I- SEMESTER:

Subject Code	SUBJECT	L	Р	С
16D36101	Project Management	4	-	4
16D35102	Precision Engineering	4	-	4
16D36102	Statistical Quality Control	4	-	4
15D31110	Total Quality Management	4	-	4
	ELECTIVE-I	4	-	4
15D34210	Quality Concepts in Product Development			
16D36103	Probability and Statistical Methods			
16D36104	Dimensional Metrology & Inspection			
	ELECTIVE-II	4	-	4
16D36105	Technology Management			
16D36106	Data Analysis Techniques			
16D36107	Supply Chain Management			
16D36108	Quality Engineering Lab	0	4	2
TOTAL		24	4	26
II-				

I- SEMESTER

L P C 4 - 4

PROJECT MANAGEMENT (16D36101)

UNIT I

STRATEGIC MANAGEMENT AND PROJECT SELECTION

Project selection models, Project portfolio process, Analysis under uncertainty, Project organization, Matrix organization

UNIT II

PROJECT PLANNING

Work Breakdown Structure, Systems integration, Interface coordination, Project life cycle, Conflict and negotiation.

UNIT III

PROJECT IMPLEMENTATION

Estimating Project Budgets, Process of cost estimation, Scheduling: Network Techniques PERT and CPM, Risk analysis using simulation, CPM- crashing a project, Resource loading, leveling, and allocation.

UNIT IV

MONITORING AND INFORMATION SYSTEMS

Information needs and the reporting process, computerized PMIS, Earned value analysis, Planning-Monitoring-Controlling cycle, Project control: types of control processes, design of control systems, control of change and scope.

UNIT V

PROJECT AUDITING

Construction and use of audit report, Project audit life cycle, Essentials of audit and evaluation, Varieties of project termination, the termination process, The Final Report – A project history.

TEXT BOOKS:

- 1. R.Panneer selvam, P. Senthil Kumar, Project Management, PHI, 2010.
- 2. Arun Kanada, Project Management A life cycle approach, PHI, 2011.

- 1. Jack R. Meredith, and Samuel J. Mantel Jr., Project Management A Managerial Approach, John Wiley and Sons, 2006.
- 2. Harold Kerzner, Project Management A Systems Approach to Planning, Scheduling and Controlling, John Wiley and Sons, 2006.

I- SEMESTER

L P C 4 - 4

PRECISION ENGINEERING (16D35102)

(Common to Advanced Manufacturing Systems & Quality Engineering & Management)

UNIT I:

CONCEPTS OF ACCURACY: Introduction – Concept of Accuracy of Machine Tools – Spindle and Displacement Accuracies – Accuracy of numerical Control Systems – Errors due to Numerical Interpolation Displacement Measurement System and Velocity lags.

GEOMETIC DEIMENSIONING AND TOLERANCING: Tolerance Zone Conversions – Surfaces, Features, Features of Size, Datum Features – Datum Oddly Configured and Curved Surfaces as Datum Features, Equalizing Datum's – Datum Feature of Representation – Form controls, Orientation Controls – Logical Approach to Tolerancing.

UNIT II:

DATUM SYSTEMS: Design of freedom, Grouped Datum Systems – different types, two and three mutually perpendicular grouped datum planes; Grouped datum system with spigot and recess, pin and hole; Grouped Datum system with spigot and recess pair and tongue – slot pair – Computation of Transnational and rotational accuracy, Geometric analysis and application.

UNIT III:

TOLERANCE ANALYSIS: Process Capability, Mean, Variance, Skewness, Kurtosis, Process Capability Metrics, Cp, Cpk, Cost aspects, Feature Tolerances, Geometric Tolerances. Surface finish, Review of relationship between attainable tolerance grades and different machining process, Cumulative effect of tolerances sure fit law, normal law and truncated normal law.

UNIT IV:

TOLERANCE CHARTING TECHNIQUES: Operation Sequence for typical shaft type of components, Preparation of Process drawings for different operations, Tolerance worksheets and centrally analysis, Examples, Design features to facilitate machining; Datum Features – functional and manufacturing Components design – Machining Considerations, Redesign for manufactured, Examples.

UNIT V:

FOUNDAMENTALS OF NANOTECHNOLGY: Systems of nanometer accuracies – Mechanism of metal Processing – Nano physical processing of atomic bit units. Nanotechnology and Electrochemical atomic bit processing.

MEASURING SYSTEMS PROCESSING: In processing or in-situ measurement of position of processing point-Post process and on-machine measurement of dimensional features and surface-mechanical and optical measuring systems.

- 1. Precision Engineering in Manufacturing/Murthy R.L./New Age International (P) limited, 1996.
- 2. Geometric Dimensioning and Tolerancing / James D. Meadows / Marcel Dekker inc. 1995.
- 3. Nano Technology / Norio Taniguchi / Oxford University Press, 1996.
- 4. Engineering Design A systematic Approach / Matousek / Blackie & Son Ltd., London
- 5. Precision Engineering/VC Venkatesh& S Izman/TMH

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU

DEPARTMENT OF MECHANICAL ENGINEERING M.Tech (QUALITY ENGINEERING AND MANAGEMENT)

I-SEMESTER

	L	Р	C
	4	-	4
STATISTICAL QUALITY CONTROL (16D36102)			

UNIT I

INTRODUCTION

Quality Dimensions – Quality definitions – Inspection - Quality control – Quality Assurance – Quality planning - Quality costs – Economics of quality – Quality loss function

UNIT II

CONTROL CHARTS

Chance and assignable causes of process variation, statistical basis of the control chart, control charts for variables- X, R and S charts, attribute control charts - p, np, c and u-Construction and application.

UNIT III

SPECIAL CONTROL PROCEDURES

Warning and modified control limits, control chart for individual measurements, multi-vari chart, X - chart with a linear trend, chart for moving averages and ranges, cumulative-sum and exponentially weighted moving average control charts.

UNIT IV

STATISTICAL PROCESS CONTROL

Process stability, process capability analysis using a Histogram or probability plots and control chart. Gauge capability studies, setting specification limits.

UNIT V

ACCEPTANCE SAMPLING

The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple, double, multiple and sequential, sampling plans for variables, MIL-STD-105D and MIL-STD-414E & IS2500 standards.

- 1. Douglas C Montgomery, Introduction to Statistical Quality Control, John Wiley, Seventh Edition, 2012.
- 2. Grant E.L. and Leavensworth, Statistical Quality Control, TMH, 2000.
- 3. IS 2500 Standard sampling plans

I- SEMESTER

L	Р	С
4	-	4

TOTAL QUALITY MANAGEMENT (15D31110)

(Common to Advanced Manufacturing Systems & Quality Engineering & Management)

UNIT – I:

INTRODUCTION: The concept of TQM, Quality and Business performance, attitude and involvement of top management, communication, culture and management systems. Management of Process Quality: Definition of quality, Quality Control, a brief history, Product Inspection vs, Process Control, Statistical Quality Control, Control Charts and Acceptance Sampling.

UNIT – II:

CUSTOMER FOCUS AND SATISFACTION: The importance of customer satisfaction and loyalty-Crating satisfied customers, Understanding the customer needs, Process Vs. Customer, internal customer conflict, quality focus, Customer Satisfaction, role of Marketing and Sales, Buyer – Supplier relationships. Bench Marketing: Evolution of Bench Marketing, meaning of Bench marketing, benefits of bench marketing, the bench marketing process, pitfalls of bench marketing.

UNIT – III:

ORGANIZING FOR TQM: The systems approach, Organizing for quality implementation, making the transition from a traditional to a TQM organizing, Quality Circles. Productivity, Quality and Reengineering: The leverage of Productivity and Quality, Management systems Vs. Technology, Measuring Productivity, Improving Productivity Re-engineering.

