2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. (Product Design)</u>

(4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I- SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D34101	Creative Engineering Design-I	4	-	4
15D34102	Materials Technology	4	-	4
15D34103	Computer Aided Engineering	4	-	4
15D34104	Applied Ergonomics	4	-	4
	ELECTIVE-I	4	-	4
15D34105	Design of Material Handling Equipments			
15D32108	Rapid Prototyping Technologies			
15D34106	15D34106 Mechanical Behaviour of Materials			
15D34107 Industrial Design				
	ELECTIVE-II	4	-	4
15D34108	Quality Concepts in Design			
15D34109	Composite Materials and Mechanics			
15D32111 Creativity and Innovations in Design				
15D34110	Enterprise Resource Planning			
15D34111	Computer Aided Analysis & Design Lab	0	4	2
TOTAL		24	4	26

Subject Code	SUBJECT	L	Р	С
15D34201	Design for Manufacturing	4	-	4
15D34202	Optimization of Engineering Design	4	-	4
15D34203	Robust Design	4	-	4
15D34204	Creative Engineering Design-II	4	-	4
	ELECTIVE-III	4	-	4
15D32208	Product Planning and Marketing			
15D34205	Tribology in Design			
15D34206	Design of Hydraulic and Pneumatic Systems			
15D34207	Additive Manufacturing			
	ELECTIVE-IV	4	-	4
15D34208	Design for Manufacture Assembly and			
	Environments			
15D34209	Advanced Metal Forming Techniques			
15D34210	Quality Concepts in Product Development			
15D32210	Reverse Engineering			
15D54201	Research Methodology (Audit Course)	3	-	-
15D34211	Simulation Lab	0	4	2
TOTAL		24	4	26

II - SEMESTER:

Code	Subject	Т	Р	С
15D34301	III Semester	0	4	2
	Seminar - I			
15D34401	IV Semester	0	4	2
	Seminar - II			
15D34302	III & IV Semester			44
	Project Work			
	Total	24	8	48

Note : All End Examinations (Theory and Practical) are of Three Hours Duration.

T – Tutorial L – Theory P- Practical / Drawing C - Credits

R15

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech : PRODUCT DESIGN

I- SEMESTER

С L P 4

4

(4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I- SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D34101	Creative Engineering Design-I	4	-	4
15D34102	Materials Technology	4	-	4
15D34103	Computer Aided Engineering	4	-	4
15D34104	Applied Ergonomics	4	-	4
	ELECTIVE-I	4	-	4
15D34105	Design of Material Handling Equipments			
15D32108	Rapid Prototyping Technologies			
15D34106 Mechanical Behaviour of Materials				
15D34107 Industrial Design				
	ELECTIVE-II	4	-	4
15D34108	Quality Concepts in Design			
15D34109	15D34109 Composite Materials and Mechanics			
15D3212 Creativity and Innovations in Design				
15D34111	Enterprise Resource Planning			
15D34112	Computer Aided Analysis & Design Lab	0	4	2
TOTAL		24	4	26

R15

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU

DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L P C 4 - 4

CREATIVE ENGINEERING DESIGN-I (15D34101)

UNIT-I

Introduction to product design- Product development -Examples of product development process-theories and methodologies-Product development teams- Product development planning process-Technical and business concerns.

Understanding customer needs-Customer satisfaction -gathering customer needs-Organising and prioritizing customer needs.

UNIT-II

Establishing product function-Functional decomposition, Modeling process, Function trees, Creating function structure, Auguementation, Functional common basis.

UNIT-III

Product teardown and experimentation-Teardown process, Teardown methods, Post teardown reporting- Applications of product teardown.

UNIT-IV

Benchmarking and establishing engineering specifications- Benchmarking approach, examples, Support tools, Setting product specifications-Product portfolios architecture types, theory, platforms.

Product architecture - Types and examples, Product modularity, Modular design and methods.

UNIT-V

Generating, selection and embodiment of concepts: Concept generation process, methods-Basic and advanced-Morphological analysis, Concept selection process, Factors, Design evaluation, Information quality, Feasibility-Basic and advanced methods, Concept embodiment: General process, advanced methods

Modeling of product metrics: Model selection, Model preparation, Mathematical modeling, Construction of product models.

TEXT BOOKS:

1. Kevin N. Otto and Kristin L. Wood - Product Design Pearson Education 2001

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

R15

I- SEMESTER

4 -MATERIALS TECHNOLOGY (15D34102)

L

Р

С

4

UNIT I:

Elasticity in metals and polymers, mechanism of plastic deformation, role of dislocations, yield stress, shear strength of perfect and real crystals, strengthening mechanism, work hardening, solid solution, grain boundary strengthening. Poly phase mixture, precipitation, particle, fiber and dispersion strengthening, effect of temperature, strain and strain rate on plastic behavior, super plasticity, deformation of non crystalline material

UNIT II:

Griffth's Theory, stress intensity factor and fracture Toughness, Toughening Mechanisms, Ductile and Brittle transition in steel, High Temperature Fracture, Creep, Larson – Miller parameter, Deformation and Fracture mechanism maps.

UNIT III:

Fatigue, Low and High cycle fatigue test, Crack Initiation and Propagation mechanism and paris Law, Effect of surface and metallurgical parameters on Fatigue, Fracture of non-metallic materials, fatigue analysis, Sources of failure, procedure of failure analysis.

UNIT IV:

Motivation for selection, cost basis and service requirements, Selection for Mechanical Properties, Strength, Toughness, Fatigue and Creep. Selection for Surface durability, Corrosion and Wear resistance, Relationship between Materials Selection and Processing, Case studies in Materials Selection with relevance to Aero, Auto, Marine, Machinery and Nuclear Applications.

UNIT V:

MODERN METALLIC MATERIALS: Dual Steels, Micro alloyed, High Strength Low alloy (HSLA) Steel, Transformation induced plasticity (TRIP) Steel, Maraging Steel, Intermetallics, Ni and Ti Aluminides, Smart Materials, Shape Memory alloys, Metallic Glass Quasi Crystal and Nano Crystalline Materials.

NONMETALLIC MATERIALS: Polymeric materials and their molecular structures, Production Techniques for Fibers, Foams, Adhesives and Coatings, structure, Properties and Applications of Engineering Polymers, Advanced Structural Ceramics WC, TiC, TaC, A12 O3, SiC, Si3 N4, CBN and Diamond – properties, Processing and applications.

REFERENCES:

- 1. Mechanical Behavior of Materials/Thomas H. Courtney/ 2 nd Edition, McGraw Hill, 2000
- 2. Mechanical Metallurgy/George E. Dicter/McGraw Hill, 1998.
- 3. Selection and use of Engineering Materials 3e/Charles J.A/Butterworth Heiremann.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L	Р	С
4	-	4

R15 2015-16

COMPUTER AIDED ENGINEERING (15D34103)

UNIT-I

Introduction: Equations of equilibrium, stress-strain relations for 2-D and 3-D, Potential energy and equilibrium, Boundary conditions, Von-Misses Stresses

FEM for 1-D Problems: General procedure for FEA, Raleigh Ritz method, Galerkin Approach, shape functions, stiffness matrix, load vectors, temperature effects, applications of boundary conditions using elimination, penalty and multi-constraint approaches, Application problems – 1-D bar element. Trusses and beams

UNIT-II

FEM for 2-D Problems: Shape functions, stiffness matrix, strain matrix, load vectors for CST Elements and application problems

UNIT-III

FEM for Axisymmetric Problems: Axisymmetric formulation, triangular elements, PE approach, Body force term, Rotating flywheel, Problem modeling and boundary conditions – Disks and Cylinders

UNIT-IV

FEM for Scalar Field Problems: 1-D and 2-D Steady state heat transfer, Torsion, potential flow and fluid flow in ducts and application problems

UNIT-V

Dynamic Analysis: Equations of motion for dynamic problems –Consistent and lumped mass matrices -Formulation of element mass matrices free vibration and forced vibration problems formulation.

TEXT BOOKS:

- 1. Tirupathi R. Chandrupatla, Ashok D Belegundu -"Introduction to Finite Elements in Delhi 2003 (Third Edition) Prentice Hall India Pvt. Ltd., New
- 2. Cook R.D, Malkus D.S & Plesha M.E-"Concepts and Applications of finite Element Analysis", John Wiley & Sons, 1989.

REFERENCE BOOKS:

- 1. Segerlind L .J.-"Applied Finite Element Analysis" John Wiley & Sons Edition, 1984.
- 2. Rao SS- "The Finite Element Method in Engineering", Pergomon Press, Oxford, 2nd
- 3. Edition, 1984.
- 4. Bathe K .J-"Finite Element Procedures in Engineering Analysis", Prentice Hall, NewJersey, 1982.
- 5. Shames III & Dym C L- "Energy and Finite Element Methods in Structural Mechanics", Wiley Eastern Ltd, 1995,

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L P C 4 - 4

APPLIED ERGONOMICS (15D34104)

UNIT I INTRODUCTION:

Brief history of human factors engineering/Ergonomics – Interdisciplinary nature.

UNIT II HUMAN PERFORMANCE:

Factors influencing performance – Information receiving and processing – Information theory and its application - Human response and errors – Signal detection theory – iostatic and Biodynamic Mechanics.

UNIT III

PHYSIOLOGICAL ASPECTS OF HUMAN AT WORK:

Metabolism – Physiological factors involved in muscular activity – Measurement of energy expenditure – Quantitative work load analysis - Physical work capacity and its evaluation – Physiological fatigue – Work and rest schedules – Physical fitness tests.

UNIT IV

WORK PLACE DESIGN:

Problems of body size, Anthropometry measures, Work posture - Work space layout and work station design – Design of displays, controls and VDT work stations - Hand tool design.illumination.

UNIT V

OCCUPATIONAL HEALTH AND SAFETY:

Industrial accidents, Personal Protective devices, Safety Management practices – Effect of Environment – heat, cold & noise – NIOHS regulations and Factories Act

TEXT BOOK:

1. Bridger, R.S., Introduction to Ergonomics, McGraw Hill, 1995.

REFERENCES:

1. Martin Helander, A guide to Ergonomics of Manufacturing, TMH, 2006.

2. Mecormik, T.J., Human Factors Engineering, TMH, 1990.

3. John Grimaldi, Safety Management, A.I.B.S., 5th Edition, Hazard Control Technology 2003

4. Philips, Chandler A, Human Factors Engineering, John Wiley and Sons, Inc. 2000

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech – PRODUCT DESIGN

I- SEMESTER

L P C 4 - 4

DESIGN OF MATERIAL HANDLING EQUIPMENTS (Elective – I) (15D34105)

UNIT I MATERIALS HANDLING EQUIPMENT

Types, selection and applications

UNIT II DESIGN OF HOISTS

Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear - Brakes: shoe, band and cone types.

UNIT III DRIVES OF HOISTING GEAR

Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.

UNIT IV CONVEYORS

Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors.

UNIT V ELEVATORS

Bucket elevators: design - loading and bucket arrangements - Cage elevators - shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift trucks.

REFERENCES

1. Rudenko, N., Materials handling equipment, ELnvee Publishers, 1970.

2. Spivakovsy, A.O. and Dyachkov, V.K., Conveying Machines, Volumes I and II, MIR Publishers, 1985.

3. Alexandrov, M., Materials Handling Equipments, MIR Publishers, 1981.

4. Boltzharol, A., Materials Handling Handbook, The Ronald Press Company, 1958.

5. P.S.G. Tech., "Design Data Book", Kalaikathir Achchagam, Coimbatore, 2003.

6. Lingaiah. K. and Narayana Iyengar, "Machine Design Data Hand Book", Vol. 1 & 2, Suma Publishers, Bangalore, 1983

2015-16

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L	Р	С
4	-	4

RAPID PROTOTYPING TECHNOLOGIES (Elective – I) (Common to Energy Systems & Product Design) (15D32108)

UNIT-I

Introduction: Need for the compression in product development, History of RP systems, Survey of applications, Growth of RP industry and classification of RP systems.

Stereo Lithography Systems: Principle, Process parameter, Process details, Data preparation, Data files and machine details, Application.

Selective Laser Sintering: Type of machine, Principle of operation, Process parameters, Data preparation for SLS, Applications.

UNIT-II

Fusion Deposition Modelling: Principle, Process parameter,Path generation, Application **Solid Ground Curing:** Principle of operation, Machine details, Applications.

UNIT-III

Laminated Object Manufacturing: Principle Of Operation, LOM materials. Process details, application.

Concepts Modelers: Principle, Thermal jet printer, Sander's model market, 3-D printer. Genisys Xs printer HP system 5, Object Quadra systems.

UNIT-IV

LASER ENGINEERING NET SHAPING (LENS)

Rapid Tooling: Indirect Rapid tooling -Silicon rubber tooling –Aluminum filled epoxy tooling Spray metal tooling, Cast kirksite, 3Q keltool, etc, Direct Rapid Tooling Direct. AIM, Quick cast process, Rapid Tool, DMILS, Prometal, Sand casting tooling, Laminate tooling soft, Tooling vs. hard tooling.

UNIT-V

Rapid Manufacturing Process Optimization: Factors influencing accuracy, Data preparation errors, Part building errors, Error in finishing, Influence of build orientation.

Allied Processes: Vacuum casting, surface digitizing, Surface generation from point cloud, Surface modification-data transfer to solid models.

TEXT BOOKS:

- 1. Rapid Prototyping and Tooling by Hari Prasad & K.S. Badhrinarayan/ Page Turners
- 2. Paul F. Jacobs- "Stereo lithography and other RP & M Technologies", SME, NY 1996.
- 3. Flham D.T & Dinjoy S.S "Rapid Manufacturing" Verlog London 2001.
- 4. Lament wood, "Rapid automated", Indus press New York

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L	Р	С
4	-	4

MECHANICAL BEHAVIOR OF MATERIALS (Elective – I) (15D34106)

UNIT I BASIC CONCEPTS OF MATERIAL BEHAVIOR

Elasticity in metals and polymers– Strengthening mechanisms, work hardening, solid solutioning, grain boundary strengthening, poly phase mixture, precipitation, particle, fibre and dispersion strengthening. Effect of temperature, strain and strain rate on plastic behaviour – Super plasticity –. Griffith's theory,– Ductile, brittle transition in steel – High temperature fracture, creep – Larson Miller parameter – Deformation and fracture mechanism maps.

UNIT II BEHAVIOUR UNDER DYNAMIC LOADS AND DESIGN APPROACHES

Stress intensity factor and fracture toughness – Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris law.- Safe life, Stress-life, strain-life and fail - safe design approaches -Effect of surface and metallurgical parameters on fatigue – Fracture of non metallic materials – Failure analysis, sources of failure, procedure of failure analysis.

UNIT III SELECTION OF MATERIALS

Motivation for selection, cost basis and service requirements – Selection for mechanical properties, strength, toughness, fatigue and creep – Selection for surface durability corrosion and wear resistance – Relationship between materials selection and processing – Case studies in materials selection with relevance to aero, auto, marine, machinery and nuclear applications – Computer aided materials selection.

UNIT IV MODERN METALLIC MATERIALS

Dual phase steels, High strength low alloy (HSLA) steel, Transformation induced plasticity (TRIP) Steel, Maraging steel, Nitrogen steel – Intermetallics, Ni and Ti aluminides – smart materials, shape memory alloys – Metallic glass and nano crystalline materials.

UNIT V NON METALLIC MATERIALS

Polymeric materials – Formation of polymer structure – Production techniques of fibers, foams, adhesives and coating – structure, properties and applications of engineering polymers – Advanced structural ceramics, WC, TIC, TaC, Al₂O3, SiC, Si₃N₄ CBN and diamond – properties, processing and applications.

REFERENCES

1. George E.Dieter, Mechanical Metallurgy, McGraw Hill, 1988

2. Thomas H. Courtney, Mechanical Behavior of Materials, (2nd edition), McGraw Hill, 2000

3. Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, (34d edition), Butterworth-Heiremann, 1997.

4. Flinn, R.A., and Trojan, P.K., Engineering Materials and their Applications, (4th Edition) Jaico, 1999.

5. Metals Hand book, Vol.10, Failure Analysis and Prevention, (10th Edition), Jaico, 1999.

6. Ashby M.F., materials selection in Mechanical Design 2nd Edition, Butter worth 1999. www.astm.org/labs/pages/131350.htm.

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

4 - 4 INDUSTRIAL DESIGN (Elective – I) (15D34107)

L

Р

С

UNIT I INTRODUCTION

Definition – Human & Machine system – Manual; Mechanical; Automated system, Input of Information - Auditory, Visual, Oral, Olfactory display & Communication. Human Output andControl – Physical work, Manual material handling, Physiological performance : Motor Skill,human control of systems, controls & data entry devices, hand tools & devices.

UNIT II WORK PLACE AND EQUIPMENT DESIGN

Applied anthropometry, Workspace design and seating, arrangement of components within a physical space, interpersonal aspects of work place design, and design of repetitive task, design of manual handling activity task, work capacity, stress, and fatigue. Design of Equipment : Ergonomic factors to be considered in the design of displays and control, designfor maintainability, design of human computer interaction.

UNIT III ENVIRONMENTAL DESIGN

Vision and illumination design – Climate, Noise, Motion, Sound, Vibration.

UNIT IV BIOMECHANICS, BIOTHERMODYNAMICS, BIOENERGETICS

Biostatic mechanics, statics of rigid bodies, upper extremity of hand, lower extremity and foot, bending, lifting and carrying, biodynamic mechanics, human body kinematics, kinetics, impact and collision, human activity analysis, ergonomic tools, RULA, REBA, NOISH lifting equation - Bio-thermal fundamentals, human operator heat transfer, human system bioenergetics, thermoregulatory physiology, human operator thermo regularity, passive operator, active operator, heat stress.

UNIT V COGNITIVE ERGONOMICS & HUMAN FACTOR APPLICATION

Information Theory Information processing, Signal detection theory, Human response, human errors, cognitive task analysis. Human factors applications : Human error, accidents, human factors and the automobile, organizational and social aspects, steps according to ISO.DIS6385, OSHA''s approach, virtual environments.

REFERENCES

1. Chandler Allen Phillips, "Human Factors Engineering", John Wiley and sons, New York, 2000 2. Mark S Sanders, "Human Factors in Engineering and Design", McGraw Hill, New York, 1993. 3. Bridger R S, "Introduction to Ergonomics", Taylor and Francis, London, 2003. 4. MeCormik, J., Human Factors Engineering and Design, McGraw Hill, 1992.

5. Martin Helander, A guide to Human Factors and Ergonomics, 2nd Edition, CRC, Taylor & Francis Group 2006.

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L P C 4 - 4 QUALITY CONCEPTS IN DESIGN (Elective – II) (15D34108)

UNIT I DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrent Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) – Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging, Metal Forming, Machining and Welding

UNIT II DESIGN FOR QUALITY

Quality Function Deployment -House of Quality-Objectives and functions-Targets-Stakeholders-Measures and Matrices-Design of Experiments –design process-Identification of control factors, noise factors, and performance metrics - developing the experimental plan- experimental design – testing noise factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set points-reflecting and repeating.

