Firm, Inter Brand Success Factors, Sequential Introduction of Brand Extension, Process of Brand Extension, Brand Harvesting Introduction, Types of Harvesting, Activities Adopted during Harvesting Strategy, Planning the Harvesting Strategy Implementation.

TEXTBOOKS:

- 1. Gien L. Urban. John R. Hauser "Design and Marketing of new products"
- 2. William L. Moore&Edgar "Product Planning and Management", A. Pessemier AGILE MANUFACTURIN
- 3. Dr.C. Anandan "Product Management". Tata McGraw Hill Education Pvt. Ltd.,

REFERENCE BOOKS :

- 1. Philip Kotler. "Marketing Management " Person Eduction Pvt Ltd.,
- 2. Dr. VenuGopalRao. "Product and Brand Management" Himalaya Publications.

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc19_mg48/preview

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code		RAPID PROTOTYPING TECHNOLOGIES	L	Т	P	С
Semester	III	Program Elective Course- V	3	0	0	3
Course Objecti	ves:					
1		ge on rapid prototyping technologies				
		selective laser sintering				
		ground curing and LOM materials				
•		irect Rapid tooling.				
		Rapid Manufacturing Process Optimization				
		CO): Student will be able to				
1		road group of RP systems.				
		cess details data preparation.				
		inter, HP system				
4. Analyze the R	lapid	tooling				
	ation	from point cloud, Surface modification-data transfer	to soli	d mo	odels	•
UNIT - I			ecture			
Introduction: N	Need	for the compression in product development, Histor	y of	RP s	yste	ns,
Survey of applic	ation	s, Growth of RP industry and classification of RP systematic	tems.			
		tering: Type of machine, Principle of operation, Problem SLS, Applications.				
	ion N	Iodelling: Principle, Process parameter, Path generation				
-		g: Principle of operation, Machine details, Applicatio	· •	pnea	uion	
UNIT - III			Lectu	re Hı	:s:10	
Laminated Obj	ect N	fanufacturing: Principle Of Operation, LOM materi	als.			
Process details,	applic	cation.				
	••					
Concepts Mod	elers:	Principle, Thermal jet printer, Sander's model ma	rket,	3-D	prin	ter.
		system 5, Object Quadra systems.			-	
UNIT - IV			Lectu	re Hı	:s:10	
LASER ENGIN	VEEF	RING NET SHAPING (LENS)				
		irect Rapid tooling -Silicon rubber tooling –Alumi	num	filled	l epo	оху
		tooling, Cast kirksite, 3Q keltool, etc, Direct Rapi				
		cess, Rapid Tool, DMILS, Prometal, Sand casting				
tooling soft, Too						
UNIT - V	U		Lectu	re Hı	:s: 12	2

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (ENERGY SYSTEMS)

Rapid Manufacturing Process Optimization: Factors influencing accuracy, Data preparation errors, Part building errors, Error in finishing, Influence of build orientation.

Allied Processes: Vacuum casting, surface digitizing, Surface generation from point cloud, Surface modification-data transfer to solid models.

TEXTBOOKS:

- 1. Rapid Prototyping and Tooling by Hari Prasad & K.S. Badhrinarayan/ Page Turners
- 2. Paul F. Jacobs- "Stereo lithography and other RP & M Technologies", SME, NY 1996.

REFERENCE BOOKS :

- 1. Flham D.T & Dinjoy S.S "Rapid Manufacturing" Verlog London 2001.
- 2. Lament wood, "Rapid automated", Indus press New York

Online Learning Resources:

https://onlinecourses.nptel.ac.in/noc20_me50/preview

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code		Open Elective	L	Т	Р	C
Semester	III	Mechatronics	3	0	0	3
						1
Course Objecti	ives:					
To impart know		on				
To impart know	wledg	e on about the elements and techniques involved i	n N	Iecha	atron	nics
_	-	ry much essential to understand the emerging field of a				
Course Outcon	nes (C	CO): Student will be able to				
1.Students can a	able to	understand the concepts, need and importance of mecha	atror	nics.		
2. They can able	e to kr	now the concepts of 8085 microprocessor, 8051 microco	ontro	oller		
3. They can able	e to ur	nderstand the Programmable peripheral Interface				
4. Students can	able to	o know the structure, programming and selection of PLO	С			
5. They can a	ible t	o know the working principle and design concept	ts o	f ac	tuato	ors,
mechatronic sys	stem.					
UNIT – I				cture		:
		atronics – Systems – Concepts of Mechatronics approa				
		merging areas of Mechatronics – Classification of Mec				
Sensors and		sducers: Static and dynamic Characteristics of				
		DT – Capacitance sensors – Strain gauges – Eddy curr	ent s	senso	or	
	<u>ısor –</u>	Temperature sensors – Light sensors.				
UNIT – II			Lee	cture	Hrs	:
		SSOR AND 8051 MICROCONTROLLER				
		ecture of 8085– Pin Configuration – Addressing Modes			tion	
	gram o	of 8085 - Concepts of 8051 microcontroller - Block dia				
UNIT – III			Lee	cture	Hrs	:
		PERIPHERAL INTERFACE				
		ecture of 8255, Keyboard interfacing, LED display -ir				
		rface, Temperature Control - Stepper Motor Control	– T	'raffi	C	
Control interfac	<u>e.</u>		<u> </u>			
UNIT – IV			Lee	cture	Hrs	:
		LOGIC CONTROLLER				
		e structure - Input and output processing - Progra				
	Fimer	s, counters and internal relays – Data handling – Se	lecti	on c	of	
PLC.			<u> </u>			
UNIT – V			Lee	cture	Hrs	:
		MECHATRONIC SYSTEM DESIGN				
•		Servo motors – Construction – Working Principle – A		-		
		Design process-stages of design process – Tradit				
		concepts - Case studies of Mechatronics systems -	Pic	k an	d	
place Robot – E	ngine	Management system – Automatic car park barrier.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES

DEPARTMENT OF MECHANICAL ENGINEERING

(ENERGY SYSTEMS)

Textbooks:						
1.Bolton, "Mechatronics", Printice Hall, 2008 2. Ramesh S Gaonkar, "Microprocessor						
Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice						
Hall, 2008.						
Reference Books:						
1. Michael B.Histand and Davis G.Alciatore, "Introduction to						
Mechatronics and Measurement systems", McGraw Hill						
International edition,2007.						
2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics",						
Chapman and Hall, 1993.						
3. Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for						
Intelligent Machines", Oxford University Press, 2007.						
4. DevadasShetty and Richard A. Kolk, "Mechatronics Systems Design",						
PWS publishing company,2007.						
5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of						
India,2007.						
6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print,2013						
Online Learning Resources:						
https://nptel.ac.in > courses > noc21 > SEM1 > noc21-me27						