UNIT – IV:

THE COST OF QUALITY: Definition of the Cost of Quality, Quality Costs, Measuring Quality Costs, use of Quality Cost Information, Accounting Systems and Quality Management.

UNIT – V:

ISO9000: Universal Standards of Quality: ISO around the world, The ISO9000 ANSI/ASQCQ-90. Series Standards, benefits of ISO9000 certification, the third party audit, Documentation ISO9000 and services, the cost of certification implementing the system.

- 1. Total Quality Management / Joel E.Ross/Taylor and Franscis Limited
- 2. Total Quality Management/P.N.Mukherjee/PHI
- 3. Beyond TQM / Robert L.Flood
- 4. Statistical Quality Control / E.L. Grant / McGraw Hill.
- 5. Total Quality Management- A Practical Approach/H. Lal
- 6. Quality Management/KanishkaBedi/Oxford University Press/2011
- 7. Total Engineering Quality Management/Sunil Sharma/Macmillan

I-SEMESTER

L	Р	С
4	-	4

QUALITY CONCEPTS IN PRODUCT DEVELOPMENT (15D34210)

(ELECTIVE-I)

(Common to Product Design & Quality Engineering & Management)

UNIT I DESIGN FUNDAMENTALS, METHODS AND MATERIAL SELECTION Morphology of Design – The Design Process – Computer Aided Engineering – Concurrent Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) – Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging, Metal Forming, Machining and Welding

UNIT II DESIGN FOR QUALITY

Quality Function Deployment -House of Quality-Objectives and functions-Targets-Stakeholders-Measures and Matrices-Design of Experiments –design process-Identification of control factors, noise factors, and performance metrics - developing the experimental plan- experimental design –testing noise factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set points-reflecting and repeating.

UNIT III FAILURE MODE EFFECT ANALYSIS AND DESIGN FOR SIX SIGMA

Basic methods: Refining geometry and layout, general process of product embodiment - Embodiment checklist-Advanced methods: systems modeling, mechanical embodiment principles-FMEA method- linking fault states to systems modeling - Basis of SIX SIGMA –Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and small organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services

UNIT IV DESIGN OF EXPERIMENTS

Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology, ANOVA, Steps in Experimentation, Sample size, Single Factor experiments - Completely Randomized design, Randomized Block design, Statistical Analysis, Multifactor experiments - Two and three factor full Factorial experiments, 2κ factorial Experiments, Confounding and Blocking designs, Fractional factorial design, Taguchi^{*}s approach - Steps in experimentation, Design using Orthogonal Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N ratios

UNIT V STATISTICAL CONSIDERATION AND RELIABILITY

Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams-Cause and Effect diagrams-Box plots- Probability distribution-Statistical Process control–Scatter diagrams –Multivariable charts – Matrix plots and 3-D plots.-Reliability-Survival and Failure-Series and parallel systems-Mean time between failure-Weibull distribution

REFERENCES

1. Dieter, George E., "Engineering Design - A Materials and Processing Approach", McGraw Hill, International Editions, Singapore, 2000.

2. Product Design Techniques in Reverse Engineering and New Product Development, KEVIN OTTO & KRISTIN WOOD, Pearson Education (LPE), 2001.

3. Product Design And Development, KARL T. ULRICH, STEVEN D. EPPINGER, TATA McGRAW-HILL-3rd Edition, 2003.

4. The Management and control of Quality-6th edition-James R. Evens, William M Lindsay Pub:son south-western(www.swlearning.com)

5. Fundamentals of Quality control and improvement 2nd edition, AMITAVA MITRA, Pearson Education Asia, 2002.

I- SEMESTER

L P C 4 - 4

PROBABILITY AND STATISTICAL METHODS (16D36103)

(ELECTIVE-I)

OBJECTIVE:

To introduce the basic concepts of one dimensional and two dimensional Random Variables. To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis.

To enable the students to use the concepts of multivariate normal distribution and principle components analysis.

OUTCOMES:

The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems.

UNIT I

ONE DIMENSIONAL RANDOM VARIABLES

Random variables - Probability function – Moments – Moment generating functions and their properties – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Functions of a Random Variable.

UNIT II

TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and Conditional distributions – Functions of two dimensional random variables – Regression Curve – Correlation.

UNIT III ESTIMATION THEORY:

Unbiased Estimators – Method of Moments – Maximum Likelihood Estimation - Curve fitting by Principle of least squares – Regression Lines.

UNIT IV TESTING OF HYPOTHESES:

Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi-Square and F distributions for testing of mean, variance and proportions – Tests for Independence of attributes and Goodness of fit.

UNIT V MULTIVARIATE ANALYSIS:

Random Vectors and Matrices - Mean vectors and Covariance matrices - Multivariate Normal density and its properties - Principal components: Population principal components – Principal components from standardized variables.

BOOKS:

- 1. Jay L. Devore, "Probability and statistics for Engineering and the Sciences", Thomson and Duxbury, Singapore, 2002.
- 2. Richard Johnson. "Miller & Freund's Probability and Statistics for Engineer", Prentice Hall of India, Private Ltd., New Delhi, Seventh Edition, 2007.
- 3. Richard A. Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis", Pearson Education, Asia, Fifth Edition, 2002.

- 1. Gupta S.C. and Kapoor V.K."Fundamentals of Mathematical Statistics", Sultan and Sons,New Delhi, 2001.
- 2. Dallas E Johnson et al., "Applied multivariate methods for data analysis", Thomson and Duxbury press, Singapore, 1998.

I- SEMESTER

L P C 4 - 4

DIMENSIONAL METROLOGY & INSPECTION (16D36104)

(ELECTIVE-I)

UNIT I

LINEAR MEASUREMENT AND ANGULAR MEASUREMENT

Accuracy, Precision, Readability, Sensitivity, Linear measuring instruments - vernier – micrometer-Gauge blocks- dial indicator-comparators – Angle standards – vernier bevel protractor-sine bar – autocollimator.

UNIT II

STANDARDS FOR LINEAR AND ANGULAR MEASUREMENTS

Shop floor standards and their calibration, light interference, Method of coincidence, Slip gauge calibration, Measurement errors, Limits, fits, Tolerance, Gauges, Gauge design.

UNIT III

MEASUREMENT APPLICATION

Measurement of screw threads and gears – Radius measurement – surface finish measurement - Measurement of straightness-flatness-parallelism – squareness-roundness – circularity

UNIT IV

MODERN CONCEPTS

Image processing and its application in Metrology, Co-ordinate measuring machine, Types of CMM, Probes used, Application, Non-contact CMM using Electro-optical sensors for dimensional metrology.

UNIT V

MEASUREMENT SYSTEMS

System configuration, basic characteristics of measuring devices, Displacement, force and torque measurement, standards, Calibration, Sensors, Basic principles and concepts of temperature, Pressure and flow measurement, Destructive testing – Nondestructive testing.

TEXT BOOK:

- 1. R.K.Jain , Engineering metrology , khanna publisher, 2009.
- 2. M. Mahajan, Text book of Metrology, Dhanpat Rai & Co P Ltd , 2012

- 1. Galyer J.F. and Shotbolt C.R."Metrology for Engineers" ELBS, 1992.
- 2. Hune, K.J.Engineering Metrology, Kalyani Publishers, India, 1980.
- 3. Robinson, S.L. and Miller R.K. Automated Inspection and Quality Assurance, Marcel Dekker Inc.1989.

I-SEMESTER

L	Р	С
4	-	4

TECHNOLOGY MANAGEMENT (16D36105)

(ELECTIVE-II)

UNIT I INTRODUCTION

Technology management - Scope, components, and overview. Technology and environment, Technology and society, Technology Impact analysis, environmental, social, legal, political aspects, techniques for analysis - steps involved. Technology policy strategy: Science and technology Policy of India, implications to industry, The dynamics of technology change

UNIT II TECHNOLOGY FORECASTING

Need, methodology and methods - trend Analysis, Analogy, Delphi, Soft System Methodology, Mathematical Models, Simulation, and System Dynamics.