UNIT III FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA

Basic methods: Refining geometry and layout, general process of product embodiment -Embodiment checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA method- linking fault states to systems modeling - Basis of SIX SIGMA –Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and small organizations -SIX SIGMA and lean production –Lean SIX SIGMA and services

UNIT IV DESIGN OF EXPERIMENTS

Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology, ANOVA, Steps in Experimentation, Sample size, Single Factor experiments - Completely Randomized design, Randomized Block design, Statistical Analysis, Multifactor experiments - Two and three factor full Factorial experiments, 2k factorial Experiments, Confounding and Blocking designs, Fractional factorial design, Taguchi"s approach - Steps in experimentation, Design using Orthogonal Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N ratios

UNIT V STATISTICAL CONSIDERATION AND RELIABILITY

Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams-Cause and Effect diagrams-Box plots- Probability distribution-Statistical Process control–Scatter diagrams –Multivariable charts –Matrix plots and 3-D plots.-Reliability-Survival and Failure-Series and parallel systems-Mean time between failure-Weibull distribution

REFERENCES

1. Dieter, George E., "Engineering Design - A Materials and Processing Approach", McGraw Hill, International Editions, Singapore, 2000.

2. Product Design Techniques in Reverse Engineering and New Product Development, KEVIN OTTO & KRISTIN WOOD, Pearson Education (LPE), 2001.

3. Product Design And Development, KARL T. ULRICH, STEVEN D. EPPINGER, TATA McGRAW-HILL- 3rd Edition, 2003.

4. The Management and control of Quality-6th edition-James R. Evens, William M Lindsay Pub:son south-western(www.swlearning.com)

5. Fundamentals of Quality control and improvement 2nd edition, AMITAVA MITRA, Pearson Education Asia, 2002.

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

ER L P C 4 - 4 COMPOSITE MATERIALS AND MECHANICS (Elective – II) (15D34109)

UNIT I INTRODUCTION TO COMPOSITE MATERIALS

Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments- ceramic fibers- fiber fabrication- natural composite wood, Jute - Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites.

UNIT II MANUFACTURING OF COMPOSITES

Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-, bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) –hot pressing-reaction bonding process-infiltration technique, direct oxidation- interfaces

UNIT III INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS

Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke"s Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Q_{ij}), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

UNIT IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill"s Criterion for Anisotropic materials. Tsai-Hill"s Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

UNIT V THERMAL ANALYSIS

Assumption of Constant Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's. C.T.E's for special Laminate Configurations – Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero C.T.E laminates, Thermally Quasi-Isotropic Laminates

REFERENCES

1. Gibson, R.F., Principles of Composite Material Mechanics, McGraw-Hill, 1994, Second Edition - CRC press in progress.

Hyer, M.W., "Stress Analysis of Fiber – Reinforced Composite Materials", McGraw-Hill, 1998
Issac M. Daniel and Ori Ishai, "Engineering Mechanics of Composite Materials",

Oxford University Press-2006, First Indian Edition - 2007

4. Mallick, P.K., Fiber – "Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, 1993.

5. Halpin, J.C., "Primer on Composite Materials, Analysis", Techomic Publishing Co., 1984.

6. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.

7. Mallick, P.K. and Newman, S., (edition), "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 1990.

8. Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", University Press (India) Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008)

9. Chung, Deborah D.L., "Composite Materials: Science and Applications", Ane Books Pvt. Ltd./Springer, New Delhi, 1st Indian Reprint, 2009

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech – PRODUCT DESIGN

I-SEMESTER

CREATIVITY AND INNOVATIONS IN DESIGN (Elective – II) (Common to Energy Systems & Product Design) (15D3212)

L

4

Р

С

4

UNIT I INTRODUCTION

Need for design creativity – creative thinking for quality – essential theory about directed creativity

UNIT II MECHANISM OF THINKING AND VISUALIZATION

Definitions and theory of mechanisms of mind heuristics and models : attitudes, Approaches and Actions that support creative thinking - Advanced study of visual elements and principles- line, plane, shape, form, pattern, texture gradation, color symmetry.Spatial relationships and compositions in 2 and 3 dimensional space - procedure for genuine graphical computer animation – Animation aerodynamics – virtual environments in scientific Visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visualization – Unifying principle of data management for scientific visua

UNIT III CREATIVITY

Methods and tools for Directed Creativity – Basic Principles – Tools of Directed Creativity – Tools that prepare the mind for creative thought – stimulation of new ideas – Development and Actions: - 16 Processes in creativity ICEDIP – Inspiration, Clarification, Distillation, Perspiration, Evaluation and Incubation – Creativity and Motivation The Bridge between man creativity and the rewards of innovativeness – Applying Directed Creativity to the challenge of quality management

UNIT IV DESIGN

Process Design, Emotional Design – Three levels of Design – Viceral, Behavioral and Reflective-Recycling and availability-Creativity and customer needs analysis – Innovative product and service designs, future directions in this application of creativity thinking in quality management

UNIT V INNOVATION

Achieving Creativity – Introduction to TRIZ methodology of Inventive Problem Solving - the essential factors – Innovator"s solution – creating and sustaining successful growth – Disruptive Innovation model – Segmentive Models – New market disruption - Commoditation and DE-commoditation – Managing the Strategy Development Process – The Role of Senior Executive in Leading New Growth – Passing the Baton

REFERENCES

1. Rousing Creativity: Think New NowFloydHurr, ISBN 1560525479, Crisp Publications Inc. 1999

2. Geoffrey Petty," how to be better at Creativity", The Industrial Society 1999

3. Donald A. Norman," Emotional Design", Perseus Books Group New York, 2004

4. Clayton M. Christensen Michael E. Raynor," The Innovator"s Solution", Harvard Business School Press Boston, USA, 2003

5. Semyon D. Savransky," Engineering of Creativity - TRIZ", CRC Press New YorkUSA," 2000

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER

L P C 4 - 4 ENTERPRISE RESOURCE PLANNING (Elective – II) (15D34110)

UNIT I ENTERPRISE RESOURCE PLANNING

Principle – ERP framework – BusinessBlue Print – Business Engineeringvs Business process Re-Engineering – Tools – Languages – Value chain – Supply and Demand chain – Extended supply chain management – Dynamic Models –Process Models

UNIT II TECHNOLOGY AND ARCHITECTURE

Client/Server architecture – Technology choices – Internet direction – Evaluation framework – CRM – CRM pricing – chain safety – Evaluation framework.

UNIT III ERP SYSTEM PACKAGES

SAP, People soft, Baan and Oracle – Comparison – Integration of different ERP applications – ERP as sales force automation – Integration of ERP and Internet – ERP Implementation strategies – Organisational and social issues.

UNIT IV

Overview – Architecture – AIM – applications – Oracle SCM. SAP : Overview – Architecture – applications -Before and after Y2k – critical issues – Training on various modules of IBCS ERP Package-Oracle ERP and MAXIMO, including ERP on the NET

UNIT V ERP PROCUREMENT ISSUES

Market Trends – Outsourcing ERP – Economics – Hidden Cost Issues – ROI – Analysis of cases from five Indian Companies.

REFERENCES:

1. Sadagopan.S, ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999.

2. Jose Antonio Fernandez, The SAP R/3 Handbook, Tata Mcgraw Hill, 1998.

3. Vinod Kumar Crag and N.K.Venkitakrishnan ,Enterprise Resource Planning –Concepts and Practice, Prentice Hall of India, 1998.

4. ERPWARE, ERP Implementation Framework, Garg&Venkitakrishnan, Prentice Hall, 1999.

5. Thomas E Vollmann and BeryWhybark , Manufacturing and Control Systems, Galgothia Publications, 1998.

R15

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

I- SEMESTER	L	Р	С
	-	4	2

COMPUTER AIDED ANALYSIS & DESIGN LAB (15D34111)

SNo.	LIST of EXPERIMENTS:	No. of EXPTS
1.	2D and 3D Solid Modelling of Components using Auto CAD/Pro	-Е :04
2.	3D Modelling of Mechanical Components using IRON-CAD	:04
3. 4.	Assembly of Machine Components Analysis of typical Mechanical Systems using any analysis packag Total No. of Experiments	:02 e :02 :12

R15 2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

(II SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

II - SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D34201	Design for Manufacturing	4	-	4
15D34202	Optimization of Engineering Design	4	-	4
15D34203	Robust Design	4	-	4
15D34204	Creative Engineering Design-II	4	-	4
	ELECTIVE-III	4	-	4
15D32208	Product Planning and Marketing			
15D34205	Tribology in Design			
15D34206	Design of Hydraulic and Pneumatic Systems			
15D34207	Additive Manufacturing			
	ELECTIVE-IV	4	-	4
15D34208 Design for Manufacture Assembly and				
Environments				
15D34209 Advanced Metal Forming Techniques				
15D34210	Quality Concepts in Product Development			
15D32210	Reverse Engineering			
15D54201	Research Methodology (Audit Course)	3	-	-
15D34211	Simulation Lab	0	4	2
TOTAL		24	4	26

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

R15

Р

L

С

4

II- SEMESTER

4 -DESIGN FOR MANUFACTURING (15D34201)

UNIT-I

System Concept-Elements of System- Types and Characteristics of System-System Design Approach- System Development- Stages and phases of Development-Documentation and Models in System Development

System Modelling and Theories, Modelling Process, System Theory, Black Box Approach and State Approach

UNIT-II

Mathematical Formulation in System design, LPP with Graphical solution, - Network Flow Analysis

System Evaluation, Evaluation Factors, Needs for Evaluation, Benefits, Types and Stages in System Evaluation

UNIT-III

System Reliability, Block diagram, Block Failure, Definition of Reliability, Reliability and Probability, Failure Rate, Estimation, Reliability Indices. Reliability Tests.

UNIT-IV

System simulation- Need for Simulation, Steps in simulation, Simulation Models.

System Approach to Project Management- Project Management Systems and Functional management System, Classification, Techniques and Objectives.

UNIT-V

Manufacturing Systems-Classifications, Introduction to FMS and Computer Integrated Manufacturing System - Concepts of Group Technology

TEXT BOOKS:

- 1. R.C.Mishra and Simant –"Mechanical System Design"
- 2. Arora.A.,and Bhatia A-"Management Information System". Excell Publication, New Delhi
- 3. Gopal Krishna P., and P RamamoothyV.E., -"**Text Book of Project Management**", Macmillian, New Delhi.

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

R15

II- SEMESTER

4 - 4 OPTIMIZATION OF ENGINEERING DESIGN (15D34202)

L

Р

С

UNIT I

Introduction: Optimal Problem formulation, engineering optimization problems- optimal design of a truss structure, an Ammonia reactor a transit schedule and a car suspension, Optimization Algorithms.

Single- variable optimization algorithms: Optimality criteria, bracketing methods, Region – elimination method, Point estimation method, Gradient –based method, Root- Finding using optimization technique.

UNIT II

Multivariable optimization algorithms: Optimality criteria unidirectional search, direct search methods-evolutionary optimization method, simplex search method, Hooke - Jeeves pattern search method, Powell's conjugate direction method. Gradient- based method – Cauchy's (steepest descent) method, Newton's method, Marquardt's method, Conjugate gradient method, Variable- metric method (DFP method)

UNIT III

Constrained Optimization Algorithms: Kuhn-Tucker conditions, Transformation methods-Penalty function method, method of multipliers, sensitivity analysis.

Direct search for constrained minimization: Variable elimination, complex search and random search methods, Linear search techniques-Frank-wolfe and cutting plane methods. Feasible direction, generalized reduced gradient and gradient projection methods.

UNIT IV

Specialized algorithms: Integer programming, Penalty function method, branch and bound method, Geometric programming

UNIT V

Nontraditional optimization algorithms: Genetic algorithm-working principle, Difference between GAs and traditional methods, Similarities between GAs and traditional methods, GAs for constrained optimization, other GA operators, real coded GAs, advanced Gas Simulated Annealing, Global optimization-steepest descent method, Genetic algorithms and simulated annealing

TEXT BOOKS:

1. Kalyanmoy Deb- "Optimization for Engineering Design"

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

II- SEMESTER

L	Р	С
4	-	4

R15

2015-16

ROBUST DESIGN (15D34203)

UNIT – I

What is quality Fundamental principle, Tools used in robust design, Applications and benefits of robust design, Quality loss function – the fraction defective fallacy, noise factors- causes of variation, average quality loss, Exploiting Nonlinearity, classification of parameters: P Diagram, Optimization of product and process design.

UNIT – II

Matrix Experiment for a CVD process, Estimation of factor Effects, additive model ofr factor effects, Analysis of variance, prediction of Diagnosis, Steps in robust design. Temperature control circuit and its function, problem formulation.

UNIT – III

Optimization of polysilicon layer thickness uniformity, evaluation of sensitivity to noise, S/N Ratios for static problems, S/N Ratios for dynamic problems, analysis of ordered categorical data.

Quality characteristics and S/N Ratio, optimization of the design, tolerance design, reducing the simulation efforts, analysis of nonlinearity, selecting an appropriate S/N Ratio.

UNIT – IV

Guidelines for selecting Quality characteristics, Examples of Qaulity characteristics. Examples of S/N Ratios, selection of control factors, role of orthogonal arrays.

Computer aided robust design: Differential op-amp circuit, Description of noise factors, methods of simulating the variation in noise factors, orthogonal array based implantation of variation in noise factors.

$\mathbf{UNIT} - \mathbf{V}$

Counting degrees of freedom, selecting a standard orthogonal array, dummy level technique, compound factor method, linear graphs and interaction assignment, modification of linear graphs, column merging method, branching design, strategy for constructing an orthogonal array, comparison with the classical statistical experiment design.

REFERENCE BOOKS:

- 1. Robert H. Lochner and Joseph E. Matar "Designing for Quality an Introduction, best of Taguchi and western methods of statistical experimental design.
- 2. Madhav S. Phadke "Quality Engineering using Robust Design"
- 3. D.c. Montgomery "Design of Experiments".
- 4. Philp J Ross "Taguchi Techniques for Quality Engineering"
- 5. Taguchi G. Experimental design, "Maruzen Publishing Co", Tokyo 1981

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech – PRODUCT DESIGN

II-SEMESTER

С 4 4 **CREATIVE ENGINEERING DESIGN-II** (15D34204)

L

Р

UNIT –I

Introduction: Characteristics of successful product development, Design and development of products, duration and cost of product development, the challenges of product development.

Development Processes and Organizations: A generic development process, concept development: the front-end process, adopting the generic product development process, the AMF development process, product development organizations, the AMF organization.

UNIT-II

Product Planning: The product planning process, identify opportunities. Evaluate and prioritize projects, allocate resources and plan timing, complete pre project planning, reflect all the results and the process.

Identifying Customer Needs: Gather raw data from customers, interpret raw data in terms of customer needs, organize the needs into a hierarchy, establish the relative importance of the needs and reflect on the results and the process.

UNIT-III

Product Specifications: What are specifications, when are specifications established, establishing target specifications, setting the final specifications.

Concept Generation: The activity of concept generation clarify the problem, search externally, search internally, explore systematically, reflect on the results and the process.

Concept Selection: Overview of methodology, concept screening, and concept scoring,

Concept Testing: Define the purpose of concept test, choose a survey population, choose a survey format, communicate the concept, measure customer response, interpret the result, reflect on the results and the process.

Product Architecture: What is product architecture, implications of the architecture, establishing the architecture, variety and supply chain considerations, platform planning, related system level design issues.

UNIT-IV

INDUSTRIAL DESIGN: Assessing the need for industrial design, the impact of industrial design, industrial design process, managing the industrial design process, assessing the quality of industrial design.

Design for Manufacturing: Definition, estimation of manufacturing cost, reducing the cost of components, assembly, supporting production, impact of DFM on other factors.

Prototyping: Prototyping basics, principles of prototyping, technologies,

planning for prototypes.

UNIT-V

Product Development Economics: Elements of economic analysis, base case financial mode,. Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative analysis.

Managing Projects: Understanding and representing task, baseline project planning, accelerating projects, project execution, postmortem project evaluation.

TEXT BOOKS:

1. Karl.T.Ulrich, Steven D Eppinger, "**Product Design and Development**" Irwin McGrawHill-2000.

REFERENCE BOOKS:

- 1. A C Chitale and R C Gupta, PH1- "Product Design and Manufacturing"
- Timjones. Butterworth Heinmann-"New Product Development" Oxford. UCI. 1997
- 3. Geoffery Boothroyd, Peter Dewhurst and Winston Knight- "**Product Design for Manufacture and Assembly**"

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech – PRODUCT DESIGN</u>

R15

2015-16

С

L

Р

II- SEMESTER

4 - 4 PRODUCT PLANNING AND MARKETING (Elective-III) (Common to Energy Systems & Product Design) (15D32208)

UNIT-I

Classification of New Products: New products success and failure. Definition of success and failure, the latent Factors Behind the Marketing Success of New Products, Failure of New product, Factors Influencing Failure, Failures preventing new product Failure, New Product Development process and models, Model 1-The Cyclical Approach, Model 11-New product process Management

Concept Development and Statistical Tools Used : Introduction Common Sources for Product Ideas, Concept Development Methods, Idea Screening, idea Screening Approaches, Concept Testing, Definition, Methodology of Data Collection for Concept Testing, Data Analysis Techniques for Concept Testing, Concept Screen Test Method, Weighted Scoring Method, Concept Screening Matrix

UNIT-II

Diffusion of Innovation and Adoption Process : Introduction, Adoption Process, Five Stage Process, Time of Adoption, Characteristics of Adopters, Characteristics Affecting Adoption Rate, Diffusion of Innovation, Product Life Cycle Introduction, Basics of PLC, 3 Types of PLCs, Identification of Stages in a PLCSigma Method of Tracing the Product Life Cycle and Stages Identification.,

Product Mix : Introduction, Width, Length, Depth, And Consistency of Product mix, Product Lines, Product Strategies, Introduction, Types of Naming, Problem Faced due to Linguistic Differences, Branding Naming Strategies, Brand Naming Strategies, The Naming Process, The Dos and Don'ts While Naming Brands, Brand Names, Generalization.

UNIT-III

Test Marketing: Introduction, Objectives of Test Marketing-What to look for?, Pros and Cons of test Marketing, Decision Variables for Test Markets, Test Marketing Approaches, Types of Test Marketing Producers, Statistical Models for Analyzing Test Market Data, Data Project Method, Product Launch and Commercialization, The Product Launch Cycle,

The Launch Mix, Issues in Launch, The Product Launch Process, Effective Plan for Product Launch, Product Launch Mistakes

Brand Identity: Introduction, What Identity is not ? Dimensions and Identity, Inner and Outer Identity, The Six Sided Prism, How to find Identity? Multiple Identities, Conclusion, Brand Image, Brand Images of Some of the Indian Brands, Techniques Used for Identifying the Brand Image, Brand Networking Techniques, Focus Groups, Constructive Techniques, Factor Analysis.

UNIT-IV

Brand Personality: Introduction, Tools to Build/Understand Brand Personality, Brand personality Scale, Three Models to Build Brand Personality, Building Brand Personality Via the 4P's and Packaging, Building Brand Personality Bottom-up. Brand Positing and Repositioning Introduction, Grabbing the Mind Space, Positioning Statement, Determine the Positioning, The MDS Way, Image and Profile Analysis, Positioning through Correspondence Analysis, By factor Analysis, Positioning Analysis, by Discriminate Mapping, Repositioning, Brand Loyalty, Definition, Brand Loyalty Measurement Models, Preference Behavior Model, Purchase Probability Model, Brand Loyalty Analysis with Markov Chains, Strategies to Build Brand Loyalty, Building Loyalty Through Strategic Differentiation

UNIT-V

Line Extension: Introduction, Why Line Extension is so hard to resist ? A Good Marketing Strategy, Extension, Measuring the Line Extension Success Brand Extension Introduction, Asker and Keller's Success Factors, Internal and External Factors Affecting Firm, Inter Brand Success Factors, Sequential Introduction of Brand Extension, Process of Brand Extension, Brand Harvesting Introduction, Types of Harvesting, Activities Adopted during Harvesting Strategy, Planning the Harvesting Strategy Implementation.

TEXT BOOKS :

- 1. Gien L. Urban. John R. Hauser "Design and Marketing of new products"
- 2. William L. Moore&Edgar "Product Planning and Management", A. Pessemier AGILE MANUFACTURIN
- 3. Dr.C. Anandan "Product Management". Tata Mc Graw Hill Education Pvt. Ltd.,
- 4. Philip Kotler. "Marketing Management" Person Eduction Pvt Ltd.,
- 5. Dr. Venu Gopal Rao. "Product and Brand Management" Himalaya Publications.

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech - PRODUCTION DESIGN</u> II- SEMESTER L P C 4 - 4

R15

TRIBOLOGY IN DESIGN (Elective-III) (15D34205)

UNIT I SURFACE INTERACTION AND FRICTION

Topography of Surfaces – Surface features-Properties and measurement – Surface interaction – Adhesive Theory of Sliding Friction –Rolling Friction-Friction properties of metallic and non-metallic materials – friction in extreme conditions –Thermal considerations in sliding contact

UNIT II WEAR AND SURFACE TREATMENT

Types of wear – Mechanism of various types of wear – Laws of wear –Theoretical wear models-Wear of Metals and Non metals – Surface treatments – Surface modifications – surface coatings methods- Surface Topography measurements –Laser methods – instrumentation - International standards in friction and wear measurements

UNIT III LUBRICANTS AND LUBRICATION REGIMES

Lubricants and their physical properties- Viscosity and other properties of oils –Additives-and selection of Lubricants- Lubricants standards ISO,SAE,AGMA, BIS standards – Lubrication Regimes –Solid Lubrication-Dry and marginally lubricated contacts- Boundary Lubrication-Hydrodynamic lubrication — Elasto and plasto hydrodynamic - Magneto hydrodynamic lubrication – Hydro static lubrication – Gas lubrication.

UNIT IV THEORY OF HYDRODYNAMIC AND HYDROSTATIC LUBRICATION

Reynolds Equation,-Assumptions and limitations-One and two dimensional Reynolds Equation-Reynolds and Somerfield boundary conditions- Pressure wave, flow, load capacity and friction calculations in Hydrodynamic bearings-Long and short bearings-Pad bearings and Journal bearings-Squeeze film effects-Thermal considerations-Hydrostatic lubrication of Pad bearing-Pressure , flow , load and friction calculations-Stiffness considerations- Various types of flow restrictors in hydrostatic bearings

UNIT V HIGH PRESSURE CONTACTS AND ELASTO HYDRODYNAMIC LUBRICATION

Rolling contacts of Elastic solids- contact stresses – Hertzian stress equation- Spherical and cylindrical contacts-Contact Fatigue life- Oil film effects- Elasto Hydrodynamic lubrication Theory-Soft and hard EHL-Reynolds equation for elasto hydrodynamic lubrication- - Film shape within and outside contact zones-Film thickness and friction calculation- Rolling bearings- Stresses and deflections-Traction drives.
REFERENCES

1. Rabinowicz.E, "Friction and Wear of materials", John Willey &Sons ,UK,1995 2. Cameron, A. "Basic Lubrication Theory", Ellis Herward Ltd., UK, 1981

3. Halling, J. (Editor) – "Principles of Tribology", Macmillian – 1984.

4. Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994.

5. S.K.Basu, S.N.Sengupta & B.B.Ahuja ,"Fundamentals of Tribology", Prentice –Hall of India Pvt Ltd , New Delhi, 2005

6. G.W.Stachowiak & A.W .Batchelor , Engineering Tribology, Butterworth-Heinemann, UK, 2005

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech PRODUCTION DESIGN</u> II- SEMESTER L P C

R15

4 - 4 DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS (Elective-III) (15D34206)

UNIT I OIL HYDRAULIC SYSTEMS AND HYDRAULIC ACTUATORS

Hydraulic Power Generators – Selection and specification of pumps, pump characteristics. Linear and Rotary Actuators – selection, specification and characteristics.

UNIT II CONTROL AND REGULATION ELEMENTS

Pressure - direction and flow control valves - relief valves, non-return and safety valves - actuation systems.

UNIT III HYDRAULIC CIRCUITS

Reciprocation, quick return, sequencing, synchronizing circuits - accumulator circuits - industrial circuits - press circuits - hydraulic milling machine - grinding, planning, copying, - forklift, earth mover circuits- design and selection of components - safety and emergency mandrels.

UNIT IV PNEUMATIC SYSTEMS AND CIRCUITS

Pneumatic fundamentals - control elements, position and pressure sensing - logic circuits - switching circuits - fringe conditions modules and these integration - sequential circuits - cascade methods - mapping methods - step counter method - compound circuit design - combination circuit design.

UNIT V INSTALLATION, MAINTENANCE AND SPECIAL CIRCUITS

Pneumatic equipments- selection of components - design calculations – application -fault finding hydro pneumatic circuits - use of microprocessors for sequencing - PLC, Low cost automation -Robotic circuits.

REFERENCES

- 1. Antony Espossito, "Fluid Power with Applications", Prentice Hall, 1980.
- 2. Dudleyt, A. Pease and John J. Pippenger, "Basic fluid power", Prentice Hall, 1987.
- 3. Andrew Parr, "Hydraulic and Pneumatics" (HB), Jaico Publishing House, 1999.
- 4. Bolton. W., "Pneumatic and Hydraulic Systems", Butterworth -Heinemann, 1997.
- 5. K.Shanmuga Sundaram, "Hydraulic and Pneumatic Controls: Understanding made Easy"
- S.Chand & Co Book publishers, New Delhi, 2006 (Reprint 2009)

R15

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech PRODUCTION DESIGN

II- SEMESTER

ADDITIVE MANUFACTURING (Elective-III) (15D34207)

L

4

Р

С

4

UNIT I INTRODUCTION:

Need - Development of AM systems – AM process chain - Impact of AM on Product Development - Virtual Prototyping- Rapid Tooling – RP to AM -Classification of AM processes-Benefits-Applications.

UNIT II REVERSE ENGINEERING AND CAD MODELING: Basic concept- Digitization techniques – Model reconstruction – Data Processing for Rapid Prototyping: CAD model preparation, Data requirements – Geometric modeling techniques: Wire frame, surface and solid modeling – data formats - Data interfacing, Part orientation and support generation, Support structure design, Model Slicing, Tool path generation-Software for AM- Case studies.

UNIT III LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS:

Stereolithography Apparatus (SLA): Principle, pre-build process, part-building and post-build processes, photo polymerization of SL resins, part quality and process planning, recoating issues, materials, advantages, limitations and applications. Solid Ground Curing (SGC): working principle, process, strengths, weaknesses and applications. Fused deposition Modeling (FDM): Principle, details of processes, process variables, types, products, materials and applications. Laminated Object Manufacturing (LOM): Working Principles, details of processes, products, materials, advantages, limitations and applications - Case studies.

UNIT IV POWDER BASED ADDITIVE MANUFACTURING SYSTEMS: Selective Laser Sintering (SLS): Principle, process, Indirect and direct SLS- powder structures, materials, post processing, surface deviation and accuracy, Applications. Laser Engineered Net Shaping (LENS): Processes, materials, products, advantages, limitations and applications– Case Studies.

UNIT V OTHER ADDITIVE MANUFACTURING SYSTEMS

Three dimensional Printing (3DP): Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based and powder based 3DP systems, strength and weakness, Applications and case studies. Shape Deposition Manufacturing (SDM), Ballastic Particle Manufacturing (BPM), Selective Laser Melting, Electron Beam Melting.

REFERENCES

1. Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.

2. Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and applications", second edition, World Scientific Publishers, 2010.

3. Gebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003.

4. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications : A tool box for prototype development", CRC Press, 2011.

5. Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.

6. Hilton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial Applications, CRC press, 2005.

R15

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech PRODUCTION DESIGN

II- SEMESTER

4 - 4 DESIGN FOR MANUFACTURE, ASSEMBLY AND ENVIRONMENTS (Elective-IV) (15D34208)

L

Р

С

UNIT I INTRODUCTION

General design principles for manufacturability - strength and mechanical factors, mechanisms selection, evaluation method, Process capability - Feature tolerances Geometric tolerances - Assembly limits -Datum features - Tolerance stacks.

UNIT II FACTORS INFLUENCING FORM DESIGN

Working principle, Material, Manufacture, Design- Possible solutions - Materials choice -Influence of materials on form design - form design of welded members, forgings and castings.

UNIT III COMPONENT DESIGN - MACHINING CONSIDERATION

Design features to facilitate machining - drills - milling cutters - keyways - Doweling procedures, counter sunk screws - Reduction of machined area- simplification by separation - simplification by amalgamation - Design for machinability - Design for economy - Design for clampability - Design for accessibility - Design for assembly.

UNIT IV COMPONENT DESIGN - CASTING CONSIDERATION

Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design - Modifying the design - group technology - Computer Applications for DFMA

UNIT V DESIGN FOR THE ENVIRONMENT

Introduction – Environmental objectives – Global issues – Regional and local issues – Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T"s environmentally responsible product assessment - Weighted sum assessment method – Lifecycle assessment method – Techniques to reduce environmental impact – Design to minimize material usage – Design for disassembly – Design for recyclability – Design for remanufacture – Design for energy efficiency – Design to regulations and standards.

REFERENCES

1. Boothroyd, G, 1980 Design for Assembly Automation and Product Design. New York, Marcel Dekker.

2. Bralla, Design for Manufacture handbook, McGraw hill, 1999.

3. Boothroyd, G, Heartz and Nike, Product Design for Manufacture, Marcel Dekker, 1994. 4.

Dickson, John. R, and Corroda Poly, Engineering Design and Design for Manufacture and Structural Approach, Field Stone Publisher, USA, 1995.

5. Fixel, J. Design for the Environment McGraw hill., 1996.

6. Graedel T. Allen By. B, Design for the Environment Angle Wood Cliff, Prentice Hall. Reason Pub., 1996.

7. Kevien Otto and Kristin Wood, Product Design. Pearson Publication, 2004.

JNTUACEA R15 2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech PRODUCTION DESIGN</u> II- SEMESTER L P C 4 - 4 ADVANCED METAL FORMING TECHNIQUE (Elective-IV) (15D34209)

UNIT I INTRODUCTION TO THEORY OF PLASTICITY AND FORMING

Theory of plastic deformation – Yield criteria – Tresca and Von-mises – Distortion energy – Stress-strain relation – Mohr"s circle representation of a state of stress – cylindrical and spherical co-ordinate system – upper and lower bound solution methods – thermo elastic Elasto plasticity – elasto visco plasticity

UNIT II THEORY AND PRACTICE OF BULK FORMING PROCESSES

Analysis of plastic deformation in Forging, Rolling, Extrusion, rod/wire drawing and tube drawing – Effect of friction – calculation of forces, work done – Process parameters, equipment used – Defects – applications – Recent advances in Forging, Rolling, Extrusion and Drawing processes – Design consideration in forming - Formability of laminated sheet - Overview of FEM applications in Metal Forming analysis.

UNIT III SHEET METAL FORMING

Formability studies – Conventional processes – H E R F techniques – Superplastic forming techniques – Hydro forming – Stretch forming – Water hammer forming – Principles and process parameters – Advantage, Limitations and application

UNIT IV POWDER METALLURGY AND SPECIAL FORMING PROCESSES

Overview of P/M technique – Advantages – applications – Powder preform forging – powder rolling – Tooling, process parameters and applications. - Orbital forging – Isothermal forging – Hot and cold isostatic pressing – High speed extrusion – Rubber pad forming – Fine blanking – LASER beam forming

UNIT V ELECTROMAGNETIC FORMING AND ITS APPLICATIONS

Electromagnetic Forming Process – Electro – Magnetic Forming Machines – Process Variables – Coils and Dies – Effect of Resistivity and Geometry – EM tube and sheet forming, stamping, shearing and welding – Applications – Finite Element Analysis of EM forming.

REFERENCES

- 1. Dieter G.E., Mechanical Metallurgy (Revised Edition II) McGraw Hill Co., 2004
- 2. Proceedings of International Workshop on EMFT 2010, Anna University

3. Altan T., Metal forming – Fundamentals and applications – American Society of Metals, Metals park, 2003.

4. ASM Hand book, Forming and Forging, Ninth edition, Vol – 14, 2003

5. SHIRO KOBAYASHI, SOO-IK-oh-ALTAN, T,Metal forming and Finite Element Method, Oxford University Press, 2001.

6. ALTAN.T, SOO-IK-oh, GEGEL, HL – Metal forming, fundamentals and Applications, American Society of Metals, Metals Park, Ohio, 1983.

7. Marciniak,Z., Duncan J.L., Hu S.J., "Mechanics of Sheet Metal Forming", Butterworth-Heinemann An Imprint of Elesevier, 2006

- 8. Proc. Of National Seminar on "Advances in Metal Forming" MIT, March 2000
- 9. SAE Transactions, Journal of Materials and Manufacturing Section 5, 1993-2007

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech PRODUCTION DESIGN

II-SEMESTER

L P 4 -

R15

С

4

QUALITY CONCEPTS IN PRODUCT DEVELOPMENT (Elective-IV) (15D34210)

UNIT I DESIGN FOR QUALITY

Quality-Objectives and functions-Targets- Measures and Matrices-Design of Experiments –design process-Identification of control factors, noise factors, and performance metrics - developing the experimental plan- experimental design –testing noise factors- Running the experiments – Conducting the analysis-Selecting and conforming factor-Set points-reflecting and repeating.

UNIT II FAILURE MODES & EFFECT ANALYSIS

Basic methods: Refining geometry and layout, general process of product embodiment -Embodiment checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA method- linking fault states to systems modeling

UNIT III DESIGN FOR SIX SIGMA

Basis of SIX SIGMA –Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and small organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services

UNIT IV DESIGN OF EXPERIMENTS

Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology, ANOVA, Steps in Experimentation, Sample size, Single Factor experiments - Completely Randomized design, Randomized Block design, Statistical Analysis, Multifactor experiments - Two and three factor full Factorial experiments, 2k factorial Experiments, Confounding and Blocking designs, Fractional factorial design, Taguchi''s approach - Steps in experimentation, Design using Orthogonal Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N ratios

UNIT V STATISTICAL CONSIDERATION AND RELIABILITY

Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams-Cause and Effect diagrams-Box plots- Probability distribution-Statistical Process control–Scatter diagrams –Multivariable charts –Matrix plots and 3-D plots.-Reliability-Survival and Failure-Series and parallel systems-Mean time between failure-Weibull distribution

REFERENCES:

1. Product Design Techniques in Reverse Engineering and New Product Development, KEVIN OTTO & KRISTIN WOOD, Pearson Education (LPE), 2001.