UNIT III TECHNOLOGY CHOICE AND EVALUATION

Issues in the development new high tech products, Methods of analyzing alternate technologies, Techno-economic feasibility studies, Need for multi-criteria considerations such as, social, environmental, and political, Analytic hierarchy method, Fuzzy multi-criteria decision making, and other methods.

UNIT IV TECHNOLOGY TRANSFER AND ACQUISITION

Import regulations, Implications of agreements like Uruguay Round and WTO, Bargaining process, Transfer option, MOU- Technology Adoption and Productivity - Adopting technology-human interactions, Organizational redesign and re-engineering, Technology productivity.

UNIT V TECHNOLOGY ABSORPTION AND INNOVATION

Present status in India, Need for new outlook, Absorption strategies for acquired technology, creating new/improved technologies, Innovations, Technology Measurement- Technology Audit, Risk and exposure, R&D portfolio management

- 1. Joseph M. Putti, Management A Functional Approach, McGraw Hill, 1997
- 2. Kenneth C. Lauden , MIS: Organisation and Technology, Prentice Hall, 1995
- 3. James A.Senn, Information technology in Business, Prentice Hall, 1995
- 4. Ronald J. Jordan, Security analysis and Portfolio Management, Prentice Hall, 1995
- 5. Irvin M. Rubin, Organisational behavior an experimental approach, Prentice Hall, 1995
- 6.Gerard H. Gaynor, Handbook of Technology Management, McGraw-Hill Professional, 1996
- 7. Richard C. Dorf, Technology Management Handbook, CRC, 1999

I- SEMESTER

L P C 4 - 4

DATA ANALYSIS TECHNIQUES (16D36106)

(ELECTIVE-II)

UNIT I STATISTICAL DATA ANALYSIS

Data and Statistics- Review of Basic Statistical Measures-Probability Distributions-Testing of

Hypotheses-Non Parametric Tests.

UNIT II DATA ANALYSIS I

Introduction – Basic concepts – Uni-variate, Bi-variate and Multi-variate techniques – Types of multivariate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation – Approaches to multivariate model building.

UNIT III DATA ANALYSIS II

Simple and Multiple Linear Regression Analysis – Introduction – Basic concepts – Multiple linear regression model – Least square estimation – Inferences from the estimated regression function – Validation of the model. Factor Analysis: Definition – Objectives – Approaches to factor analysis – Methods of estimation – Factor rotation – Factor scores - Sum of variance explained – Interpretation of results .Canonical Correlation Analysis - Objectives – Canonical variates and canonical correlation – Interpretation of variates and correlations.

UNIT IV DATA ANALYSIS III

Multiple Discriminant Analysis - Basic concepts – Separation and classification of two populations -Evaluating classification functions – Validation of the model. Cluster Analysis – Definitions – Objectives – Similarity of measures – Hierarchical and Non – Hierarchical clustering methods – Interpretation and validation of the model.

UNIT V DATA ANALYSIS IV

Conjoint Analysis – Definitions – Basic concepts – Attributes – Preferences – Ranking of Preferences – Output of Conjoint measurements – Utility - Interpretation. Multi Dimensional Scaling – Definitions – Objectives – Basic concepts – Scaling techniques – Attribute and Non-Attributes based MDS Techniques – Interpretation and Validation of models. Advanced Techniques – Structural Equation modeling

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, Multivariate Data Analysis, Pearson Education, New Delhi, 2010.
- 2. Richard A Johnson and Dean W.Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, New Delhi, 2012.
- 3. David R Anderson, Dennis J Sweeney and Thomas A Williams, Statistics for Business and Economics, Thompson, Singapore, 2011.

I- SEMESTER

L P C 4 - 4

SUPPLY CHAIN MANAGEMENT (16D36107)

(ELECTIVE-II)

UNIT I INTRODUCTION TO SUPPLY CHAIN MANAGEMENT

Supply chain stages and decision phases process view of a supply chain. Supply chain flows. Examples of supply chains. Competitive and supply chain strategies. Achieving strategic fit. Expanding strategic scope. Drivers of supply chain performance. Framework for structuring drivers - Obstacles to achieving fit.Case discussions.

UNIT II DESIGNING THE SUPPLY CHAIN NETWORK

Distribution Networking – Role, Design. Supply Chain Network (SCN) – Role, Factors, Framework for Design Decisions. Models for facility location and capacity allocation. Impact of uncertainty on SCN – discounted cash flow analysis, evaluating network design decisions using decision using decision trees.

UNIT III SOURCING, TRANSPORTATION AND PRICING

Role of sourcing, supplier – scoring and assessment, selection and contracts. Design collaboration. Role of transportation, Factors affecting transportation decisions. Modes of transportation and their performance characteristics. Designing transportation network. Trade-off in transportation design. Tailored transportation, Routing and scheduling in transportation. International transportation. Analytical problems. Role Revenue Management in the supply chain, Revenue management for: Multiple customer segments, perishable assets, seasonal demand, bulk and spot contracts.

UNIT IV COORDINATION AND TECHNOLOGY

Co-ordination in a supply chain: Bullwhip effect. Obstacles to coordination. Managerial levers to achieve co-ordination, Building strategic partnerships. The role of IT supply Chain, The Supply Chain IT framework, CRM, Internal SCM, SRM. The role of E-business in a supply chain, The E-business framework, E-business in practice. Case discussion.

UNIT V EMERGING CONCEPTS

3PL- 4PL- Global Logistics -Reverse Logistics; Reasons, Activities, Role. Ware house Management-RFID Systems; Components, applications, implementation. Lean supply Chains-Sustainable supply Chains

- 1. Sunil Chopra, Peter Meindl and Kalra, Supply Chain Management, Strategy, Planning, and operation, Pearson Education, 2013.
- 2. Robert B Handfield, Ernest L Nichols, Jr., Supply Chain Redesign Transforming Supply Chains into Integrated Value Systems, Pearson Education, 2002.
- 3. Jeremy F.Shapiro, Modeling the supply chain, Thomson Duxbury, 2006.
- 4. David Simchi Levi, Philip Kaminsky and Edith Simchi Levi, Designing and Managing the Supply Chain, Mc Graw Hill, 2009.

I- SEMESTER

L P C

_

4 2

QUALITY ENGINEERING LAB (16D36108)

II - SEMESTER:

Subject Code	SUBJECT	L	Р	С
16D36201	Quality Management Systems		-	4
16D36202	Reliability Engineering	4	I	4
16D36203	Lean Manufacturing and Six Sigma	4	-	4
16D36204	Quality by Design	4	-	4
	ELECTIVE-III	4	-	4
16D36205	Software Quality Management			
16D35203	Production and Operations Management			
16D36206	Industrial Safety and Hygiene			
	ELECTIVE-IV	4	-	4
15D32210	Reverse Engineering			
16D36207	Decision Support Systems			
16D36208	Optimization Techniques			
15D54201	Research Methodology (Audit Course)			
16D36209	Quality Assurance Lab	0	4	2
TOTAL		24	4	26

II- SEMESTER

	L	Р	С
	4	-	4
QUALITY MANAGEMENT SYSTEMS (16D36201)			

Objective: To impart knowledge on the concept of quality, tools for analyzing quality ,Statistical tools in quality acceptance sampling and life testing

UNIT-I

Introduction to the concept of quality - quality control - quality assurance - quality management - quality and total quality - small q and big Q - concept of total quality management - TQM axioms - major contributions of deeming, juran and cross by to quality management - enablers for total quality - strategic quality management

UNIT-II

Quality costs - analysis of quality costs - loss function - Taguchi methods - total quality tools - pare to chart - fishbone diagram – check sheet - histograms - scatter diagrams - run charts - flow diagram – Bench Marking-Overview of ISO 9000:2000 certification-Quality circles.