2. The Management and control of Quality-6th edition-James R. Evens, William M Lindsay Pub:son south-western(www.swlearning.com)

3. Fundamentals of Quality control and improvement 2nd edition, AMITAVA MITRA, Pearson Education Asia, 2002.

4. Montgomery, D.C., Design and Analysis of experiments, John Wiley and Sons, 2003.

5. Phillip J.Rose, Taguchi techniques for quality engineering, McGraw Hill, 1996.

2015-16 JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech PRODUCTION DESIGN

II- SEMESTER

<u>Ch PRODUCTION DESIGN</u> L P C 4 - 4

R15

REVERSE ENGINEERING (Elective-IV) (Common to Energy Systems & Product Design) (15D32210)

UNIT I INTRODUCTION

Scope and tasks of RE - Domain analysis- process of duplicating

UNIT II TOOLS FOR RE

Functionality- dimensional- developing technical data - digitizing techniques - construction of surface model - solid-part material- characteristics evaluation -software and application-prototyping - verification

UNIT III CONCEPTS

History of Reverse Engineering – Preserving and preparation for the four stage process – Evaluation and Verification- Technical Data Generation, Data Verification, Project Implementation

UNIT IV DATA MANAGEMENT

Data reverse engineering – Three data Reverse engineering strategies – Definition – organization data issues - Software application – Finding reusable software components – Recycling real-time embedded software – Design experiments to evaluate a Reverse Engineering tool – Rule based detection for reverse Engineering user interfaces – Reverse Engineering of assembly programs: A model based approach and its logical basics

UNIT V INTEGRATION

Cognitive approach to program understated – Integrating formal and structured methods in reverse engineering – Integrating reverse engineering, reuse and specification tool environments to reverse engineering – coordinate measurement – feature capturing – surface and solid members

REFERENCES

1. Design Recovery for Maintenance and Reuse, T J Biggerstaff, IEEE Corpn. July 1991

- 2. White paper on RE, S. Rugaban, Technical Report, Georgia Instt. of Technology, 1994
- 3. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994
- 4. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996
- 5. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996

6. Co-ordinate Measurment and reverse engineering, Donald R. Honsa, ISBN 1555897, American Gear Manufacturers Association

JNTUACEA

R15

2015-16

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech – PRODUCT DESIGN

II- SEMESTER

L	Р	C
-	4	2

SIMULATION LAB (15D34211)

CYCLE-I: DEMO EXPERIMENTS

- 1. MATLAB Commands and Examples
- 2. Built-in functions

RELIABILITY SOFTWARE MODULES

- 3. SPARE Software package
- 4. Failure Mode Software Package
- 5. FMEA-RPN Software package
- 6. SPC Software package

CYCLE-II: TESTING PROGRAMS

- 1. Characteristics of Binomial and Poisson distributions
- 2. Characteristics of Exponential and Weibull distributions
- 3. Characteristics of Normal and Log-Normal distributions
- 4. Determination of MTTF for series and parallel systems
- 5. Evaluation of Limiting State Probabilities (LSPs)
- 6. Evaluation of basic probability indices for series and parallel systems
- 7. Parametric Boot-Strap estimation and finding best parameters
- 8. Chi-Square Goodness of Fit
- 9. Determination of Covariance, Correlation and Cross-Correlation coefficients
- 10. Neural Network design to Block box models
- 11. Testing of sampling methods
- 12. Characteristics of Histogram, Scatter diagram, Process Flow diagram and Pareto diagram

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

PRODUCT DESIGN

I SEMESTER

S No	Course	Subject Name	Cate	Ho	urs]	Per	Credits	
5.110.	Code	Subject Name	Gory	L	T	P	Cicuits	
1	21D34101	Computer Aided Engineering	PC	3	0	0	3	
2	21D34102	Material Technology	PC	3	0	0	3	
3	Profession	al Elective – I		-			-	
	21D34103	Rapid Prototyping Technologies						
	21D34104	Design of Material Handling	PE	3	0	0	3	
		Equipments		Ŭ	Ŭ	Ŭ	Ŭ	
	21D34105	Mechanical behavior of Materials						
4	Profession	al Elective – II	1					
	21D34106	Composite Materials and Mechanics						
	21D34107	Quality Concepts in Design	PE 3		0	0	3	
	21D34108	Creativity and Innovations in Design						
5	21D11109	Research Methodology and IPR	MC	MC 2		0	2	
6	21D11110	English for Research Paper Writing						
	21D11111	Value Education	AC 2		0	0	0	
	21D11112	Pedagogy Studies						
7	21D34109	Computer Aided Analysis & Design Lab	PC	0	0	4	2	
8	21D34110	Material Testing Lab	PC	0	0	4	2	
	•	Total	•	16	00	08	18	

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

PRODUCT DESIGN

II SEMESTER

S.No.	Course	Subject Name	Cate	Ho	urs] Weel	Per s	Credits	
	Code		Gory	L	T	Ρ		
1	21D34201	Design for Manufacturing	PC	3	0	0	3	
2	21D34202	Robust Design	PC	3	0	0	3	
3	Profession	al Elective – III						
	21D34203	Product Planning and Marketing						
	21D34204	Tribology in Design	PE	3	0	0	3	
	21D34205	Design of Hydraulic and Pneumatic Systems						
4	Profession	al Elective – IV					I	
	21D34206	Advanced Metal Forming Techniques						
	21D34207	Quality Concepts in Product Development	PE	3	0	0	3	
	21D34208	Reverse Engineering	_					
5	21D11209	Technical Seminar	PR	0	0	4	2	
6	21D11210	Disaster Management		.C 2				
	21D11211	Constitution of India	AC			C 2	0	0
	21D11212	Stress Management by Yoga						
7	21D34209	Simulation lab	PC	0	0	4	2	
8	21D34210	Modeling and Analysis Laboratory	PC	0	0	4	2	
		Total		14	00	12	18	

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

PRODUCT DESIGN

III SEMESTER

S.No.	Course	Subject Name	Cate	Ho	Hours Per Week		Credits	
	Code		Gory	L	Т	Р		
1	Profession	al Elective – V						
	21D33301	Fuel cell technology						
	21D33302	Specialty Engines	PE	3	0	0	3	
	21D33303	Environmental Engineering and		_				
		Pollution control						
2	Open Elect	tive					•	
	21D30301	Mechatronics	OE	3	0	0	3	
3	21D33304	Dissertation Phase – I	PR	0	0	20	10	
4	21D00301	Co-Curricular Activities	PR				2	
		Total		06	00	20	18	

IV SEMESTER

S.No.	Course	Subject Name	Cate	Ho	urs 1 Weel	Per s	Credits
	Code		GOLA	L	Т	Р	
1	121D33401Dissertation Phase – IIPR						16
		Total		00	00	32	16

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34101	COMPUTER AIDED	L	Т	Р	С
Semester	Ι	ENGINEERING	3	0	0	3
		(21D34101)				
Course Objectiv	ves:					
1. Students	willdemonstrate	aptitudeinstandardnumericaltechniquesforso	olving	gvario	ouscla	isse
s ofprobl	ems.					
2. Students	willlearnthetheo	ryunderlyingthe	• . •			
derivatio	nofstandardnum	ericaltechniquesandthedevelopmentofalgor	ithms	•		c
3. Modeling	g of enginee	ering problems drawn from differen	it d	iscip	lines	of
mechanic	calengineering.					
Course Outcom	ies (CO): Studer	nt will be able to				11
1. To enable s	students to form	ulate and solve engineering problems those	e are	not a	imena	ble
toanalytical	Imethods.			· ·		
2. Todemonstr	atetheapplicatio	not numericalmethodstodataanalysis andop	timal	desig	"n.	
3. To analyse a	and solve the ax	isymmetric problems				
4. To analysed	ne neat transfer	and fluid flow problems				
J. TO apply th	le problems on c		Lag	411ma I	Inc.	
UNII – I	Equations of	a quilibrium atraca stacia relationa fa		$\frac{1}{D}$	HIS:	2 D
Introduction:	Equations of	equilibrium, stress-strain relations to	r 2-	Da	ina	3-D,
Foundation Former 1	and equilibrium	Concerct proceeding for EEA Delet	5 ~h		mat	had
Galarkin Approx	ob chope func	deneral procedure for FEA, Kaler	gn .	KILZ		nou,
applications	boundary con	ditions using elimination penalty and	d n	nature milti	const	roint
approaches Appl	lication problem	s = 1-D bar element Trusses and beams	u n	iuiti-	consu	am
UNIT – II		s – 1-D bar clement. Trusses and beams	Lec	ture I	Irc	
FEM for 2-D P	roblems: Shape	functions stiffness matrix strain matrix 1	oad y	vector	ns.	TST
Elements and an	plication proble	ms	oau v	cetoi	5 101	201
			Lec	tura I	Ire	
FFM for Avi	isymmetric Pr	coblems: Avisymmetric formulation tr	iangu	lar	ns. eleme	onte
PEapproach Bo	dy force term R	otating flywheel Problem modeling and he	unda	ru co	nditio	me,
Disks and Cylind	ders	solating frywheer, i footen modering and be	Junua	.1 y CO	nunn	лт <u>5</u> —
DISKS and CynnoUNIT - IV			Lec	ture I	Irci	
FFM for Scala	r Field Problem	ns: 1-D and 2-D Steady state heat transfe	r To	rsion	note	ntial
flow and fluid fl	ow in ducts and	application problems	1, 10	131011	,pote	Itiai
LINIT V	[Lec	tura I	Irev	
Dynamic Analy	sis. Equations of	of motion for dynamic problems. Consiste	nt an	d lun	ns. medr	nace
matrices -Formu	lation of eleme	nt mass matrices free vibration and forced	vibre	u iun	nrohl	eme
formulation		in mass matrices nee vibration and foreed	VIUIC	uion	proor	CIIIS
Textbooks.						
1 Tirupathi	R Chandrunath	a Ashok D Belegundu-"Introduction to	Fini	teFle	ment	s in
Engineerin	o" (Third Editio	n) Prentice Hall India Pyt Ltd NewDelhi -	-200	се <u>л</u> е 3	ment	, 111
2. Cook R D	Malkus DS	&Plesha M.E"Concepts and Application	s of	- finit	eEler	nent
Analysis".	John Wiley & S	ons. 1989.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Reference Books:

- 1. Segerlind L .J.-"Applied Finite Element Analysis" John Wiley & Sons Edition, 1984.
- 2. Rao SS- "The Finite Element Method in Engineering", Pergomon Press, Oxford,2ndEdition,1984.
- 3. Bathe K .J-"Finite Element Procedures in Engineering Analysis", Prentice Hall,NewJersey, 1982.
- 4. Shames III &Dym C L- "Energy and Finite Element Methods in StructuralMechanics", Wiley Eastern Ltd, 1995,

Online Learning Resources:

https://nptel.ac.in/courses/112/104/112104031/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34102	MATERIALS TECHNOLOGY	L	Т	Р	С
Semester	I	(21D34102)	3	0	0	3
Semester	-		U	U	U	
Course Object	tives:The stud	dent will				
• Learn the fl	heory of the r	lasticity and elasticity				
Acquaint w	vith various th	beories of fracture, crack deformation and propag	atior	n		
• Learn the f	ailure and fati	igue aspects	atioi	1		
Course Outco	mes (CO): St	tudent will be able to				
Understand	the behavior	of elastic and plastic property				
• Apply the t	heory to fract	ture, fatigue and failure mechanisms				
• Select the r	naterial for va	arious applications				
• Study the n	ew metallic a	and non metallic materials				
UNIT – I			Le	cture	Hrs	3:
Elasticity in	metals and	polymers, mechanism of plastic deform	atior	n, r	ole	of
dislocations, vie	eld stress, s	shear strength of perfect and real crystals	. st	reng	then	ing
mechanism, w	vorkhardening	g, solid solution, grain boundary strengthening	ig.	Poly	ph	ase
mixture, preci-	pitation.partic	ele, fiber and dispersion strengthening, effect	of t	emp	erati	ıre.
strain and stra	in rate onpla	astic behavior, super plasticity, deformation of	non	crv	stall	ine
material	···· I ·	,, <u>,</u> , ,, ,, ,		5		
UNIT – II			Le	cture	Hrs	s:
Griffth's The	eory, stress	intensity factor and fracture Toughness	<u> </u>	Гоця	hen	ing
Mechanisms.D	uctile and E	Brittle transition in steel. High Temperature F	-, Fract	ure.	Cre	en.
Larson – Mille	rparameter. D	Deformation and Fracture mechanism maps	iuot	ur <i>e</i> ,	010	• P ,
UNIT – III			Le	cture	Hrs	3:
Fatigue, Low	and High cy	cle fatigue test, Crack Initiation and Propagat	ion	mec	han	ism
andparis Law,	Effect of sur	face and metallurgical parameters on Fatigue, I	Fract	ure	of n	on-
metallic materi	als, fatigue a	nalysis, Sources of failure, procedure of failure and	nalys	sis.		
UNIT – IV		v · · · · ·	Le	cture	Hrs	3:
Motivation f	or selection	, cost basis and service requirements,	Sel	ectio	on	for
MechanicalPro	perties, Stre	ngth, Toughness, Fatigue and Creep. Selecti	on t	for	Surf	ace
durability,Corr	osion and W	Vear resistance, Relationship between Materials	s Se	lecti	on	and
Processing,Cas	e studies in	Materials Selection with relevance to Aero,	Auto) ,]	Mari	ine,
Machinery and	Nuclear App	lications.				
UNIT – V			Le	cture	Hrs	3:
MODERN M	IETALLIC	MATERIALS: Dual Steels, Micro alloyed,	Hig	h S	tren	gth
Lowalloy (HS	SLA) Steel,	Transformation induced plasticity (TRIP) S	teel.	M	arag	ing
Steel,Intermeta	llics, Ni an	d Ti Aluminides, Smart Materials, Shape M	Лет	ory	allo	oys,
MetallicGlass	Quasi Crystal	and Nano Crystalline Materials.		2		
NONMETAL	LIC MAT	ERIALS : Polymeric materials and th	eir	mo	olecu	ılar
structures,Prod	uction Techr	niques for Fibers, Foams, Adhesives and Coa	tings	s, sti	ructi	ıre,
Propertiesand	Applications	of Engineering Polymers, Advanced Structural	Cer	ami	cs W	VC,
TiC, TaC, A12	2 03, SiC.	Si3 N4, CBN and Diamond – properties.	Proc	essi	ng a	and
applications.	, · - ,	r r r			0	
Textbooks:						
1. Mechanical	Behavior of N	Materials/Thomas H. Courtney/ 2 nd Edition. Mc	Grav	v Hi	1. 20	000

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

2. Mechanical Metallurgy/George E. Dicter/McGraw Hill, 1998.

3. Selection and use of Engineering Materials 3e/Charles J.A/Butterworth Heiremann.

REFERENCES:

1. Mechanical Behavior of Materials/Thomas H. Courtney/ 2 nd Edition, McGraw Hill, 2000

2. Mechanical Metallurgy/George E. Dicter/McGraw Hill, 1998.

3. Selection and use of Engineering Materials 3e/Charles J.A/Butterworth Heiremann.

Online Learning Resources:

https://nptel.ac.in/courses/113/107/113107078/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34103	RAPID PROTOTYPING TECHNOLOGIES	L	Т	Р	С
Semester	I	(21D34103)	3	0	0	3
Semester	-	$\mathbf{PF} = \mathbf{I}$	5	v	v	5
			<u> </u>			
Course Objectiv	ves:					
• To provide 1	knowledge o	n different types of Rapid Prototyping systems and it	ts ar	nlica	tion	s in
various fields	s			P		,
Course Outcom	es (CO): Stu	ident will be able to				
CO1: Describe	product dev	elopment, conceptual design and classify rapid prot	otyp	ing s	syste	ms;
explain st	ereo lithogra	phy process and applications				
CO2: Explain di	rect metal las	er sintering, LOM and fusion deposition modeling proc	esse	5		
CO3: Demonstra	ate solid grou	nd curing principle and process				
CO4: Discuss L	ENS, BPM p	rocesses; point out the application of RP system in me	dica	l fiel	d dei	fine
virtual pr	ototyping and	d identify simulation components				
UNIT - I			Leo	cture	Hrs:	
Introduction: N	leed for the	compression in product development, History of RP s	yster	ns,Sı	urvey	/ of
applications, Gro	owth of RP in	dustry and classification of RP systems.				
Stereo Lithogra	aphy System	s: Principle, Process parameter, Process details, Data	prepa	aratio	on, E)ata
files and machin	e details, Ap	plication.				
Selective Laser Sintering: Type of machine, Principle of operation, Process parameters, Data						
preparation for S	LS, Applicat	ions.				
UNIT – II			Leo	cture	Hrs:	
Fusion Depositi	on Modellin	g: Principle, Process parameter, Path generation, Applic	atior	1		
Solid Ground C	Curing: Princ	iple of operation, Machine details, Applications.				
UNIT – III			Leo	cture	Hrs:	
Laminated Ob	ject Manuf	Cacturing: Principle Of Operation, LOM materials	.Pro	cess	deta	uils,
application.						
Concepts Mode	elers: Princip	ble, Thermal jet printer, Sander's model market, 3-D p	orinte	er.Ge	nisy	sXs
printer HP system	m 5, Object (Quadra systems.				
UNIT – IV			Leo	cture	Hrs:	
LASER ENGIN	EERING N	ET SHAPING (LENS)				
Rapid Tooling:	Indirect Rap	id tooling -Silicon rubber tooling -Aluminum filled ep	oxyt	oolir	ig Sp	oray
metal tooling, C	ast kirksite,	3Q keltool, etc, Direct Rapid Tooling Direct.AIM, Qu	iick	cast	proc	ess,
Rapid Tool, DM	ILS, Prometa	l, Sand casting tooling, Laminatetooling soft, Tooling v	's. ha	urd to	oling	g .
UNIT – V			Leo	cture	Hrs:	
Rapid Manufac	cturing Proc	ess Optimization: Factors influencing accuracy, Datap	repa	ratio	n err	ors,
Part building err	ors, Error in t	finishing, Influence of build orientation.				
Allied Processe	s: Vacuum c	casting, surface digitizing, Surface generation from po	intcl	oud,	Surf	ace
modification-dat	a transfer to	solid models.				
Textbooks:						
1. Rapid Prototy	ping and Toc	ling by Hari Prasad & K.S. Badhrinarayan/ PageTurner	s			
2. Paul F. Jacobs	- "Stereo litl	hography and other RP & M Technologies", SME,NY	7 199	96.		
3. Flham D.T &I	Dinjoy S.S - '	"Rapid Manufacturing" Verlog London 2001.				
4. Lament wood	, "Rapid aut	omated", Indus press New York				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Reference Books:

1. Flham D.T & Dinjoy S.S - "Rapid Manufacturing" Verlog London 2001.

2. Lament wood, "Rapid automated", Indus press New York

Online Learning Resources:

https://nptel.ac.in/courses/112/104/112104265/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Code I (21D34104) PE – I 3 0 0 3 Course Objectives: • To develop competency for system visualization and design • To introduce student to optimum design and use optimization methods to design mechanical components. • • • • To enable student to design material handling systems. • • • • Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: Design of norse, pulley systems, sprockets and drums, Load handling attachments. Design of roged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - II Lecture Hrs: DBIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. <td colspa<="" th=""></td>	
Semester 1 (21D34104) PE - I 3 0 0 3 Ourse Objectives: • To develop competency for system visualization and design • To introduce student to optimum design and use optimization methods to design mechanical components. •	
PE - 1 Course Objectives: • To develop competency for system visualization and design • To introduce student to optimum design and use optimization methods to design mechanical components. • To enable student to design material handling systems. Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Design of nopes, pulley, systems, sprockets and drums, Load handling attachments. Design of ropes, pulley, systems, sprockets and drums, Load handling attachments. Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV L	
Course Objectives: • To develop competency for system visualization and design • To introduce student to optimum design and use optimization methods to design mechanical components. • To enable student to design matchine tool gearbox. • To enable student to design matchine tool gearbox. • To enable student to design matchine tool gearbox. • To enable student to design material handling systems. Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - cogwheel drive - selecting the motor ratings. UNIT - IV UNIT - IV	
 To develop competency for system visualization and design To introduce student to optimum design and use optimization methods to design mechanical components. To enable student to design machine tool gearbox. To enable student to design material handling systems. Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of nonoralicranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V 	
 To introduce student to optimum design and use optimization methods to design mechanical components. To enable student to design machine tool gearbox. To enable student to design material handling systems. Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulley, systems, sprockets and drums, Load handling attachments. Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V 	
design mechanical components. • To enable student to design machine tool gearbox. • To enable student to design material handling systems. Course Outcomes (CO): Student will be able to C01: Understand the basic Fundamentals of Material Handling Equipment. C02: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. C03: Design a Conveyors and Selection based on the Application. C04: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V L	
 To enable student to design machine tool gearbox. To enable student to design machine tool gearbox. To enable student to design machine tool gearbox. To enable student to design material handling systems. Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulley, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
To enable student to design material handling systems. Course Outcomes (CO): Student will be able to CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
Course Outcomes (CO): Student will be able to COI: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors.	
CO1: Understand the basic Fundamentals of Material Handling Equipment. CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
CO2: Design various hoisting elements like, chains, Hemp and wire ropes, Pulley systems, Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V	
Sprockets & drums, forged hooks and eye hooks and Girders. CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
CO3: Design a Conveyors and Selection based on the Application. CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
CO4: Design of Bucket and Cage Elevator. UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT – II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
UNIT - I Lecture Hrs: MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT - II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks - crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT - III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
MATERIALS HANDLING EQUIPMENT: Types, selection and applications UNIT – II Lecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
UNIT - IILecture Hrs: DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes,pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks - crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types.UNIT - IIILecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.UNIT - IVLecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors.UNIT - VLecture Hrs:	
DESIGN OF HOISTS: Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types.UNIT – IIILecture Hrs:DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.UNIT – IVLecture Hrs:CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors.UNIT – VLecture Hrs:	
wire ropes - Design of ropes,pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
attachments. Design of forged hooksand eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. Lecture Hrs: UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
attachments - Design of arresting gear -Brakes: shoe, band and cone types. UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
UNIT – III Lecture Hrs: DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. Rail traveling UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. Lecture Hrs: UNIT – V Lecture Hrs:	
DRIVES OF HOISTING GEAR: Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
mechanism - cantilever and monorailcranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings. UNIT - IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
selecting the motor ratings. UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V UNIT – V Lecture Hrs:	
UNIT – IV Lecture Hrs: CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
CONVEYORS: Types - description - design and applications of Belt conveyors, apron conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT - V Lecture Hrs:	
conveyors and escalatorsPneumatic conveyors, Screw conveyors and vibratory conveyors. UNIT – V Lecture Hrs:	
UNIT – V Lecture Hrs:	
ELEVATORS: Bucket elevators: design - loading and bucket arrangements - Cage elevators -	
shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift	
trucks.	
Textbooks:	
1. Rudenko, N., Materials handling equipment, ELnvee Publishers, 1970.	
2. Spivakovsy, A.O. and Dyachkov, V.K., Conveying Machines, Volumes I and II, MIR	
Publishers, 1985.	
Reference Books:	
1. Alexandrov, M., Materials Handling Equipments, MIR Publishers, 1981.	
2. Boltzharol, A., Materials Handling Handbook, The Ronald Press Company, 1958.	
 Boltzharol, A., Materials Handling Handbook, The Ronald Press Company, 1958. P.S.G. Tech., "Design Data Book", KalaikathirAchchagam, Coimbatore, 2003. Linggish, K., and Narayana Juangen, "Masking Data Data Book", Val. 1, 6, 2 	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Online Learning Resources:

https://nptel.ac.in/courses/112/107/112107142/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Course	21D34105	MECHANICAL BEHAVIOR OF MATERIALS	L	Т	Р	С
Code		(21D34105)				
Semester	Ι	PE – I	3	0	0	3
Course Obj	ectives:Stud	ent will be able to				
Develop	a working k	nowledge in deformation and fracture of materials an	d its	s rela	ation	ı to
material	microstructu	re.				
Course Out	tcomes (CO)	: Student will be able to				
CO1: Relate	the mechani	cal properties of materials to their structure.				
CO2: Select	materials for	structural applications				
CO3: Solve	realistic and	d/or fundamental problems relating to the mechanica	al b	ehav	iour	of
mater	ials for indivi	idual solutions and tests.				
CO4: Work	in teams for	the materials selection in design				
UNIT - I			Le	cture	Hrs	5:
BASIC CO	NCEPTS OI	F MATERIAL BEHAVIOR	_			
Elasticity i	n metals ar	nd polymers– Strengthening mechanisms, work h	arde	ning	, sc	olid
solutioning,	grain bounda	ry strengthening, poly phase mixture, precipitation, pa	rtic	le, fi	bre a	and
dispersionst	rengthening.	Effect of temperature, strain and strain rate on plas	tic ł	oeha	viou	r –
Super plast	city –.Griffi	th's theory, – Ductile, brittle transition in steel – Hi	gh	temp	erat	ure
fracture, cre	ep – LarsonN	Ailler parameter – Deformation and fracture mechanism	n m	aps.		
UNIT – II			Le	cture	Hrs	5:
BEHAVIO	UR UNDER	DYNAMIC LOADS AND DESIGN APPROACHE	S			
Stress intens	sity factor and	d fracture toughness – Fatigue, low and high cycle fatig	gue	test,	crac	k
initiation an	d propagatio	n mechanisms and Paris law Safe life, Stress-life, str	ain-	life a	and t	fail
-safe design	approaches	-Effect of surface and metallurgical parameters on fat	igue	e – F	ract	ure
of nonmetal	lic materials	– Failure analysis, sources of failure, procedure of failu	ire a	inaly	sis.	
UNIT – III			Lee	cture	Hrs	5:
SELECTIC	$\mathbf{DN} \mathbf{OF} \mathbf{M}_{\mathbf{A}}$	ATERIALS: Motivation for selection, cost basi	s a	ind	serv	ice
requirement	s – Selection	n for mechanicalproperties, strength, toughness, fatig	ue a	and o	creep	- q
Selection fo	r surface dur	ability corrosion andwear resistance – Relationship be	twee	en m	ateri	als
selection an	d processing	g – Case studies inmaterials selection with relevance	e to	aero), au	ito,
marine, mac	hinery and n	uclear applications –Computer aided materials selection	n.			
UNIT – IV			Le	cture	Hrs	5:
MODERN	METALLIC	C MATERIALS: Dual phase steels, High strength lov	v all	loy (HSL	LA)
steel, Trans	sformation i	nduced plasticity (TRIP)Steel, Maraging steel, Ni	trog	gen	steel	. —
Intermetallie	es, Ni and Ti	aluminides – smart materials, shape memory alloys -	- M	etalli	lc gl	ass
and nano cr	ystalline mate	erials.				
UNIT – V			Le	cture	Hrs	;:
NON MET	ALLIC MA	TERIALS: Polymeric materials – Formation of poly	mer	stru	ctur	e –
Production	techniques of	of fibers, foams, adhesives and coating - structure,	pro	perti	es a	and
applications	of engineeri	ng polymers – Advancedstructural ceramics, WC, TI	С, Т	'aC,	A120	ЭЗ,
SiC, Si3N4	CBN and dia	mond – properties, processingand applications.				
Textbooks:						
1. George E	.Dieter, Mecl	nanical Metallurgy, McGraw Hill, 1988				
2. Thomas H	I. Courtney,	Mechanical Behavior of Materials, (2nd edition), McG	raw	Hill	, 200)0

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

3. Charles, J.A., Crane, F.A.A. and Fumess, J.A.G., Selection and use of engineering materials, (3rd edition), Butterworth-Heiremann, 1997.

Reference Books:

- 1. Flinn, R.A., and Trojan, P.K., Engineering Materials and their Applications, (4th Edition) Jaico,1999.
- 2. Metals Hand book, Vol.10, Failure Analysis and Prevention, (10th Edition), Jaico, 1999.
- 3. Ashby M.F., materials selection in Mechanical Design 2nd Edition, Butter worth 1999. www.astm.org/labs/pages/131350.htm.

Online Learning Resources:

https://nptel.ac.in/courses/113/106/113106101/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course	21D34106	COMPOSITE MATERIALS AND	L	Τ	Р	C	
Code		MECHANICS					
Semester	I	(21D34106)	3	0	0	3	
		PE – II					
Course Obj	ectives:Stude	ent will be able to					
Explain t	the behavior of	of constituents in the composite materials					
• Enlighter	n the students	s in different types of reinforcement					
Develop	the student	's skills in understanding the different manufact	turir	ng n	netho	ods	
available	for composi	te material.		0			
Illuminat	te the knowle	edge and analysis skills in applying basic laws in m	ech	anics	s to	the	
composit	te materials.						
Course Out	comes (CO):	Student will be able to					
CO1: Ident	tify describe	and evaluate the properties of fibre reinforcements	poly	vmer	mat	rix	
materials a	nd commerci	al composites	P • • •				
CO2: Deve	elon compete	ency in one or more common composite manufactur	ing	tech	niau	ies.	
and be able	e to select the	appropriate technique for manufacture of fibre-reinfo	orce	1 cor	nnos	site.	
products		uppropriate teeninque for manufacture of note ferme	100		npor	,110	
CO3: Anal	vse the elasti	ic properties and simulate the mechanical performance	e o	f cor	nnos	site	
laminates: and understand and predict the failure behaviour of fibre-reinforced composites							
CO4: Apply knowledge of composite mechanical performance and manufacturing methods							
to a compo	sites design r	project			100110	540	
CO5. Criti	aue and synt	hesise literature and apply the knowledge gained from	m tł	ne co	nirse	in	
the design	and application	on of fibre-reinforced composites			anse	, 111	
UNIT - I			Le	cture	Hrs	· ·	
INTRODUC	TION TO	COMPOSITE MATERIALS	10	000010			
Definition-M	latrix materia	als-polymers-metals-ceramics - Reinforcements: Partic	cles.	whi	sker	s.	
inorganic fil	pers. metal fi	laments- ceramic fibers- fiber fabrication- natural co	omp	osite	wo	od.	
Jute -Advar	ntages and c	drawbacks of composites over monolithic materia	ls.	Mec	hani	cal	
properties a	andapplicatio	ns of composites. Particulate-Reinforced compo	site	Ma	ateria	als.	
Dispersion-S	Strengthened	composite. Fiber-reinforced composites Rule	of	mi	ixtur	es-	
Characteristi	cs of fiber-R	einforced composites. Manufacturing fiber and compo	sites	5.		•••	
UNIT – II			Le	cture	Hrs	s:	
MANUFAC	TURING O	F COMPOSITES					
Manufacturi	ng of Polym	er Matrix Composites (PMCs)-handlay-up, spray tec	hnic	me.f	ilam	ent	
winding. Pu	ltrusion. Res	sin Transfer Moulding (RTM)- bag moulding inie	ectic	nmo	mldi	ng	
Sandwich M	fould Compo	sites (SMC) - Manufacturing of Metal MatrixCompo	site	s (M	MC	s) -	
Solid state. 1	iquid state va	apour state processing. Manufacturing of Ceramic Mat	trix	Com	nosi	ites	
(CMCs) -h	ot pressing-	reaction bonding process-infiltrationtechnique di	rect	oxi	datio	on-	
interfaces	pressing	reaction containg process minimutation commitque, and		0/11	uuu	on	
UNIT – III			Le	cture	Hrs		
INTRODUC	TION. LAN	MINA CONSTITUTIVE FOUATIONS					
Lamina Con	stitutive Equ	ations: Lamina Assumptions – Macroscopic Viewpo	oint	Gene	eraliz	zed	
Hooke''s La	aw. Reduction	on to Homogeneous Orthotropic Lamina – Isotr	onia	limi	t ca	ise	
Orthotropic	Stiffness m	atrix (Oij). Definition of stress and Moment R	lesu	ltant	s.Str	ain	
Displacemen	nt relations.	Basic Assumptions of Laminated anisotropic	plat	es.La	imin	ate	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Constitutive Equations – Coupling Interactions, Balanced Laminates, SymmetricLaminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli.Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates.Determination of Lamina stresses within Laminates.

UNIT – IV

Lecture Hrs:

LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATEDFLAT PLATES Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion forIsotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill'sFailure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations.Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

UNIT – V

Lecture Hrs:

THERMAL ANALYSIS Assumption of Constant Co-efficient of Thermal Expansion (C.T.E.) - Modification Constitutive ofHooke"s Law. Modification of Laminate Equations. Orthotropic LaminaC.T.E"s. C.T.E"s for special Laminate Configurations - Unidirectional, Offaxis,Symmetric Balanced Laminates, Zero C.T.E laminates, Thermallv Ouasi-IsotropicLaminates

Textbooks:

- 1. Gibson, R.F., Principles of Composite Material Mechanics, McGraw-Hill, 1994, Second Edition CRC press in progress.
- 2. Hyer, M.W., "Stress Analysis of Fiber Reinforced Composite Materials", McGraw-Hill, 1998
- 3. Issac M. Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University Press-2006, First Indian Edition 2007

Reference Books:

- 1. Mallick, P.K., Fiber –"Reinforced Composites: Materials, Manufacturing and Design", ManeelDekker Inc, 1993.
- 2. Halpin, J.C., "Primer on Composite Materials, Analysis", Techomic Publishing Co., 1984.
- 3. Agarwal, B.D., and Broutman L.J., "Analysis and Performance of Fiber Composites", John Wiley and Sons, New York, 1990.
- 4. Mallick, P.K. and Newman, S., (edition), "Composite Materials Technology: Processes and Properties", Hansen Publisher, Munish, 1990.
- 5. MadhujitMukhopadhyay, "Mechanics of Composite Materials and Structures", University Press(India) Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008)
- 6. Chung, Deborah D.L., "Composite Materials: Science and Applications", Ane Books Pvt.Ltd./Springer, New Delhi, 1st Indian Reprint, 2009

Online Learning Resources:

https://nptel.ac.in/courses/112/104/112104168/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34107	OUALITY CONCEPTS IN DESIGN	L	Т	Р	C
Semester	I	(21D34107)	3	0	0	3
		PE - II				_
Course Object	ives:Student	will be able				
To understa	and the conce	pt of Quality				
• To understa	and the Implie	cation of Quality on Business				
• To Impleme	ent Ouality Ir	nplementation Programs				
• To have ext	oosure to cha	llenges in Quality Improvement Programs				
Course Outco	mes (CO): St	tudent will be able to				
CO1. Adequate	e knowledge	acquisition on how quality is a KPI in acco	omp	lishr	nent	of
organiza	tional object	ives.	ľ			
CO2. Ability	to design q	uality frameworks exploring industrial applica	tion	s to	ens	ure
quality t	owards opera	ational excellence.				
CO3. Examine	the role of b	usiness process and assess the need for the quality	ity n	netri	c of	six
sigma fo	or quality con	trol	•			
UNIT - I			Le	cture	Hrs	
DESIGN FUN	DAMENTA	LS, METHODS AND MATERIAL SELECTI	ON			
Morphology o	of Design -	- The Design Process – Computer Aided	Eng	ginee	ring	_
ConcurrentEng	ineering – C	Competition Bench Marking – Creativity – The	ory	of F	robl	em
solving (TRIZ)	-Value Ana	lysis - Design for Manufacture, Design for Ass	emb	ly –	Des	ign
for casting, For	ging,Metal F	orming, Machining and Welding		-		
UNIT – II			Le	cture	Hrs	:
DESIGN FOR	QUALITY					
Quality Funct	ion Deployi	ment -House of Quality-Objectives and fur	nctic	ons-7	arge	ets-
Stakeholders-M	leasures and	Matrices-Design of Experiments -design process	ss-Id	lenti	ficat	ion
of control facto	rs,noise facto	ors, and performance metrics - developing the exp	perir	nent	al pl	an-
experimental c	lesign –testi	ng noise factors- Running the experiments -	Con	duct	ing	the
analysis-Selecti	ing and confo	ormingfactor-Set points-reflecting and repeating.				
UNIT – III			Le	cture	Hrs	:
FAILURE MO	DE EFFEC	T ANALYSIS AND DESIGN FOR SIX SIGM	[A			
Basic methods	: Refining g	eometry and layout, general process of produc	t em	bod	imer	ıt -
Embodiment c	hecklist- Ad	vanced methods: systems modeling, mechanic	al e	embo	odim	ent
principles-FME	EA method- l	inking fault states to systems modeling - Basis or	f SĽ	X SI	GMA	4 –
Project selectio	nfor SIX SIC	GMA- SIX SIGMA problem solving- SIX SIGM	A in	serv	ice a	and
small organizat	ions -SIX SI	GMA and lean production –Lean SIX SIGMA an	d se	rvice	2S	
UNIT – IV			Lee	cture	Hrs	:
DESIGN OF F	EXPERIME	NTS				
Importance of	f Experimer	nts, Experimental Strategies, Basic principle	es	of	Desi	gn,
Terminology,A	NOVA, Step	os in Experimentation, Sample size, Single Facto	r ex	perii	nent	s –
CompletelyRan	domized des	ign, Randomized Block design, Statistical Analy	/sis,	Mul	tifac	tor
experiments -T	wo and three	e factor full Factorial experiments, 2K factori	al E	xper	imeı	nts,
Confounding a	ndBlocking o	designs, Fractional factorial design, Taguch's app	proa	c h	- Sto	eps
in experimentat	tion,Design u	ising Orthogonal Arrays, Data Analysis, Robust	Desi	gn-	Cont	rol
and Noise facto	ors. S/Nratios					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