UNIT-III

Experimental design-Guidelines Overview of fact oral experiments, replication, General Idea on Process optimization- Process Robustness Studies, Quality function deployment, failure mode, effect and criticality analysis, continuous process improvement- The PDSA cycle- Kaizen.

UNIT-IV

Statistical tools in quality - making predictions using the normal, Poisson and binomial probability distributions - statistical process control - control charts for variables - X and R charts - process capability indices - control charts for attributes - P, np, c and u charts

UNIT-V

Module IV (12 hours) Acceptance sampling - lot by lot acceptance using single sampling by attributes - OC curve - average outgoing quality and the AOQL - double sampling - multiple and sequential sampling - ATI and AFI - introduction to life testing and reliability, MTBF, MTTR, system reliability-components in series and parallel

Refernces:

- 1. 1.Bester Field, Dale H,Carol Boeterfreld-Muchna,Glen H,Boeterfreld Mery Boeterfeld-Scare, 2003,
- 2. Total Quality Management, 3rd edition, Pearson Education, New Delhi.
- 3. Juran J.M., Gryna I.M., "Quality Planning and Analysis", Tata McGraw Hill Publishing Company. 3. Montgomery, douglas C2001,Introduction to statical quality control, fourth edition,John Wiley&sons Inc, New Delhi
- 4. Gerals M Smith-2004, Statistical Process Control and Quality Improvement-5th edition ,Pearson Education, New Delhi
- 5. Grant, Statistical Quality Control, McGraw Hill

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech (QUALITY ENGINEERING AND MANAGEMENT)

II- SEMESTER

L P C 4 - 4

RELIABILITY ENGINEERING (16D36201)

UNIT I RELIABILITY CONCEPTS

Reliability definition – Quality and Reliability– Reliability mathematics – Reliability functions – Hazard rate – Measures of Reliability – Design life –A priori and posteriori probabilities – Mortality of a component –Mortality curve – Useful life.

UNIT II LIFE DATA ANALYSIS

Data collection –Non Parametric methods: Ungrouped/Grouped, Complete/Censored data – Time to failure distributions: Exponential, Weibull – Probability plotting – Goodness of fit tests.

UNIT III RELIABILITY ASSESSMENT

Different configurations – Redundancy – k out of n system – Complex systems: RBD – Baye's approach – Cut and tie sets – Fault Trees – Standby systems.

UNIT IV RELIABILITY MONITORING

Life testing methods: Failure terminated – Time terminated – Sequential Testing –Reliability growth monitoring – Reliability allocation – Software reliability-Human reliability.

UNIT V RELIABILITY IMPROVEMENT

Analysis of downtime – Repair time distribution – System repair time – Maintainability prediction – Measures of maintainability – Inspection decisions –System Availability.

- 1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.
- Roy Billing ton and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

LEAN MANUFACTURING AND SIX SIGMA (16D36203)

UNIT I: INTRODUCTION TO LEAN MANUFACTURING AND SIX SIGMA

Introduction to Lean- Definition, Purpose, features of Lean ; top seven wastes, Need for Lean, Elements of Lean Manufacturing, Lean principles, the lean metric, Hidden time traps. Introduction to quality, Definition of six sigma, origin of six sigma, Six sigma concept, Critical success factors for six sigma.

UNIT II LEAN SIX SIGMA APPROACH

Evolution of lean six sigma, the synergy of Lean and six sigma, Definition of lean six sigma, the principles of lean six sigma, Scope for lean six sigma, Features of lean six sigma, The laws of lean six sigma, Benefits of lean six sigma, Introduction to DMAIC tools.

UNIT III INITIATION FOR LEAN SIX SIGMA

Top management commitment – Infrastructure and deployment planning, Process focus, organizational structures, Measures – Rewards and recognition, Infrastructure tools, structure of transforming event, Launch preparation.

UNIT IV PROJECT SELECTION FOR LEAN SIX SIGMA

Resource and project selection, Selection of Black belts, Selecting projects – Benefit/Effort graph, Process mapping, value stream mapping, Balanced score card for project identification, project suitable for lean six sigma.

UNIT V THE DMAIC PROCESS AND INSTITUTIONALIZING THE LSS

Predicting and improving team performance, Nine team roles, Team leadership, DMAIC process, Institutionalizing lean six sigma, Design for lean six sigma, Case study presentations.

- 1. Michael L. George, Lean Six Sigma, McGraw-Hill, 2002.
- 2. James P. Womack, Daniel T. Jones, Lean Thinking, Free press business, 2003.
- 3. Forrest W. Breyfogle III, Implementing Six Sigma: Smarter solutions Using Statistical Methods, 1999.
- 4. Ronald G.Askin and Jeffrey B.Goldberg, Design and Analysis of Lean Production Systems, John Wiley & Sons, 2003.
- 5. Rother M. and hook J., Learning to See: Value Stream Mapping to add value and Eliminate Muda, Lean Enterprise Institute, Brookline, MA.

II- SEMESTER

L	Р	С
4	-	4

QUALITY BY DESIGN (16D36204)

UNIT I INTRODUCTION

Perception of quality, Taguchi's definition of quality – quality loss function, Planning of experiments, design principles, terminology, normal probability plot, Analysis of variance, Linear regression models.

UNIT II

FACTORIAL EXPERIMENTS

Design and analysis of single factor and multi-factor experiments, tests on means, EMS rules.

UNIT III SPECIAL DESIGNS

2^K Factorial designs, Fractional factorial designs, Nested designs, Blocking and Confounding.

UNIT IV ORTHOGONAL EXPERIMENTS

Selection of orthogonal arrays (OA's), OA designs, conduct of OA experiments, data collection and analysis of simple experiments, Modification of orthogonal arrays.

UNIT V ROBUST DESIGN

Variability due to noise factors, Product and process design, Principles of robust design, objective functions in robust design - S/N ratios, Inner and outer OA experiments, optimization using S/N ratios, fraction defective analysis, case studies.

- 1. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012.
- 2. D.C.Montgomery, "Design and analysis of experiments", John Wiley, Eighth Edition, 2012.
- 3. Nicolo Belavendram, "Quality by design" Taguchi techniques for Industrial experimentation, Prentice Hall, 1999.

II- SEMESTER

L P C 4 - 4

SOFTWARE QUALITY MANAGEMENT (16D36205)

(ELECTIVE-III)

UNIT I SOFTWARE QUALITY

Definition of Software Quality, Quality Planning, Quality system – Quality Control Vs Quality Assurance – Product life cycle – Project life cycle models.

UNIT II SOFTWARE ENGINEERING ACTIVITIES

Estimation, Software requirements gathering, Analysis, Architecture, Design, development Testing and Maintenance.

UNIT III SUPPORTING ACTIVITIES

Metrics, Reviews –SCM – Software quality assurance and risk management.

UNIT IV SOFTWARE QUALITY MANAGEMENT TOOLS

Seven basic Quality tools – Checklist – Pareto diagram – Cause and effect diagram – Run chart – Histogram – Control chart – Scatter diagram – Poka Yoke – Statistical process control – Failure Mode and Effect Analysis – Quality Function deployment – Continuous improvement tools – Case study.

UNIT V

QUALITY ASSURANCE MODELS

Software Quality Standards, ISO 9000 series – CMM, CMMI – P-CMM – Case study.

TEXT BOOK

- 1. Software Engineering: A Practitioners Approach, 5th Edition Roger S. Pressman McGraw Hill International Edition, 6th Edition, 2006.
- 2. Ramesh Gopalswamy, Managing global Projects ; Tata McGraw Hill, 2002.