UNIT – V		Lecture Hrs:			
STATISTICAL CONSIDERATION AND RELIABILITY					
Frequency dist	ributions and Histograms- Run charts -stem and leaf plots- P	areto diagrams-			
Causeand Effe	ct diagrams-Box plots- Probability distribution-Statistical P	rocess control-			
Scatterdiagram	s –Multivariable charts –Matrix plots and 3-D plotsReliabili	ty-Survival and			
Failure-Series a	and parallel systems-Mean time between failure-Weibull distri	bution			
Textbooks:					
1. Dieter, Ge	eorge E., "Engineering Design - A Materials and Processi	ng Approach",			
McGraw H	(ill, International Editions, Singapore, 2000.				
2. Product D	esign Techniques in Reverse Engineering and New Product	t Development,			
KEVIN OT	TTO & KRISTIN WOOD, Pearson Education (LPE), 2001.				
3. Product Design And Development, KARL T. ULRICH, STEVEN D. EPPINGER,					
TATAMcO	TATAMcGRAW-HILL- 3rd Edition, 2003.				
Reference Books:					
1. The Manage	ment and control of Quality-6th edition-James R. Evens, Will	iam M Lindsay			
Pub:sonsou	th-western(www.swlearning.com)				
2. Fundamenta	ls of Quality control and improvement 2nd edition, AMIT	AVA MITRA,			
PearsonEdu	cation				
Online Learning Resources:					
https://nptel.ac.	in/courses/112/106/112106249/				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course	21D34108	CREATIVITY AND INNOVATIONS IN	L	Т	Р	С	
Code		DESIGN					
Semester	Ι	(21D34108)	3	0	0	3	
		PE - II					
Course Obje	ctives:Stude	nt will be able					
• To define	e the strate	egic frames where the product/service inno	vatio	n sh	ould	be	
implemen	ted, by using	scenario and system analysis.					
• To manag	e and lead d	esign workgroups with multidisciplinary competence	ences	, a m	landa	tory	
requireme	nt to innovat	tive design, with methods or approaches that ens	sures	a ha	rmoni	ious	
convergen	ce towards the	ne customer final satisfaction.					
Course Outo	comes (CO):	Student will be able to					
CO1: Appro	eciate the	imperative of innovation within society to	dis	pel	comr	non	
misco	nceptions reg	arding innovation and creativity;					
CO2: Critical	lly analyse th	eories of innovation and creativity;	1				
CO3: Use	evidence to	o critically challenge innovation practices	and	com	muni	cate	
recom CO4: Identif	mended bena	ivioural changes;	to ah	allan	an at	otuc	
	y possible ci	langes in established environments and fournes		lanen	ge st	atus	
UNIT I			Lec	tura l	Hree		
INTRODUC	TION Nee	d for design creativity – creative thinking for	<u>auali</u>	$\frac{turc}{tv}$ –	esser	ntial	
theory about	directed crea	tivity	quan	ty –	03501	mai	
UNIT – II			Lec	ture l	Hrs:		
MECHANIS	SM OF THI	NKING AND VISUALIZATION:					
Definitions a	nd theory of	mechanisms of mind heuristics and models : att	itude	s, Ap	proac	ches	
andActions the	hat support c	reative thinking - Advanced study of visual elements	ents a	ind pi	rincip	les-	
line, plane, sl	nape, form,	pattern, texture gradation, colorsymmetry.s	Jatiai		tions	nips	
andcompositi	Animation of	r 5 dimensional space - procedure for genuine g	graph Fo V	icual	izotio	uter	
Unifying prir	sinle ofdata	management for scientific visualization. Unifying	ng pri	incin	Izatio	n – data	
management	for scientific	visualization - Visualization benchmarking	ig pri	merp		Jata	
UNIT – III	for scientific	visualization visualization benefiniarking	Lec	ture l	Hrs		
CREATIVI	ſY						
Methods and	tools for Di	rected Creativity – Basic Principles – Tools of D	irecte	d Cre	eativi	tv –	
Toolsthat pre	pare the min	d for creative thought – stimulation of new ideas	- Dev	elop	ment	and	
Actions: -16	Processes	in creativity ICEDIP - Inspiration, Clarific	ation	, Di	stillat	ion,	
Perspiration,	Evaluationar	nd Incubation – Creativity and Motivation The B	ridge	betw	/een 1	nan	
creativity and	l the rewards	ofinnovativeness - Applying Directed Creativity	to th	e cha	ılleng	e of	
quality mana	gement						
UNIT – IV			Lec	ture l	Hrs:		
DESIGN: Pr	ocess Design	n, Emotional Design – Three levels of Design –	Vicer	al, B	ehavi	oral	
and Reflective-Recycling and availability-Creativity and customer needs analysis -							
Innovative product and serviced signs, future directions in this application of creativity							
thinking in q	uality manage	ement	-	-			
UNIT - V			Lec	ture l	Hrs:		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

INNOVATION: Achieving Creativity – Introduction to TRIZ methodology of Inventive Problem Solving – theessential factors – Innovator's solution – creating and sustaining successful growth – DisruptiveInnovation model – Segmentive Models – New market disruption - Commoditation and DEcommoditation– Managing the Strategy Development Process – The Role of Senior Executive inLeading New Growth – Passing the Baton

Textbooks:

- 1. Rousing Creativity: Think New NowFloydHurr, ISBN 1560525479, Crisp Publications Inc.1999
- 2. Geoffrey Petty," how to be better at Creativity", The Industrial Society 1999
- 3. Donald A. Norman," Emotional Design", Perseus Books Group New York, 2004

Reference Books:

- 1. Clayton M. Christensen Michael E. Raynor," The Iñno Sathrtion", Harvard BusinessSchool Press Boston, USA, 2003
- Semyon D. Savransky," Engineering of Creativity TRIZ", CRC Press New YorkUSA," 2000

Online Learning Resources:

https://nptel.ac.in/courses/107/103/107103082/

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Course Code	21D34109	COMPUTER AIDED ANALYSIS &	L	Т	Р	С
Semester	Ι	DESIGN LAB (21D34109)	0	0	4	2
		(2120110))				

Course Objectives:

Students gain and apply knowledge of advanced CAD concepts and techniques by using highend CAD systems.

Course Outcomes (CO):

CO 1: Analyze different engineering problems using ansys software

CO 2 : Perform the stress analysis of 3D structure

CO 3 : Perform buckling analysis of column structure

CO 4 : Analyse the thermal problems

List of Experiments:

SNo.	LIST of EXPERIMENTS	No. of EXPTS			
1.	2D and 3D Solid Modelling of Components using Auto CAD/Pro-E	04			
2.	3D Modelling of Mechanical Components using IRON-CAD	04			
3.	Assembly of Machine Components	02			
4.	Analysis of typical Mechanical Systems using any analysis package	02			
Total Number of Experiments: 12					
References:					
Online	e learning resources/Virtual labs				

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34110	MATERIAL TESTING LAB	L	Τ	Р	С
Semester	Ι	(21D34110)	0	0	4	2

Course Objectives:

To test several properties of material like ductility, surface roughness, malleability, hardenability etc.

Course Outcomes (CO):

CO1: Ability to relate properties of microstructure.

CO2: Understand various crystal structures.

CO3: To study the thermosetting of ferrous and non ferrous materials.

CO4: To test magnetic defects of material.

CO5: To test the strength of material.

List of Experiments:

- 1. Preparation and study of the Micro Structure of pure metals like Iron, Cu and Al.
- 2. Preparation and study of the Microstructure of Mild steels, low carbon steels, high C steels.
- 3. Hardenability of steels by Jominy End Quench Test.
- 4. To find out the hardness of various treated and untreated steels.
- 5. Study of the Micro Structures of Cast Irons.
- 6. Study of the Micro Structures of Non-Ferrous alloys.
- 7. Study of the Micro structures of Heat treated steels.

References:

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34201	DESIGN FOR MANUFACTURING	L T P C		
Semester	II	(21D34201)	3 0 0 3		
Course Object	tives:				
• Design for	assembly (D	FA) seeks to simplify the product so that the cost	t of assembly is		
reduced. Co	onsequently,	applications of DFA principles to product design	usually result in		
improved of	quality and	reliability and a reduction in production equip	oment and part		
inventory.					
Course Outco	mes (CO): S	tudent will be able to			
CO1: Outline t	he appropriat	e design for economical production and select the	materials.		
CO2: Select be	tween variou	s machining and metal joining processes.			
CO3: Apply a	systematic	understanding of knowledge in the field of me	tal casting and		
forging.					
CO4: Fabricate	e basic parts	and assemblies using powered and non – powere	d machine shop		
equipmer	nt in conjunct	tion with mechanical documentation.			
CO5: Integrate	the knowled	ge of compliance analysis and interference analys	sis for assembly		
and also	use visco-ela	stic and creep in plastics.	r		
UNIT - I			Lecture Hrs:		
System Conce	ept-Elements	of System- Types and Characteristics of	System-System		
DesignApproad	ch- System I	Development- Stages and phases of Development	Documentation		
andModels in	System Dev	velopmentSystem Modelling and Theories, Mod	lelling Process,		
System Theory	, Black Box	Approachand State Approach	I		
UNIT – II			Lecture Hrs:		
Mathematical	Formulation	in System design, LPP with Graphical solution	on, - Network		
FlowAnalysisS	ystem Evalu	ation, Evaluation Factors, Needs for Evaluation,	Benefits, Types		
and Stagesin Sy	ystem Evalua	ition	Γ		
UNIT – III			Lecture Hrs:		
System Reliab	oility, Block	diagram, Block Failure, Definition of Reliabi	lity, Reliability		
andProbability,	, Failure Rate	e, Estimation, Reliability Indices. Reliability Tests.			
UNIT – IV			Lecture Hrs:		
System simulat	tion- Need fo	r Simulation, Steps in simulation, Simulation Mod	lels.		
System Appr	oach to I	Project Management- Project Management	Systems and		
Functionalman	agement Sys	tem, Classification, Techniques and Objectives.	Γ		
UNIT – V			Lecture Hrs:		
Manufacturing	Systems-	Classifications, Introduction to FMS a	nd Computer		
IntegratedManufacturing System - Concepts of Group Technology					
Textbooks:					
1. R.C.Mishra	and Simant –	"Mechanical System Design"			
2. Arora.A., and Bhatia A-"Management Information System". Excell Publication, New Delhi					
Reference Boo	oks:				
1. Gopal Krishna P., and P RamamoothyV.E.,"Text Book of ProjectManagement",					
Macmillian,	New Delhi.				
Online Learning Resources:					
1. https://r	nptel.ac.in/co	urses/112/101/112101005/			

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34202	ROBUST DESIGN	L	Т	Р	С	
Semester	II	(21D34202)	3	0	0	3	
	•						
Course Object	tives:						
Create of	lesigns that h	ave a minimal sensitivity to input variation					
Reduce	design costs						
• Determi	ine which des	sign parameters have the largest impact on variation	m				
Optimiz	ze designs wi	th multiple output					
Course Outcon	mes (CO): St	tudent will be able to					
Given a	set process d	lata, characterize the process behavior using descr	iptiv	e sta	atisti	cs.	
• Identify	if the proce	ess is in-control. If not, identify special patterns	that	ma	v ex	ist.	
Given a	measuremer	nt system, design a plan to identify if the measure	emei	nt sy	stem	ı is	
capable.							
• Design	experiments	to identify the main effects, interaction effects	fects	an	d th	leir	
significa	ance.						
• Design	fractional fac	ctorial experiments to identify the main effects a	nd c	onfo	oundi	ing	
structure	es.	-				•	
UNIT - I			Lee	cture	e Hrs	:	
What is quality	Fundamenta	l principle, Tools used in robust design, Applicati	ons	andl	oenet	fits	
of robust design	n, Quality los	ss function – the fraction defective fallacy, noisefa	ctor	s- ca	uses	of	
variation, aver	age quality	loss, Exploiting Nonlinearity, classification of	ofpar	ame	ters:	Р	
Diagram, Optin	nization of p	roduct and process design.					
UNIT – II			Lee	cture	e Hrs	•	
Matrix Experin	nent for a CV	D process, Estimation of factor Effects, additive	moc	lel o	f fac	tor	
effects, Analys	is of variance	e, prediction of Diagnosis, Steps in robust desi	gn.T	emp	perat	ure	
control circuit a	and its function	on, problem formulation.					
UNIT – III			Lee	cture	e Hrs	•	
Optimization o	f polysilicon	layer thickness uniformity, evaluation of sensitiv	ity t	o no	ise,S	5/N	
Ratios for stati	c problems, S	S/N Ratios for dynamic problems, analysis of or	lerea	lcate	egori	cal	
data.Quality c	characteristics	s and S/N Ratio, optimization of the de	sign	, to	lerar	nce	
design,reducing	g the simula	tion efforts, analysis of nonlinearity, selecting	an	app	ropri	ate	
S/NRatio.	•						
UNIT – IV			Lee	cture	e Hrs	:	
Guidelines	for selecti	ing Quality characteristics, Examples	of	•	Qaul	ity	
characteristics.Examples of S/N Ratios, selection of control factors, role of orthogonal							
arrays.Computer aided robust design: Differential op-amp circuit, Description of noise							
factors, methods of simulating the variation in noise factors, orthogonal array based							
implantationof	variation in r	noise factors.					
UNIT – V			Lee	cture	e Hrs	•	
Counting degree	es of freedor	m, selecting a standard orthogonal array, dummy	leve	eltec	hniq	ue,	
compound factor method, linear graphs and interaction assignment, modification of linear							
graphs, column merging method, branching design, strategy forconstructing an orthogonal							
array, comparis	array, comparison with the classical statistical experimentdesign.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Textbooks:

- 1. Robert H. Lochner and Joseph E. Matar "Designing for Quality an Introduction,
- 2. best of Taguchi and western methods of statistical experimental design.
- 3. Madhav S. Phadke "Quality Engineering using Robust Design"
- 4. D.c. Montgomery "Design of Experiments".

Reference Books:

- 1. Philp J Ross "Taguchi Techniques for Quality Engineering"
- 2. Taguchi G. Experimental design, "Maruzen Publishing Co", Tokyo 1981

Online Learning Resources:

1. https://nptel.ac.in/content/storage2/courses/110101010/downloads/mod3/Modue%20I II-Lec4.pdf

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34203	PRODUCT PLANNING AND MARKETING (21D34203)	L	Т	Р	С
Semester	II	$\mathbf{PE} - \mathbf{III}$	3	0	0	3

Course Objectives:

- The students will learn about product planning and development from a strategic perspective.
- To enhance students' understanding of factors affecting the implementation of strategic plans, this course highlights methods for the management of new products in companies.

Course Outcomes (CO): Student will be able to

CO1: Identify and analyse the strategic elements of product development processes.

- CO2: Develop a product innovation charter.
- CO3: Apply idea generation techniques, and
- CO4: Create and test viable product concepts using appropriate assessment techniques.
- CO5: Assess the challenges and opportunities associated with the launch of new products.

UNIT - I Lecture Hrs:

Classification of New Products: New products success and failure. Definition of successand failure, the latent Factors Behind the Marketing Success of New Products, Failure ofNew product, Factors Influencing Failure, Failures preventing new product Failure, NewProduct Development process and models, Model 1-The Cyclical Approach, Model 11-New product process Management

Concept Development and Statistical Tools Used : Introduction Common Sources forProduct Ideas, Concept Development Methods, Idea Screening, idea ScreeningApproaches, Concept Testing, Definition, Methodology of Data Collection for ConceptTesting, Data Analysis Techniques for Concept Testing, Concept Screen Test Method, Weighted Scoring Method, Concept Screening Matrix

UNIT – II

Lecture Hrs:

Diffusion of Innovation and Adoption Process : Introduction, Adoption Process, FiveStage Process, Time of Adoption, Characteristics of Adopters, Characteristics AffectingAdoption Rate, Diffusion of Innovation, Product Life Cycle Introduction, Basics of PLC, 3Types of PLCs, Identification of Stages in a PLCSigma Method of Tracing the ProductLife Cycle and Stages Identification.

Product Mix : Introduction, Width, Length, Depth, And Consistency of Product mix,Product Lines, Product Strategies, Introduction, Types of Naming, Problem Faced due toLinguistic Differences, Branding Naming Strategies, Brand Naming Strategies, The Naming Process, The Dos and Don'ts While Naming Brands, Brand Names,Generalization.

UNIT – III

Lecture Hrs:

Test Marketing: Introduction, Objectives of Test Marketing-What to look for?, Pros andCons of test Marketing, Decision Variables for Test Markets, Test Marketing Approaches,Types of Test Marketing Producers, Statistical Models for Analyzing Test Market Data,Data Project Method, Product Launch and Commercialization, The Product Launch Cycle, The Launch Mix, Issues in Launch, The Product Launch Process, Effective Plan forProduct Launch, Product Launch Mistakes

Brand Identity: Introduction, What Identity is not ? Dimensions and Identity, Inner and Outer Identity, The Six Sided Prism, How to find Identity? Multiple Identities, Conclusion, Brand Image, Brand Images of Some of the Indian Brands, Techniques Used

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

forIdentifying the Brand Image, Brand Networking Techniques, Focus Groups, Constructive Techniques, Factor Analysis.

· ·
UNIT – IV Lecture Hrs:
Brand Personality: Introduction, Tools to Build/Understand Brand Personality, Brand
personality Scale, Three Models to Build Brand Personality, Building Brand PersonalityVia
the 4P's and Packaging, Building Brand Personality Bottom-up. Brand Positing
and Repositioning Introduction, Grabbing the Mind Space, Positioning Statement, Determine
the Positioning, The MDS Way, Image and Profile Analysis, Positioning through
Correspondence Analysis, By factor Analysis, Positioning Analysis, by Discriminate
Mapping, Repositioning, Brand Loyalty, Definition, Brand Loyalty Measurement Models,
Preference Behavior Model, Purchase Probability Model, Brand Loyalty Analysis with
Markov Chains, Strategies to Build Brand Loyalty, Building Loyalty Through Strategic
Differentiation
UNIT – V Lecture Hrs:
Line Extension: Introduction, Why Line Extension is so hard to resist? A GoodMarketing
Strategy, Extension, Measuring the Line Extension Success Brand ExtensionIntroduction,
Asker and Keller's Success Factors, Internal and External Factors AffectingFirm, Inter Brand
Success Factors, Sequential Introduction of Brand Extension, Process ofBrand Extension,
Brand Harvesting Introduction, Types of Harvesting, Activities Adoptedduring Harvesting
Strategy, Planning the Harvesting Strategy Implementation.
Textbooks:
1. Gien L. Urban. John R. Hauser – "Design and Marketing of new products"
2. William L. Moore&Edgar – "Product Planning and Management", A.
PessemierAGILE MANUFACTURIN
2. Dr.C. Anandan "Product Management". Tata McGraw Hill Education Pvt. Ltd.,
Reference Books:
1. Philip Kotler. "Marketing Management "Person EductionPvt Ltd.,
2. Dr. VenuGopalRao. "Product and Brand Management" Himalaya Publications.
Online Learning Resources:
1. https://nptel.ac.in/courses/110/104/110104070/

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Course	21D34204	TRIBOLOGY IN DESIGN	L	Т	Р	С					
Code	TT	(21D34204)		•							
Semester	11	$\mathbf{PE} - \mathbf{III}$	3	0	0	3					
Course Ol	ojectives:										
• To pro	ovide the kno	wledge and importance of Tribology in Design, fri	ctio	1, W	ear a	ınd					
lubrica	ation aspects	of machine components.									
• To u	nderstand th	ne principles of lubrication, lubrication regime	s, t	heor	ries	of					
hydroe	dynamic and	the advanced lubrication techniques.									
Course Ou	itcomes (CC) : Student will be able to									
CO1: unde	erstanding of	friction, lubrication, and wear processes.									
CO2: fam	iliar with co	ommon anti-friction and anti-wear components and	l the	e lut	orica	nts					
usec	l therein.										
CO3: desc	ribe the deta	iled operation of selected anti-friction or anti-wear co	omp	onei	nts.						
CO4: desi	gn a tribolog	ical system for optimal performance									
CO5: deve	elop technica	l project reports and technical presentations.									
UNIT - I			Le	cture	e Hr	3:					
SURFAC	E INTERAC	CTION AND FRICTION									
Topograph	y of Surfac	ces - Surface features-Properties and measurem	ent	- 5	Surfa	ace					
interaction	-Adhesive	Theory of Sliding Friction –Rolling Friction-Friction	n p	rope	rties	of					
metallic a	and non-me	etallicmaterials – friction in extreme conditi-	ons	-T	herr	nal					
considerati	ons in sliding	g contact									
UNIT – II			Le	cture	e Hr	3:					
WEAR A	ND SURFAC	CE TREATMENT									
Types of w	vear – Mech	anism of various types of wear – Laws of wear –T	heor	retica	al w	ear					
models-We	ear of Metal	s and Non-metals – Surface treatments – Surface 1	nod	ifica	tion	s –					
surface c	oatingsmetho	ods- Surface Topography measurements –Lase	er i	neth	ods	—					
instrument	ation – Interr	nationalstandards in friction and wear measurements									
UNIT – II	I		Le	cture	e Hr	3:					
LUBRICA	ANTS AND I	LUBRICATION REGIMES									
Lubricants	and their ph	ysical properties- Viscosity and other properties of o	oils -	-Ade	ditiv	es-					
andselection	on of Lubrio	cants- Lubricants standards ISO,SAE,AGMA, Bl	S s	tand	ards	—					
Lubrication	nRegimes –S	olid Lubrication-Dry and marginally lubricated cont	acts	- Bo	und	ary					
Lubrication	n-Hydrodyna	mic lubrication — Elasto and plasto hydrodynar	nic	- M	lagn	eto					
hydrodyna	miclubricatio	on – Hydro static lubrication – Gas lubrication.	1								
UNIT – IV	7		Le	cture	e Hr	3:					
THEORY	OF HYDRO	ODYNAMIC AND HYDROSTATIC LUBRICAT	IOI	N							
Reynolds	Equation,-As	ssumptions and limitations-One and two dimensi	ona	l Re	yno	lds					
Equation-F	Reynolds and	d Somerfield boundary conditions- Pressure way	ve,	flow	7, lo	oad					
capacity an	nd frictioncal	lculations in Hydrodynamic bearings-Long and sho	rt bo	earin	igs-F	'ad					
bearings a	nd Journalb	earings-Squeeze film effects-Thermal consideration	ons-	Hyd	rosta	ıtic					
lubrication	of Pad b	earing-Pressure, flow, load and friction calcul	atio	ns-S	tiffn	ess					
considerati	ons- Various	s types of flowrestrictors in hydrostatic bearings									