- 1. Norman E Fenton and Share Lawrence P flieger, Software metrics, International Thomson Computer press, 1997.
- 2. Gordan Schulmeyer. G. and James .L. Mc Hanus , Total Quality management for software, International Thomson Computer press , USA , 1990.
- 3. Dunn Robert M., Software Quality: Concepts and Plans, Englewood clifts, Prentice Hall Inc., 1990.
- 4. Metrics and Models in Software Quality Engineering, Stephen, Stephen H. Kan, Pearson education, 2006, Low price edition.

II- SEMESTER

L	Р	С
4	-	4

PRODUCTION AND OPERATIONS MANAGEMENT (16D35203)

(ELECTIVE-III)

(Common to Advanced Manufacturing Systems & Quality Engineering & Management)

UNIT -I

OPERATION MANAGEMENT: Definition – Objectives – Types of production systems – historical development of operations management – Current issues in operation management.

Product design – Requirements of good product design – product development – approaches – concepts in product development – standardization – simplification – Speed to market – Introduction to concurrent engineering.

UNIT – II

VALUE ENGINEERING: objective – types of values – function & cost – product life cycle- steps in value engineering – methodology in value engineers – FAST Diagram – Matrix Method.

Location – Facility location and layout – Factors considerations in Plant location- Comparative Study of rural and urban sites – Methods of selection plant layout – objective of good layout – Principles – Types of layout– line balancing.

UNIT - III

AGGREGATE PLANNING: definition – Different Strategies – Various models of Aggregate Planning –Transportation and graphical models.

Advance inventory control systems push systems – Material Requirement – Terminology – types of demands – inputs to MRP- techniques of MRP – Lot sizing methods – benefits and drawbacks of MRP – Manufacturing Resources Planning (MRP –II), Pull systems – Vs Push system – Just in time (JIT) philosophy Kanban System – Calculation of number of Kanbans Requirements for implementation JIT – JIT Production process – benefits of JIT.

UNIT - IV

SCHEDULING: Policies – Types of scheduling – Forward and Backward Scheduling – Gantt Charts – Flow shop Scheduling – n jobs and 2 machines, n jobs and 3 machines – job shop Scheduling – 2 jobs and n machines – Line of Balance.

UNIT – V

PROJECT MANAGEMENT: Programming Evaluation Review Techniques (PERT) – three times estimation– critical path – probability of completion of project – critical path method – crashing of simple nature.

- 1. Operations Management/ E.S. Buffs/ John Wiley & Sons / 2007
- 2. Operations Management Theory and Problems/ Joseph G. Monks / Macmillan / McGraw Hill / 3rd Edition.
- 3. Production Systems Management/ James I. Riggs / John Wiley & Sons.
- 4. Production and Operations Management/ Chary/ McGraw Hill/2004
- 5. Operations Management/ Richard Chase/ McGraw Hill/2006
- 6. Production and Operation Management / PannerSelvam / PHI.
- 7. Production and Operation Analysis/ Nahima/ McGraw Hill/2004

II- SEMESTER

L P C 4 - 4

INDUSTRIAL SAFETY AND HYGIENE (16D36206)

(ELECTIVE-III)

UNIT I OPERATIONAL SAFETY

Hot metal operation, boiler, pressure vessels – heat treatment shop – gas furnace operation – electroplating – hot bending pipes – safety in welding and cutting, Cold – metal operation – safety in machine shop – cold bending and chamfering of pipes- metal cutting – shot blasting, grinding, painting – power press and other machines. Management of toxic gases and chemicals – industrial fires and prevention – road safety – highway and urban safety – safety of sewage disposal and cleaning – control of environmental pollution – managing emergencies in industries – planning security and risk assessments, on – site and off site. Control of major industrial hazards.

UNIT II SAFETY APPRAISA LAND ANALYSIS

Human side of safety – personal protective equipment – causes and cost of accidents. Accidents prevention program – specific hazard control strategies – HAZOP training and development of employees – first aid – fire fight devices – accident reporting, investigation. Measurement of safety performance, accident reporting and investigation – plant safety inspection, job safety analysis – safety permit procedures. Product safety – plant safety rules and procedures – safety sampling – safety inventory systems. Determining the cost effectiveness of safety measurement.

UNIT III OCCUPATIONAL HEALTH

Concept and spectrum of health functional units and activities of operational health service – occupational and related disease – levels of prevention of diseases – notifiable occupational diseases Toxicology Lead – Nickel, chromium and manganese toxicity – gas poisoning (such as CO, Ammonia Chlorise, So2, H2s.) their effects and prevention – effects of ultra violet radiation and infrared radiation on human system.

UNIT IV SAFETY AND HEALTH REGULATIONS

Safety and health standards – industrial hygiene – occupational diseases prevention welfare facilities. The object of factories act 1948 with special reference to safety provisions, model rules 123a, history of legislations related to safety – pressure vessel act – Indian boiler act – the environmental protection act – electricity act – explosive act.

UNIT V SAFETY MANAGEMENT

Evaluation of modern safety concepts – safety management functions – safety organization, safety department- safety committee, safety audit – performance measurements and motivation – employee participation in safety - safety and productivity.

TEXT BOOKS:

- 1. John. V. Grimaldi and Rollin. H Simonds, "Safety Managenent", All India traveler Book seller, New Delhi 1989.
- 2. Krishnan N.V, "Safety in Industry", Jaico Publisher House, 1996.

- 1. Occupational Safety Manual BHEL.
- 2. Industrial Safety and the law by P.M.C Nair Publishers, Trivandrum.
- 3. Managing emergencies in industries, loss prevention of India Ltd., proceedings, 1999.
- 4. Safety security and Risk management by U.K singh & J.M Dewam, A.P.H. publishing company, New Delhi, 1996.
- 5. Singh, U.K and Dewan, J.M., "Sagety, Security and Risk Management", APH publishing company, New Delhi, 1996.
- 6. John V Grimaldi, Safety Management. AITB publishers, 2003.
- 7. Safety Manual. EDEL engineering Consultancy, 2000.

II- SEMESTER

L P C 4 - 4

REVERSE ENGINEERING (15D32210) (ELECTIVE-IV) (Common to Product Design & Quality Engineering & Management)

UNIT I INTRODUCTION

Scope and tasks of RE - Domain analysis- process of duplicating

UNIT II TOOLS FOR RE

Functionality- dimensional- developing technical data - digitizing techniques - construction of surface model - solid-part material- characteristics evaluation -software and application- prototyping - verification

UNIT III

CONCEPTS

History of Reverse Engineering – Preserving and preparation for the four stage process – Evaluation and Verification- Technical Data Generation, Data Verification, Project Implementation

UNIT IV

DATA MANAGEMENT

Data reverse engineering – Three data Reverse engineering strategies – Definition – organization data issues - Software application – Finding reusable software components – Recycling real-time embedded software – Design experiments to evaluate a Reverse Engineering tool – Rule based detection for reverse Engineering user interfaces – Reverse Engineering of assembly programs: A model based approach and its logical basics

UNIT V

INTEGRATION

Cognitive approach to program understated – Integrating formal and structured methods in reverse engineering – Integrating reverse engineering, reuse and specification tool environments to reverse engineering –coordinate measurement – feature capturing – surface and solid members
REFERENCES

- 1. Design Recovery for Maintenance and Reuse, T J Biggerstaff, IEEE Corpn. July 1991
- 2. White paper on RE, S. Rugaban, Technical Report, Georgia Instt. of Technology, 1994
- 3. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994
- 4. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996
- 5. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996

6. Co-ordinate Measurment and reverse engineering, Donald R. Honsa, ISBN 1555897, American Gear Manufacturers Association

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech (QUALITY ENGINEERING AND MANAGEMENT)</u>

II- SEMESTER

L P C 4 - 4

DECISION SUPPORT SYSTEMS (16D36207)

(ELECTIVE-IV)

UNIT I DECISION MAKING

Managerial decision making, system modeling and support-preview of the modeling process-phases of decision making process.

UNIT II MODELING AND ANALYSIS

DSS components- Data warehousing, access, analysis, mining and visualization-modeling and analysis-DSS development.