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

UNIT	$-\mathbf{V}$				Lecture Hrs:						
HIGH		PRESSURE	CONTACTS	AND	ELASTO						
HYDF	RODY	(NAMICLUBRICATIO	ON								
Rollin	Rolling contacts of Elastic solids- contact stresses - Hertzian stress equation- Spherical										
andcyl	indric	cal contacts-Contact Fa	tigue life- Oil film o	effects- Elasto	Hydrodynamic						
lubrica	tionT	heory-Soft and hard	EHL-Reynolds equati	on for elasto	hydrodynamic						
lubrica	tion-	Film shapewithin and	outside contact zone	s-Film thicknes	ss and friction						
calcula	tion-	Rolling bearings- Stress	esand deflections-Tract	ion drives.							
Textb	ooks:										
1.	Rabi	nowicz.E, "Friction and	Wear of materials", Joh	nn Willey &Sons	s,UK,1995						
2.	Cam	eron, A."Basic Lubricati	on Theory", Ellis Herw	ard Ltd., UK, 19	981						
3.	Halli	ing, J. (Editor) – "Princip	oles of Tribology ", Ma	cmillian – 1984.							
4.	Will	iams J.A. "Engineering 7	Tribology", Oxford Uni	v. Press, 1994.							
Refere	ence I	Books:									
1.	S.K.	Basu, S.N.Sengupta&B.I	B.Ahuja ,"Fundamental	s of Tribology",	Prentice –Hall						
	of In	dia PvtLtd , New Delhi,	2005								
2.	G.W	.Stachowiak& A.W .	Batchelor , Engineer	ing Tribology,	Butterworth-						
	Hein	emann, UK,2005									
Online	e Lea	rning Resources:									
1.	https	://nptel.ac.in/courses/112	2/102/112102015/								

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course	21D34205	DESIGN OF HYDRAULIC AND PNEUMATIC	L	Т	Р	С
Code		5 Y 5 I EMIS (21D34205)				
Semester	II	$\frac{(21D34203)}{PE - III}$	3	0	0	3
			L			<u> </u>
Course Ol	jectives: Stu	ident will be able				
1. To	provide fund	lamental knowledge of components forming pneumati	ic ar	nd hy	ydrau	ılic
sys	tems.			-		
2. To	analyze pneu	imatic and hydraulic circuits.				
3. To	learn graphi	ical symbols conforming to international standards f	or v	ario	us fl	uid
pov	ver compone	nts.				
Course Ou	utcomes (CC) : Student will be able to				
CO1. Prov	vide a knowl	edge base of the main components of the hydraulic	and	1 pn	euma	atic
syste	ems and their	functions and symbols.				
CO2. Knov	w the advanta	ages and disadvantages of hydraulic/pneumatic system	ıs, a	nd b	e aw	are
of th	e underlying	principles.		• ,		
CO3. Desi	gn and predic	ct simple linear actuator and hydrostatic transmission c	ircu	1ts.		
CO4. Selec	ct hydraune i	fullds based on their classifications and properties.	:			1 .
CO5. Desc	tors oil cool	struction, operation principles, and uses of auxiliary e	equi	pme	nt, si	JCU
		ers, on neater and accumulators	Ιa	oturo	Urc	•
	PALILIC SY	VSTEMS AND HVDDALLIC ACTUATODS	Le	cture	:1115	•
Hydraulic	Power Gene	rators – Selection and specification of numps nump	h ch	aract	erist	ics
Linearand	Rotary Actua	ators – selection specification and characteristics		aracı	CIISU	105.
UNIT – II			Le	cture	Hrs	:
CONTRO	L AND REC	GULATION ELEMENTS				
Pressure -	direction and	d flow control valves - relief valves, non-return and	safe	ety v	alve	s –
actuationsy	ystems.			-		
UNIT – II	I		Le	cture	Hrs	:
HYDRAU	LIC CIRCU	JITS				
Reciprocat	ion, quick r	eturn, sequencing, synchronizing circuits - accumu	lato	r cii	cuit	5 —
industrialc	ircuits - pres	s circuits - hydraulic milling machine - grinding, plan	ning	g, coj	pyin	g, -
forklift, ea	rthmover cir	rcuits- design and selection of components - safety	and	em	ergei	ncy
mandrels.	-		Ŧ			
UNIT - IV			Le	cture	e Hrs	:
PNEUMA	TIC SYSTE	CMS AND CIRCUITS	1			•,
Pneumatic	fundamenta	is - control elements, position and pressure sensing	- 10	ogic	CITCI	lits
switching	circuits - iri	nge conditions modules and these integration - sequ		al cl	rcuit	s –
cascaueme	n circuitdesi	gn gn gn grann an	CIIC	un u	lesig	11 -
UNIT V		gii.	ΙA	oture	Hre	•
INSTALL	ATION M	AINTENANCE AND SPECIAL CIRCUITS		ciuit	/ 1113	•
Pneumatic	equipments.	- selection of components - design calculations – at	nnlia	ratio	n -f:	anlt
finding -hy	vdro pneuma	tic circuits - use of microprocessors for sequencing -	PL	C. L		cost
automation	-Robotic ci	rcuits.		_, _		•

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Textbooks:

- 1. Antony Espossito, "Fluid Power with Applications", Prentice Hall, 1980.
- 2. Dudleyt, A. Pease and John J. Pippenger, "Basic fluid power", Prentice Hall, 1987.
- 3. Andrew Parr, "Hydraulic and Pneumatics" (HB), Jaico Publishing House, 1999.

Reference Books:

- 1. Bolton. W., "Pneumatic and Hydraulic Systems", Butterworth –Heinemann, 1997.
- 2. K.ShanmugaSundaram, "Hydraulic and Pneumatic Controls: Understanding made
- Easy"S.Chand& Co Book publishers, New Delhi, 2006 (Reprint 2009)

Online Learning Resources:

1. https://nptel.ac.in/content/storage2/courses/112106175/Module%201/Lecture%201.pdf

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Course	21D34207	ADVANCED METAL FORMING TECHNIQUE (21D34207)	L	Т	Р	С
Semester	II	$\frac{21D54207}{PE - IV}$	3	0	0	3
Bennester			5	v	U	
Course Ob	jectives: stu	dent will be able to				
• Learn th	ne principles	of metal forming for different types of materials				
• understa	and tooling a	nd equipments required for important metal forming pro	oces	ses		
Course Ou	tcomes (CO	: Student will be able to				
CO1. Deter	mine major p	process/processes of manufacturing used for given appli	cati	on.		
CO2. Expla	in when and	why metal forming is chosen compared to other compa	tible	e me	thod	s.
CO3. Analy	yze effect of	parameters influencing metal forming and compare h	ot w	vorki	ng a	and
cold	working with	applications.				
CO4. Expla	ain capabiliti	es and applications of bulk metal forming processes a	and	shee	t me	etal
work	•					
UNIT - I			Lee	cture	Hrs	;:
INTRODU	CTION TO	THEORY OF PLASTICITY AND FORMING				
Theory of p	plastic deform	nation – Yield criteria – Tresca and Von-mises – Dist	orti	on ei	nerg	у —
Stress-strain	n relation –	Mohr"s circle representation of a state of stress -	cyli	ndrie	cal a	and
sphericalco	-ordinate sys	tem – upper and lower bound solution methods – therm	10 el	lastic	: Ela	.sto
plasticity –	elastovisco p	lasticity				
UNIT – II			Lee	cture	Hrs	:
THEORY	AND PRAC	TICE OF BULK FORMING PROCESSES				
Analysis of	t plastic defe	ormation in Forging, Rolling, Extrusion, rod/wire dra	awin	ig ar	nd tu	ıbe
drawing –	Effect of f	riction – calculation of forces, work done – Proc	ess	para	mete	ers,
Drawin	ised – Defect	s – applications – Recent advances in Forging, Rolling	5, EX	trus:	ion a	ina
Drawnigpro	$f EEM_{opplic}$	esign consideration in forming - Formability of fail	mna	lea	snee	ι-
		ations in Metal Forming analysis.	La	oturo	Uro	
UNII – III SHEET M	ETAL FOD	MINC	Lee	cture		
SHEEI M Formability	\mathbf{E} IAL FUR	VIIING	mlac	tio f	orm	ina
techniques	- Studies $-$ C	rming Stretch forming Water hammer forming	Dri	ncin		ing and
processpara	meters – Ad	vantage Limitations and application	1 1 1	neip		mu
UNIT - IV		vanage, Emmanons and appreadon	Ie	cture	Hrs	•
POWDER	METALLI	RCV AND SPECIAL FORMING PROCESSES		cture	/ 1115	•
Overview o	of P/M techni	aue – Advantages – applications – Powder preform for	oino	-nc	wde	۲
rolling – To	oling proce	s parameters and applications - Orbital forging – Isoth	erm	al fo	roin	σ_
Hotand col	d isostatic pr	essing – High speed extrusion – Rubber pad forming –	Fine	e bla	nkin	ь g —
LASERbea	m forming					D
UNIT – V			Lee	cture	Hrs	;:
ELECTRO	MAGNETI	C FORMING AND ITS APPLICATIONS				
Electromag	netic Formi	ng Process – Electro – Magnetic Forming Machi	ines	_]	Proc	ess
Variables –	Coils and Di	es – Effect of Resistivity and Geometry – EM tube and	l she	eet fo	ormi	ng,
stamping,sh	nearing and w	velding – Applications – Finite Element Analysis of EM	I for	ming	g.	
Textbooks		······································		,		
1 D'			~	200	1	

1. Dieter G.E., Mechanical Metallurgy (Revised Edition II) McGraw Hill Co., 2004

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

- 2. Proceedings of International Workshop on EMFT 2010, Anna University
- 3. Altan T., Metal forming Fundamentals and applications American Society of Metals, Metalspark, 2003.

Reference Books:

- 1. ASM Hand book, Forming and Forging, Ninth edition, Vol 14, 2003
- 2. SHIRO KOBAYASHI, SOO-IK-oh-ALTAN, T,Metal forming and Finite Element Method,Oxford University Press, 2001.
- 3. ALTAN.T, SOO-IK-oh, GEGEL, HL Metal forming, fundamentals and Applications, American Society of Metals, Metals Park, Ohio, 1983.

Online Learning Resources:

1. https://nptel.ac.in/courses/112/107/112107250/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Course Code	21D34207	QUALITY CONCEPTS IN PRODUCT DEVELOPMENT	L	Т	Р	С
Semester	II	(21D34207) PE – IV	3	0	0	3
						1
Course Ol	jectives:					
• The ob	jective of pro	oduct development is to cultivate, maintain and increa	ase a	i con	npan	ıy's
market	share by sati	sfying a consumer demand.			1	2
Course Ou	itcomes (CC): Student will be able to				
CO1: Lear	n the regulat	ory principles and requirements of drug discovery and	dev	elopi	ment	S
CO2: Und	erstand the c	oncept of pre-formulation studies for various formulati	ons	1		
CO3: Lear	n the concep	t of technology transfer from R&D to production plant				
CO4: Disc	uss on the ne	ew era opportunities and challenges in the pharmaceuti	cal r	nark	et	
CO5: Kno	w the basics	of stability studies during formulation development				
UNIT - I		· · · · · · · · · · · · · · · · · · ·	Le	cture	e Hrs	:
DESIGN	FOR QUAL	ΙΤΥ				
Quality-Ob	jectives and	functions-Targets- Measures and Matrices-Design of	Ex	perir	nent	s –
designproc	ess-Identifica	ation of control factors, noise factors, and perform	ianc	e me	etric	s -
developing	theexperime	ental plan- experimental design -testing noise factor	s- F	₹unn	ing	the
experiment	ts -Conducti	ng the analysis-Selecting and conforming factor-Set I	ooin	ts-re	flect	ing
and repeati	ng.					
UNIT – II			Le	cture	e Hrs	5:
FAILURE	MODES &	EFFECT ANALYSIS				
Basic met	hods: Refini	ng geometry and layout, general process of produc	ct e	mbo	dime	ent,
Embodime	nt checklist-	- Advanced methods: systems modeling, mechanic	al e	mbc	odim	ent
principles-	FMEA metho	od- linking fault states to systems modeling				
UNIT – II	Ι		Lee	cture	e Hrs	5:
DESIGN I	FOR SIX SI	GMA				
Basis of SI	X SIGMA –	Project selection for SIX SIGMA- SIX SIGMA proble	m so	olvin	g- S	IX
SIGMA in	service and	small organizations - SIX SIGMA and lean product	tion	–Le	an S	SIX
SIGMAan	d services					
UNIT – IV	7		Le	cture	e Hrs	5:
DESIGN	OF EXPERI	MENTS				
Importance	e of Expen	riments, Experimental Strategies, Basic principle	es (of 1	Desi	gn,
Terminolo	gy,ANOVA,	Steps in Experimentation, Sample size, Single Factor	r ex	perir	nent	s –
Completel	yRandomized	d design, Randomized Block design, Statistical Analy	sis,	Mul	tifac	tor
experiment	ts -Two and	three factor full Factorial experiments, 2K factoria	al E	xper	imer	nts,
Confoundi	ng and Block	ing designs, Fractional factorial design, Taguchi's appr	roac	h - S	Steps	sin
experiment	tation, Design	using Orthogonal Arrays, Data Analysis, Robust I	Desig	gn- (Cont	rol
and Noise	factors, S/Nr	atios	-			
UNIT - V			Lee	cture	e Hrs	5:
STATIST	ICAL CONS	SIDERATION AND RELIABILITY				
Frequency	distributions	and Histograms- Run charts – stem and leaf plots- P	areto	o dia	igrar	ns-
Causeand	Effect diagr	ams-Box plots- Probability distribution-Statistical P	roce	SS C	ontr	-l0
Scatterdiag	grams –Multi	variable charts – Matrix plots and 3-D plotsReliabili	ty-S	urvi	val a	ind
Failure-Series and parallel systems-Mean time between failure-Weibull distribution						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Textbooks:

- 1. Product Design Techniques in Reverse Engineering and New Product Development, KEVINOTTO & KRISTIN WOOD, Pearson Education (LPE), 2001.
- 2. The Management and control of Quality-6th edition-James R. Evens, William M Lindsay Pub:sonsouth-western(www.swlearning.com)

Reference Books:

- 1. Fundamentals of Quality control and improvement 2nd edition, AMITAVA MITRA, PearsonEducation Asia, 2002.
- 2. Montgomery, D.C., Design and Analysis of experiments, John Wiley and Sons, 2003.
- 3. Phillip J.Rose, Taguchi techniques for quality engineering, McGraw Hill, 1996.