UNIT III KNOWLEDGE MANAGEMENT

Group support systems- enterprise DSS- supply chain and DSS-knowledge management methods, technologies and tools.

UNIT IV INTELLIGENT SYSTEMS

Artificial intelligence and expert systems-concepts, structure, types-knowledge acquisition and validation, knowledge representation

UNIT V IMPLEMENTATION

Implementation, integration and impact of management support systems.

REFERENCES:

- 1. Efraim Turban and Jay E Aronson, Decision Support and Intelligent Systems, Pearson education Asia, Seventh edition, 2005.
- 2. Elain Rich and Kevin Knight, Artificial intelligence, TMH, 2006.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech (QUALITY ENGINEERING AND MANAGEMENT)</u>

II- SEMESTER

L P C 4 - 4

OPTIMIZATION TECHNIQUES (16D36208)

(ELECTIVE – IV)

(Common to Advanced Manufacturing Sysytems & Quality Engineering & Management)

Course Objectives:

1. To introduce the advanced optimization techniques such as classical optimization techniques, numerical optimization techniques and genetic algorithms.

2. Learn the knowledge to formulate optimization problems

UNIT - I

Classical optimization techniques: Single variable optimization with and without constraints, multi – variable optimization without constraints, multi – variable optimization with constraints – method of Lagrange multipliers, Kuhn-Tucker conditions.

UNIT - II

Numerical methods for optimization: Nelder Mead's Simplex search method, Gradient of a function, Steepest descent method, Newton's method, types of penalty methods for handling constraints.

UNIT - III

Genetic algorithm (GA) : Differences and similarities between conventional and evolutionary algorithms, working principle, reproduction, crossover, mutation, termination criteria, different reproduction and crossover operators, GA for constrained optimization, draw backs of GA,

Multi-Objective GA: Pareto's analysis, Non-dominated front, multi – objective GA, Non-dominated sorted GA, convergence criterion, applications of multi-objective problems

UNIT – IV

Genetic Programming (GP): Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP.

UNIT V

Applications of Optimization in Design and Manufacturing systems: Some typical applications like optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam and general optimization model of a machining process.

TEXT BOOKS:

- 1. Optimal design Jasbir Arora, Mc Graw Hill (International) Publishers
- 2. Optimization for Engineering Design Kalyanmoy Deb, PHI Publishers
- 3. Engineering Optimization S.S.Rao, New Age Publishers

REFERENCES:

1.Genetic algorithms in Search, Optimization, and Machine learning – D.E.Goldberg, Addison-Wesley Publishers

- 2. Genetic Programming- Koza
- 3. Multi objective Genetic algorithms Kalyanmoy Deb, PHI Publishers

Course Out comes:

- 1. Students at the end of the course learn advanced optimization techniques to show real-life problems
- 2. Students can able to formulate and solve various practical optimization problems in manufacturing and service organizations

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU **DEPARTMENT OF MECHANICAL ENGINEERING** M.Tech (QUALITY ENGINEERING AND MANAGEMENT)

II-SEMESTER

С Р 4

L

4

osce

RESEARCH METHODOLOGY (AUDIT COURSE)(15D54201)

RESEARCH METHODOLOGY

(Audit Course For M.Tech. -II Semester Program from 2015 admitted batches onwards)

UNIT I

Meaning of Research - Objectives of Research - Types of Research - Research Approaches - Guidelines for Selecting and Defining a Research Problem - research Design - Concepts related to Research Design - Basic Principles of Experimental Design.

UNIT II

Sampling Design - steps in Sampling Design - Characteristics of a Good Sample Design - Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement - Tests of Sound Measurement - Scaling and Scale Construction Techniques - Time Series Analysis - Interpolation and Extrapolation.

Data Collection Methods - Primary Data - Secondary data - Questionnaire Survey and Interviews.

UNIT III

Correlation and Regression Analysis - Method of Least Squares - Regression vs Correlation - Correlation vs Determination - Types of Correlations and Their Applications

UNIT IV

Statistical Inference: Tests of Hypothesis - Parametric vs Non-parametric Tests - Hypothesis Testing Procedure -Sampling Theory - Sampling Distribution - Chi-square Test - Analysis of variance and Co-variance - Multi-variate Analysis.

UNIT V

Report Writing and Professional Ethics: Interpretation of Data - Report Writing - Layout of a Research Paper -Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars - Professional Ethics in Research.

Text books:

- Research Methodology: Methods and Techniques C.R.Kothari, 2nd Edition, New Age International Publishers. 1.
- Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf 2.
- Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1" Edition, Excel 3. Books, New Delhi.

References:

- 1. Scientists must Write Robert Barrass (Available as pdf on internet)
- 2. Crafting Your Research Future -Charles X. Ling and Quiang Yang (Available as pdf on

internet)

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech (QUALITY ENGINEERING AND MANAGEMENT)</u>

II- SEMESTER

L P C 4 - 4

QUALITY ASSURANCE LAB (16D36209)

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

QUALITY ENGINEERING AND MANAGEMENT

I SEMESTER

S.No.	Course	Subject Name	Cate	Ho	urs] Weel	Per K	Credits			
	Code	-	Gory	L	Т	Ρ				
1	21D36101	Statistical Quality Control	PC	3	0	0	3			
2	21D35103	Precision Engineering	PC	3	0	0	3			
3	3 Professional Elective – I									
	21D36102	Quality Engineering in Manufacturing								
	21D36103	Probability and Statistical Methods	PE	3	0	0	3			
	21D36104	Dimensional Metrology & Inspection								
4	4 Professional Elective – II									
	21D36105	Supply Chain Management								
	21D36106	Technology Management	PE	3	0	0	3			
	21D36107	Data Analysis Techniques								
5	21D11109	Research Methodology and IPR	MC	2	0	0	2			
6	21D11110	English for Research Paper Writing								
	21D11111	Value Education	AC	2	0	0	0			
	21D11112	Pedagogy Studies								
7	21D36108	Quality Engineering – I Lab	PC	0	0	4	2			
8	21D36109	Simulation – I Lab	PC	0	0	4	2			
		Total		16	00	08	18			

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

QUALITY ENGINEERING AND MANAGEMENT

II SEMESTER

Course		Cate	Hours Per					
S.No.	Code	Subject Name	Gory	1	Week		Credits	
	Couc		dory	L	Т	Ρ		
1	21D36201	Reliability Engineering	PC	3	0	0	3	
2	21D36202	Lean Manufacturing and Six Sigma	PC	3	0	0	3	
3	Profession	al Elective – III						
	21D36203	Production and Operations Management						
	21D36204	Software Quality Management	PE	3	0	0	3	
	21D36205	Industrial Safety and Hygiene						
4	Profession	al Elective – IV						
	21D35208	Optimization Techniques		3				
	21D34208	Reverse Engineering	PE		0	0	3	
	21D36206	Decision Support Systems						
5	21D11209	Technical Seminar	PR	0	0	4	2	
6	21D11210	Disaster Management						
	21D11211	Constitution of India	AC	2	0	0	0	
	21D11212	Stress Management by Yoga						
7	21D36207	Quality Engineering-II Laboratory	PC	0	0	4	2	
8	21D36208	Simulation-II Laboratory	PC	0	0	4	2	
	Total						18	

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

QUALITY ENGINEERING AND MANAGEMENT

III SEMESTER

S.No.	Course	Subject Name	Cate	Hours Per Week C			Credits
	Code		Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D36301	Total Quality Management					
	21D36302	Quality Management Systems	PE	3	0	0	3
	21D36303	Quality Concepts in Product			Ũ	Ũ	Ū
		Development					
2	Open Elect	tive					•
	21D30301	Mechatronics	OE	3	0	0	3
3	21D36304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-curricular Activities	PR				2
		Total		06	00	20	18

IV SEMESTER

S.No. Course		ourse Subject Name Ga		Ho	urs I Weel	Per s	Credits	
	Coue		GULY	L	Т	Р		
1	21D36401	Dissertation Phase – II	PR	0	0	32	16	
		Total		00	00	32	16	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Course Code	21D36101	STATISTICAL QUALITY CONTROL	L	Т	Р	С
Semester	Ι	(21D36101)	3	0	0	3

Course Objectives: To help students understand the concepts underlying statistical quality control and to develop their ability to apply those concepts to the design and management of quality control processes in industries. Major topics include history and overview of the state of the art of quality control methodologies, tools for descriptive and predictive statistical analysis, design and use of

- methodologies, tools for descriptive and predictive statistical analysis, design and use of various control charts for quality control, process characterization and capability analysis, R&R gauge capability studies, design of experiments, acceptance sampling and continuous improvement.
- The emphasis will be on ensuring that the students gain both a broad perspective of quality control as well as the technical skills necessary to implement quality control in any industrial setting.

Course Outcomes (CO): Student will be able to

- Understand the philosophy and basic concepts of quality improvement.
- Describe the DMAIC process (define, measure, analyze, improve, and control).
- Demonstrate the ability to use the methods of statistical process control.
- Demonstrate the ability to design, use, and interpret control charts for variables.
- Demonstrate the ability to design, use, and interpret control charts for attributes.
- Perform analysis of process capability and measurement system capability.
- Design, use, and interpret exponentially weighted moving average and moving average control charts.

UNIT – I	INTRODUCTION	Lecture Hrs:9						
Quality Dimensions – Quality definitions – Inspection - Quality control – Quality Assurance								
– Quality planning - Quality costs – Economics of quality – Quality loss function								
UNIT – II	CONTROL CHARTS	Lecture Hrs:9						
Chance and assi	gnable causes of process variation, statistical basis of the con	trol chart,						
control charts for	or variables- X, R and S charts, attribute control charts - p, np	, c and u-						
Construction an	d application.							
UNIT – III	SPECIAL CONTROL PROCEDURES	Lecture Hrs:9						
Warning and m	odified control limits, control chart for individual measuren	nents, multi-vari						
chart, X - chart	with a linear trend, chart for moving averages and ranges,	cumulative-sum						
and exponential	ly weighted moving average control charts.							
UNIT – IV	STATISTICAL PROCESS CONTROL	Lecture Hrs:9						
Process stabilit	y, process capability analysis using a Histogram or proba	bility plots and						
control chart. G	auge capability studies, setting specification limits.							
UNIT – V	ACCEPTANCE SAMPLING	Lecture Hrs:9						
The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple,								
double, multipl	e and sequential, sampling plans for variables, MIL-STD-1	105D and MIL-						
STD-414E & IS	STD-414E & IS2500 standards.							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Textbooks:

- 1. Grant E.L. and Leavensworth, Statistical Quality Control, TMH, 2000.
- 2. IS 2500 Standard sampling plans

Reference Books:

1. Douglas C Montgomery, Introduction to Statistical Quality Control, John Wiley, Seventh Edition, 2012.

- 1. https://onlinecourses.nptel.ac.in/noc20_mg18/preview
- 2. https://nptel.ac.in/courses/110/105/110105088/
- 3. https://nptel.ac.in/courses/116/102/116102019/
- 4. https://nptel.ac.in/courses/116/102/116102019/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Course Code	21D35103	PRECISION ENGINEERING	L	Т	Р	С
Semester	Ι	(21D35103)	3	0	0	3

Course Objectives:

To impart knowledge about basics of precision machining and different Manufacturing technique in precision engineering.

- Accuracy and alignment tests.
- Influences of static stiffness and thermal effects.
- Precision machining.
- Nano measuring systems.
- Various lithography techniques

Course Outcomes (CO): Student will be able to

- Apply fits and tolerances for parts and assemblies according to ISO standards
- Apply selective assembly concept for quality and economic production
- Assign tolerances using principles of dimensional chains for individual features of a part or assembly.
- Evaluate the part and machine tool accuracies.

UNIT – I CONCEPTS OF ACCURACY	Lecture Hrs:9							
Introduction - Concept of Accuracy of Machine Tools - Spindle an	d Displacement							
Accuracies – Accuracy of numerical Control Systems – Errors due to Numerical								
Interpolation Displacement Measurement System and Velocity lags.								
GEOMETIC DEIMENSIONING AND TOLERANCING: Tolerance Zone Conversions								
- Surfaces, Features, Features of Size, Datum Features - Datum Oddly	Configured and							
Curved Surfaces as Datum Features, Equalizing Datum's – Datum Feature o	f Representation							
– Form controls, Orientation Controls – Logical Approach to Tolerancing.								
UNIT – II DATUM SYSTEMS	Lecture Hrs:9							
Design of freedom, Grouped Datum Systems - different types, two and	three mutually							
perpendicular grouped datum planes; Grouped datum system with spigot and	d recess, pin and							
hole; Grouped Datum system with spigot and recess pair and tongue	e – slot pair –							
Computation of Transnational and rotational accuracy, Geometric analysis and application.								
UNIT – III TOLERANCE ANALYSIS	Lecture Hrs:9							
Process Capability, Mean, Variance, Skewness, Kurtosis, Process Capabil	ity Metrics, Cp,							
Cpk, Cost aspects, Feature Tolerances, Geometric Tolerances. Surface fin	nish, Review of							
relationship between attainable tolerance grades and different mac	hining process,							
Cumulative effect of tolerances sure fit law, normal law and truncated norma	ıl law.							
UNIT – IV TOLERANCE CHARTING TECHNIQUES	Lecture Hrs:9							
Operation Sequence for typical shaft type of components, Preparation of P	rocess drawings							
for different operations, Tolerance worksheets and centrally analysis, Ex	amples, Design							
features to facilitate machining; Datum Features - functional and	manufacturing							
Components design - Machining Considerations, Redesign for manufactured	l, Examples.							
UNIT – V FOUNDAMENTALS OF NANOTECHNOLGY	Lecture Hrs:9							
Systems of nanometer accuracies - Mechanism of metal Processing -	Nano physical							
processing of atomic bit units. Nanotechnology and Electrochemical atomic	bit processing.							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

MEASURING SYSTEMS PROCESSING: In processing or in-situ measurement of position of processing point-Post process and on-machine measurement of dimensional features and surface-mechanical and optical measuring systems.

Textbooks:

- 1. Engineering Design A systematic Approach / Matousek / Blackie & Son Ltd., London
- 2. Precision Engineering/VC Venkatesh& S Izman/TMH

Reference Books:

- 1. Precision Engineering in Manufacturing/Murthy R.L./New Age International (P) limited, 1996.
- 2. Geometric Dimensioning and Tolerancing / James D. Meadows / Marcel Dekker inc. 1995.
- 3. Nano Technology / Norio Taniguchi / Oxford University Press, 1996

- 1. https://www.itsligo.ie/courses/beng-precision-engineering-design-online/
- 2. https://www.bachelorsportal.com/studies/249110/precision-engineering-and-design.html
- 3. https://engineering.purdue.edu/online/courses/precision-manufacturing-systems