Online Learning Resources:

1. https://nptel.ac.in/courses/112/104/112104230/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34208	REVERSE ENGINEERING (21D34208)	L	Т	Р	С
Semester	II	$\frac{(21D34200)}{PE - IV}$	3	0	0	3
Course Of	niectives.					
• The p	urpose of re	werse engineering is to facilitate the mainten	nanc	e w	ork	by
improv	ing the und	lerstandability of a system and to produce	the	e ne	cess	ary
docume	ents for a lega	acy system.				
Course Ou	itcomes (CO): Student will be able to				
CO1. Unde	erstand the pr	oblem in the existing process.				
CO2. Colle	ect the large r	number of data/ information for the product				
CO3. Dept	h analyze of	the products and extraction of real time data				-
CO4. Unde	erstand the pr	inciples behind the design of the product, ways	to r	edes	ign a	ınd
impr	ove the perfo	rmance of the system				
UNIT - I			Le	cture	Hrs	:
	JCTION					
Scope and	tasks of RE -	Domain analysis- process of duplicating	Ŧ			
UNIT - II			Le	cture	Hrs	:
TOOLS F						
Functional	ity- dimensi	onal- developing technical data - digitizing	g te	echni	ques	-
constructio	n ofsurface i	nodel - solid-part material- characteristics evalu	latic	on -s	oftw	are
and applica	tionprototyp	ing- verification	т		T T	
UNIT - II			Le	cture	Hrs	:
History of	18 Reverse Eng	ineering – Preserving and preparation for the fo	ur st ficat	age	proc Proj	ess
Implement	ation	cation- reclinical Data Generation, Data Vern	icat	ion,	110j	CCI
	7		Ιe	cture	Hrs	
$\mathbf{D}\mathbf{A}\mathbf{T}\mathbf{A}\mathbf{M}$		J.T.	Le	cture	1115	•
DATA MA	se engineerir	I Three data Reverse engineering strategies		Defir	ition	n _
organizatio	ndata issues	- Software application – Finding reusable softw	are	com	none	nts
– Recyclin	g real-timeer	mbedded software – Design experiments to eva	luat	e a I	Reve	rse
Engineerin	g tool $-$ R ₁	le baseddetection for reverse Engineering us	ser i	inter	faces	. –
Reverse E	ngineering or	f assembly programs: Amodel based approach	and	1 its	logi	cal
basics					1081	••••
UNIT – V			Le	cture	Hrs	:
INTEGRA	TION					-
Cognitive a	approach to p	rogram understated – Integrating formal and stru	ıctu	red n	netho	ods
in reversee	ngineering -	- Integrating reverse engineering, reuse and sp	becif	ïcati	on t	ool
environme	nts to revers	eengineeringcoordinate measurement - feat	ure	capt	uring	<u>y</u> –
surface and	l solid memb	ers		1	Ľ	
Textbooks	•					
1. Des	sign Recover	y for Maintenance and Reuse, T J Biggerstaff, IE	EE	Corp	on. J	uly
2. Wh Tec	ite paper o hnology,199	on RE, S. Rugaban, Technical Report, Ge	orgi	a Ir	istt.	of

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

- 3. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994
- 4. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996

Reference Books:

- 1. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996
- 2. Co-ordinate Measurement and reverse engineering, Donald R. Honsa, ISBN 1555897, AmericanGear Manufacturers Association

Online Learning Resources:

1. http://www.digimat.in/nptel/courses/video/112102101/L52.html

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34209	SIMULATION LAB	L	Τ	Р	С					
Semester	II	(21D34209)	0	0	4	2					
Course Objectives: Student will be able to											
• To impart the fundamental knowledge on using various analytical tools like ANSYS.											
FLUENT, etc., for Engineering Simulation											
To impai	• To impart knowledge on how these tools are used in Industries by solving some real										
time problems using these tools											
Course Outcomes (CO): Student will be able to											
CO1: Apply buil	t-in functions	s in MATLAB/ SCILAB to solve numerical p	oroble	ems							
CO 2: Develop c	ode for solvi	ng problems involving different types of mat	hema	tical	mod	lels					
and equat	ions (ODE, P	DE, Linear and nonlinear equations).									
CO3: Solve simu	ulation proble	ms encountered in mechanical design, vibrat	ion a	nalys	sis ar	ıd					
CAD	_			-							
CO4: Model a sy	stem and De	velop a simulation code towards a mini proje	ct								
LIST OF EXPE	ERIMENTS:										
CYCLE-I: DEM	O EXPERIM	ENTS									
	1. MATLAE	Commands and Examples									
	2. Built-in fu	inctions									
RELIABIL	ITY SOFTW	ARE MODULES									
	3. SPARE S	oftware package									
	4. Failure M	ode Software Package									
	5. FMEA-RI	PN Software package									
	6. SPC Softv	vare package									
CYCLE-II: TES	TING PROG	RAMS									
	1. Characte	eristics of Binomial and Poisson distributions	3								
	2. Characte	eristics of Exponential and Weibull distributi	ons								
	3. Characte	eristics of Normal and Log-Normal distributi	ons								
	4. Determi	nation of MTTF for series and parallel syster	ns								
	5. Evaluati	on of Limiting State Probabilities (LSPs)									
	6. Evaluati	on of basic probability indices for series and	para	llel s	yster	ns					
	7. Paramet	ric Boot-Strap estimation and finding best pa	irame	eters	•						
	8. Chi-Squ	are Goodness of Fit									
	9. Determi coefficie	nation of Covariance, Correlation and Cross- ents	Corr	elati	on						
	10. Neural N	Network design to Block box models									
	11. Testing	of sampling methods									
	12. Character and Pare	eristics of Histogram, Scatter diagram, Proce	ss Flo	ow d	iagra	.m					
References:											

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code	21D34210	MODELING AND ANALYSIS LABORATORY	L	Т	Р	С
Semester	II	(21D34210)	0	0	4	2

Course Objectives:Student will be able to

• To acquire basic understanding of Modeling and Analysis software

• To understand the different kinds of analysis and apply the basic principles to find out the stress and other related parameters of bars, beams loaded with loading conditions

Course Outcomes (CO):Student will be able to

CO1: Develop programs for modeling the synthetic curves and surfaces.

CO 2: Develop finite element code to solve problems involving Trusses, Beams and Frames **CO3:** Build 2D and 3D objects using a modeling software

CO4: Solve structural problems using finite element software

CO5: Execute mini project involving both modeling and analysis

LIST OF EXPERIMENTS:

- 1. Develop Programs for Transformations in CAD
- 2. Develop Programs for Synthetic Curves in CAD
- 3. Introduction to Pro/E and working with features like Extrude & Revolve in sketch mode
- 4. Model solids with features like Hole, Round, Chamfer and Rib
- 5. Model solids with features like Pattern, Copy, Rotate, Move and Mirror
- 6. Assembly modelling in Pro/E, Generating, editing and modifying drawings in Pro/E
- 7. Solution of Trusses problems using the developed code
- 8. Solution of Beams and Frames using the developed code
- 9. Solution of problems involving triangular element using the developed code
- 10. Solution of problems of Trusses using ANSYS
- 11. Solution of problems of Beams and Frames using ANSYS
- 12. Solution of problems involving triangular element etc. using ANSYS

References:

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code		Program Elective Course – V	L	Т	Р	С
Semester	III	a. APPLIED ERGONOMICS	3	0	0	3
			l		<u></u>	
Course Objecti	ves:S	tudent will be able to				
• to increa	se aw	vareness of the need for and role of ergonomics in occup	atio	nal h	nealth	1
• to obtain b	asic	knowledge in the application of ergonomic principle	es to	o de	sign	of
industrial workp	olaces	and the prevention of occupational injuries			-	
• to under	stand	the breadth and scope of occupational ergonomics				
Course Outcon	nes ((CO): Student will be able to				
CO1: Initiate or	impr	ove ergonomics programs to optimize system performar	ice a	nd v	vell-	
being						
CO2: Determine	e the 1	oles and responsibilities of an installation Ergonomics I	Prog	ram		
CO3: Develop v	vork a	areas to accommodate a diverse work population				
CO4:Perform w	ork si	te analysis to identify, evaluate, and control risk factors	that	con	tribu	te
to work-related	musc	uloskeletal disorders				
UNIT - I			Lee	cture	Hrs	:
INTRODUCTI	ON:					
Brief history of	huma	n factors engineering/Ergonomics – Interdisciplinary na	iture	•		
UNIT – II			Lee	cture	Hrs	:
HUMAN PERI	FORM	MANCE:				
Factors influence	ing p	erformance – Information receiving and processing – In	forn	natio	n	
theory and its ap	oplica	tion - Human response and errors - Signal detection the	ory	– ios	static	
and Biodynamic	e Mec	hanics.				
UNIT – III			Lee	cture	Hrs	:
PHYSIOLOGI	CAL	ASPECTS OF HUMAN AT WORK:				
Metabolism – P	hysio	logical factors involved in muscular activity – Measurer	nent	of		
energy expendit	ure –	Quantitative work load analysis - Physical work capacity	ty an	d its	•	
evaluation – Phy	ysiolc	gical fatigue – Work and rest schedules – Physical fitne	ss te	ests.		
UNIT – IV			Lee	cture	Hrs	:
WORK PLAC	E DE	SIGN:				
Problems of boo	ły siz	e, Anthropometry measures, Work posture - Work space	e lay	out a	and	
work station des	sign –	Design of displays, controls and VDT work stations - H	Iand	too	l	
design.illuminat	ion.					
UNIT – V			Lee	cture	Hrs	:
OCCUPATION		HEALTH AND SAFETY:				
Industrial accide	ents, I	Personal Protective devices, Safety Management practic	es –			
Effect of Enviro	nmer	tt – heat, cold & noise – NIOHS regulations and Factori	es A	ct		
Textbooks:	-					
1. Bridger, R.S.	, Intro	duction to Ergonomics, McGraw Hill, 1995.				
Reference Bool	ks:					
1. Martin Helan	der, A	A guide to Ergonomics of Manufacturing, TMH, 2006.				
2. Mecormik, T	J., H	uman Factors Engineering, TMH, 1990.				
3. John Grimald	li, Saf	ety Management, A.I.B.S., 5th Edition, Hazard Control	Tec	hnol	ogy	
2003						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

4. Philips, Chandler A, Human Factors Engineering, John Wiley and Sons, Inc. 2000

Online Learning Resources:

https://nptel.ac.in/courses/107/103/107103012/

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (PRODUCT DESIGN)

Course Code21D34302ADDITIVE MANUFACTURINGLTP	С
$\begin{array}{c c} \hline \textbf{Semester} & \textbf{III} \\ \hline \textbf{Semester} & \textbf{III} \\ \hline \textbf{Semester} & \textbf{V} \\ \hline \textbf{Semester} & \textbf{Semester} \\ \hline \textbf{Semester} $	3
Course Objectives: Student will be able to	
1. To introduce students the basics of additive manufacturing/rapid prototyping and	its
applications in various fields, reverse engineering techniques.	
2. To teach students about mechanical properties and geometric issues relating to specific	fic
rapid prototyping applications.	
Course Outcomes (CO): Student will be able to	
CO1: describe additive manufacturing and explain its advantages and disadvantages	nd
applications	na
CO3 understand the role of additive manufacturing in the design process and t	he
implications for design	ne
CO4: describe the effects of surface finish and microstructural properties on behaviour f	for
components produced using additive manufacturing	
CO5: display an awareness of residual stresses that may occur during additive manufacturing	ng
and their effects.	
UNIT - I Lecture Hrs	s:
INTRODUCTION: Need - Development of AM systems – AM process chain - Impact	of
AM on Product Development- Virtual Prototyping- Rapid Tooling – RP to AM	-
LINIT II I I I I I I I I I I I I I I I I	.
DINIT – II Lecture HIS DEVEDSE ENCINEEDING AND CAD MODELING.	5:
Basic concept- Digitization techniques – Model reconstruction – Data Processing f	for
RapidPrototyping: CAD model preparation. Data requirements – Geometric modeli	ng
techniques:Wireframe, surface and solid modeling – data formats - Data interfacing, Pa	art
orientation and supportgeneration, Support structure design, Model Slicing, Tool pa	ath
generation-Software for AM- Casestudies.	
UNIT – III Lecture Hrs	s:
LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURINGSYSTEMS:	
Stereolithography Apparatus (SLA): Principle, pre-build process, part-building and po	st-
buildprocesses, photo polymerization of SL resins, part quality and process planningrecoating issues materials, advantages, limitations, and applications. Solid Crowned Cyring (SCC)	ng
use working principle process strengths weaknesses and applications. Fused depositions	_): on
Modeling (FDM): Principle details of processes process variables types products materia	als
and applications. Laminated	ais
Object Manufacturing (LOM): Working Principles, details of processes, produc	ets,
materials, advantages, limitations and applications - Case studies.	
UNIT – IV Lecture Hrs	s:
POWDER BASED ADDITIVE MANUFACTURING SYSTEMS: Selecti	ve
LaserSintering (SLS): Principle, process, Indirect and direct SLS- powder structure	es,
materials, postprocessing, surface deviation and accuracy, Applications. Laser Engineer	ed
	1

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

 $\mathbf{UNIT} - \mathbf{V}$

Lecture Hrs:

OTHER ADDITIVE MANUFACTURING SYSTEMS

Three dimensional Printing (3DP): Principle, basic process, Physics of 3DP, types of printing, process capabilities, material system. Solid based, Liquid based and powder based 3DP systems, strength and weakness, Applications and case studies. Shape Deposition Manufacturing (SDM), Ballastic Particle Manufacturing (BPM), Selective Laser Melting, Electron Beam Melting.

Textbooks:

- 1. Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: RapidPrototyping to Direct Digital Manufacturing", Springer, 2010.
- 2. Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and applications", secondedition, World Scientific Publishers, 2010.
- 3. Gebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 4. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications : A tool box forprototype development", CRC Press, 2011.

Reference Books:

- 1. Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 2. Hilton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial Applications, CRCpress, 2005

Online Learning Resources:

https://nptel.ac.in/courses/112/103/112103306/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code		Program Elective Course – V	L	Т	P	C						
Semester	III	b. INDUSTRIAL DESIGN	3	0	0	3						
Course Objectives:												
1. Understanding the user-centred design process including form and colour theory.												
2. Understanding product metamorphosis, and ergonomics.												
Course Outcomes (CO): Student will be able to												
CO1. Ability to carry out product design through proper observation.												
CO2. Ability to generate design concepts for different types of users.												
CO3. Understanding the cognitive, morphological process inherent in applying form												
analogies.												
CO4. Ability to	do in	plement sustainable design and to evaluate the prototyp	e.									
UNIT - I			Lee	cture	Hr	s:						
INTRODUCTI	ON .			Ŧ		c						
Definition – Hu	man d	k Machine system – Manual; Mechanical; Automated s	ystei	m, Ir	iput	of						
Information - A	uditoi	y, Visual, Oral, Olfactory display & Communication. H	luma	an O	utpu	it						
andControl – Pr	iysica	f outcome, controls & data entry devices hand tools &	nan	ce:I	NOU	or						
SKIII, numan con		i systems, controis & data entry devices, nand tools & c		ces.	U.	a •						
	F A NI	D FOLIDMENT DESIGN	Lee	cture		5.						
Applied anthrop	L'AIN	D EQUII MENT DESIGN ry Workspace design and secting arrangement of comm	one	nte v	with	in a						
nhysical space	intern	ersonal aspects of work place design and design of rend	one	nts v ve ta	viun sk	in a						
design												
of manual handling activity task work canacity stress and fatigue Design of Equipment :												
Ergonomic facto	ors to	be considered in the design of displays and control, des	ignf	or	10110	•						
maintainability,	desig	n of human computer interaction.	0									
UNIT – III			Le	cture	Hr	s:						
ENVIRONME	NTA	L DESIGN										
Vision and illun	ninati	on design – Climate, Noise, Motion, Sound, Vibration.										
		-	Lo	oturo	U.	.						
	ICC	DIOTHEDMODYNAMICS DIOENEDCETICS	Lee	cture		S:						
BIONECHAN Biostatic mecha	nice,	DIOTHERWOOTNAWICS, DIOENERGETICS	vtrai	nity	and							
biostatic mechanics, statics of rigid bodies, upper extremity of hand, lower extremity and												
bending lifting	and c	arrying biodynamic mechanics human body kinematic	s ki	netic	21							
impact		arrying, blodynamic mechanics, naman body knematic	з, кі	nout	<i>.</i> ,							
and collision. h	ıman	activity analysis, ergonomic tools, RULA, REBA, NOI	SH 1	iftin	σ							
equation - Bio-thermal fundamentals, human operator heat transfer, human system												
bioenergetics, thermoregulatory physiology, human operator thermo regularity, passive												
operator, active	opera	tor, heat stress.	J / 1									
UNIT – V		,	Le	cture	Hr	s:						
COGNITIVE I	ERGO	DNOMICS & HUMAN FACTOR APPLICATION										
Information Theory Information processing, Signal detection theory, Human response,												
human												
errors, cognitive task analysis. Human factors applications : Human error, accidents, human												
factors and the a	utom	obile, organizational and social aspects, steps according	; to									

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

ISO.DIS6385,

OSHA"s approach, virtual environments.

Textbooks:

1. Chandler Allen Phillips, "Human Factors Engineering", John Wiley and sons, New York, 2000 2. Mark S Sanders, "Human Factors in Engineering and Design", McGraw Hill, New York, 1993. 3. Bridger R S, "Introduction to Ergonomics", Taylor and Francis, London, 2003.

4. McCormik, J., Human Factors Engineering and Design, McGraw Hill, 1992.

Reference Books:

1. Martin Helander, A guide to Human Factors and Ergonomics, 2nd Edition, CRC, Taylor &

Francis Group 2006.5. Kamrani, A.K. and Nasr, E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.

Online Learning Resources:

https://nptel.ac.in/courses/107/103/107103004/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Course Code		Open Elective	L	Т	Р	С						
Semester	III	Mechatronics	3	0	0	3						
				-	_							
Course Objectives:												
To impart knowledge on												
To impart knowledge on about the elements and techniques involved in Mechatronics												
systems which are very much essential to understand the emerging field of automation.												
Course Outcomes (CO): Student will be able to												
1.Students can able to understand the concepts, need and importance of mechatronics.												
2. They can able	e to ki	now the concepts of 8085 microprocessor, 8051 microco	ontro	oller								
3. They can able	e to u	nderstand the Programmable peripheral Interface										
4 Students can able to know the structure, programming and selection of PLC												
5 They can able to know the working principle and design concepts of actuators												
mechatronic svs	tem.					,						
UNIT – I			Le	cture	Hrs	:						
Introduction to 1	Mech	atronics – Systems – Concepts of Mechatronics approa	ch -	Nee	d	-						
for Mechatronic	s - E	merging areas of Mechatronics – Classification of Mec	hatr	onic	s.							
Sensors and	Tran	sducers. Static and dynamic Characteristics of	S	enso	r.							
Potentiometers -	-LV	DT – Capacitance sensors – Strain gauges – Eddy curr	ent	sense	r,)r							
– Hall effect ser	sor –	Temperature sensors – Light sensors.										
UNIT – II			Le	cture	Hrs	•						
8085 MICROPH	ROCE	SSOR AND 8051 MICROCONTROLLER										
Introduction $-A$	rchit	ecture of 8085– Pin Configuration – Addressing Modes	–In:	struc	tion							
set Timing diagram of 8085 – Concepts of 8051 microcontroller – Block diagram												
UNIT – III	,		Le	cture	Hrs	:						
PROGRAMMA	BLE	PERIPHERAL INTERFACE				·						
Introduction – A	Archit	ecture of 8255. Keyboard interfacing, LED display –ir	iterf	acing	<u>z</u> .							
ADC and DAC	inte	rface, Temperature Control – Stepper Motor Control	– T	raffi	ic							
Control interfac	e.											
UNIT – IV			Le	cture	Hrs	:						
PROGRAMMA	BLE	LOGIC CONTROLLER										
Introduction –	Basic	c structure – Input and output processing – Progra	ımm	ing	_							
Mnemonics – 7	Mnemonics – Timers, counters and internal relays – Data handling – Selection of											
PLC.		,										
UNIT – V			Le	cture	Hrs	:						
ACTUATORS	AND	MECHATRONIC SYSTEM DESIGN										
Types of Steppe	er and	Servo motors – Construction – Working Principle – A	dvar	ntage	es							
and Disadvanta	iges.	Design process-stages of design process – Tradit	iona	l an	d							
Mechatronics design concepts – Case studies of Mechatronics systems – Pick and												
place Robot – E	ngine	Management system – Automatic car park barrier.										
Textbooks:	0											
1.Bolton, "Mechatronics", Printice Hall, 2008 2. Ramesh S Gaonkar, "Microprocessor												
Architecture, Programming, and Applications with the 8085", 5th Edition, Prentice												
Hall, 2008.												

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (PRODUCT DESIGN)

Reference Books:

- 1. Michael B.Histand and Davis G.Alciatore, "Introduction to Mechatronics and Measurement systems", McGraw Hill International edition,2007.
- 2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics", Chapman and Hall, 1993.
- 3. Smaili.A and Mrad.F , "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press,2007.
- 4. DevadasShetty and Richard A. Kolk, "Mechatronics Systems Design", PWS publishing company,2007.
- 5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of India,2007.
- 6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013

Online Learning Resources:

https://nptel.ac.in > courses > noc21 > SEM1 > noc21-me27