Code (21D36102) I Semester II PE – 1 3 0 0 3 Course Objectives:	Course	21D36102	QUALITY ENGINEERING INMANUFACTURING	L	Т	Р	С				
Semester II PE-1 3 0 0 3 Course Objectives: • Explore knowledge of basic sciences engineering and manufacturing process. • Manage projects in various sectors of economy which facing on conceptual , technological and human aspects. • Identify the bottle ends and production process. • Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to • • Applications of the user friendly software packages to simulate the manufacturing entities. • Analyze the data by using different performance analysis techniques. • Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Punctional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter design, signal to noise ratios, Parameter design for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Crique of F-test, ANOV	Code		(21D36102)								
Course Objectives: • Explore knowledge of basic sciences engineering and manufacturing process. • Manage projects in various sectors of economy which facing on conceptual , technological and human aspects. • Identify the bottle ends and production process. • Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to • Applications of the user friendly software packages to simulate the manufacturing entities. • Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type.S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - II ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, No-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for f	Semester	II	PE – I	3	0	0	3				
Course Objectives: • Explore knowledge of basic sciences engineering and manufacturing process. • Manage projects in various sectors of economy which facing on conceptual , technological and human aspects. • Identify the bottle ends and production process. • Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to • Applications of the user friendly software packages to simulate the manufacturing entities. • Analyze the data by using different performance analysis techniques. • Modelling various operators in manufacturing systems UNIT • I QUALITY VALUE AND ENGINEERING • Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances.(N-type.S-type and L-type) UNIT • II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT • III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-w											
 Explore knowledge of basic sciences engineering and manufacturing process. Manage projects in various sectors of economy which facing on conceptual, technological and human aspects. Identify the bottle ends and production process. Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to Applications of the user friendly software packages to simulate the manufacturing entities. Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting metanalyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improv	Course Objectives:										
 Manage projects in various sectors of economy which facing on conceptual, technological and human aspects. Identify the bottle ends and production process. Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to Applications of the user friendly software packages to simulate the manufacturing entities. Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - V ORTHOGONAL ARRAYS Lecture Hrs:09 Typica test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09<	• Explore knowledge of basic sciences engineering and manufacturing process.										
human aspects. Identify the bottle ends and production process. Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to Applications of the user friendly software packages to simulate the manufacturing entities. Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 Introduction to extrating the mean. UNIT - IV ORTHOGONAL ARRAY	• Manage projects in various sectors of economy which facing on conceptual, technological and										
 Identify the bottle ends and production process. Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to Applications of the user friendly software packages to simulate the manufacturing entities. Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances. (N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting an analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigm	human aspects.										
 Similarity of the manufacturing process to analyze the overall performance Course Outcomes (CO): Student will be able to Applications of the user friendly software packages to simulate the manufacturing entities. Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - V ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture	• Identify	• Identify the bottle ends and production process.									
Course Outcomes (CO): Student will be able to • Applications of the user friendly software packages to simulate the manufacturing entities. • Analyze the data by using different performance analysis techniques. • Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter and tolerance designs. Lecture Hrs:09 UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V	Similar	ity of the ma	anufacturing process to analyze the overall performance								
 Applications of the user friendly software packages to simulate the manufacturing entities. Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Producti	Course Ou	itcomes (CO	D): Student will be able to								
 Analyze the data by using different performance analysis techniques. Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter design, signal to noise ratios, Parameter design of four level factors, multiple level factors. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Textbooks: Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et	Applica	ations of the	user friendly software packages to simulate the manufacturir	ng er	ntitie	es.					
 Modelling various operators in manufacturing systems UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter design, signal to noise ratios, Parameter design of ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: 	Analyz	e the data by	y using different performance analysis techniques.								
UNIT - I QUALITY VALUE AND ENGINEERING Lecture Hrs:09 An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. Lecture Hrs:09 UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. . 1. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl	Modell	ing various	operators in manufacturing systems								
An overall quality system, quality engineering in production design, quality engineering in design of production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 Six aging in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: 1. Taguchi Techniques applicad stars to Pohyter Design (Paran P. Parachi/Parantice Hell.)	UNIT - I	QUA	LITY VALUE AND ENGINEERING	Le	ctur	e Hr	s:09				
production processes. Loss Function and Quality Level: Derivation and use of quadratile loss function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 1. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: 1 Taguchi Techniques applicad is tape to Robust Descin/Ranen P. Racchi/Prantice Hell <td>An overall</td> <td>quality syst</td> <td>em, quality engineering in production design, quality enginee</td> <td>ering</td> <td>g in</td> <td>desi</td> <td>gn of</td>	An overall	quality syst	em, quality engineering in production design, quality enginee	ering	g in	desi	gn of				
function, economic consequences of tightening tolerances as a means to improve quality, evaluations and types tolerances.(N-type,S-type and L-type) UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lectu	production	processes.	Loss Function and Quality Level: Derivation and use of	f qu	adra	atile	loss				
and types toleracces.(N-type,S-type and L-type) Lecture Hrs:09 UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Icecture Hrs:09 UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. . 1. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. . 2. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989.	function, e	conomic cor	nsequences of tightening tolerances as a means to improve qu	ality	, ev	alua	tions				
UNIT - II TOLERANCE DESIGN AND TOLERANCING Lecture Hrs:09 Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation for another the type characteristics, tolerance allocation fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to orise ratios, Parameter design strategy, some of the case studies on parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter design, signal tolerance designs. Introduction to parameter design strategy, some of the case studies on parameter design, signal NTT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critiue of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesign, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DM-IC methodology, tools for process improvement, six sigma in services and small organizations, statistical methodology. Interface and and analyzing in Production systems I G. Taguchi, A. Elsayed et al ///. Graw Hill Intl. 1995.	and types t	olerances.(N	I-type,S-type and L-type)								
Functional limits, tolerance design for N-type. L-type and S-type characteristics, tolerance allocation fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. I. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. I. Torguchi Mathoda avalained: Practical stane to Pohyst Dacim /Panan P. Bacchi/Prantice Hall	UNIT - II	TOLI	ERANCE DESIGN AND TOLERANCING	Le	ctur	e Hr	s:09				
fbr multiple components. Parameter and Tolerance Design: Introduction to parameter design, signal to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Textbooks: 1. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. 2. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: 1. Taguchi Mathods avalained: Practical stars to Pohyst Design /Panan P. Bacchi/Prantice Hall.	Functional	limits, toler	ance design for N-type. L-type and S-type characteristics, tol	eran	ice a	lloc	ation				
to noise ratios, Parameter design strategy, some of the case studies on parameter and tolerance designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. Lecture Hrs:09 UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Lecture Hrs:09 1. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill Intl. II Edition, 1989. Reference Books: Reference Books: I Taguchi Arada analyzing an Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl.	fbr multipl	e componen	ts. Parameter and Tolerance Design: Introduction to parameter	ter d	lesig	gn, s	ignal				
designs. UNIT - III ANALYSIS OF VARIANCE (ANOVA) Lecture Hrs:09 Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critiue of F-test, ANOVA for four level factors, multiple level factors. Introduction to Introductio	to noise ra	atios, Param	eter design strategy, some of the case studies on paramet	er a	nd	tole	rance				
UNIT - IIIANALYSIS OF VARIANCE (ANOVA)Lecture Hrs:09Introduction toANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors.UNIT - IVUNIT - IVORTHOGONAL ARRAYSLecture Hrs:09Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation wethods, percent contributor, estimating the mean.Lecture Hrs:09UNIT - VSIX SIGMA AND THE TECHNICAL SYSTEMLecture Hrs:09Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology.Lecture Hrs:091. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995.II Edition, 1989.2. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989.II Taguchi Methods explained: Practical steps to Pohyst Design /Papan P. Pagchi/Praptice Hall.	designs.										
Introduction to ANOVA, Need for ANOVA, NO-way ANOVA, One-way ANOVA, Two-way ANOVA, Critiue of F-test, ANOVA for four level factors, multiple level factors. Image: Anova and State	UNIT - III	I ANAI	LYSIS OF VARIANCE (ANOVA)	Le	ctur	e Hr	s:09				
 ANOVA, Critique of F-test, ANOVA for four level factors, multiple level factors. UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Textbooks: 1. Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. 2. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: 1. Taguchi Methods explained: Practical steps to Pohyper Design (Papen P. Pagchi/Prantice Hall) 	Introductio	on to ANOV	VA, Need for ANOVA, NO-way ANOVA, One-way AN	OV.	А, Г	Two	-way				
UNIT - IV ORTHOGONAL ARRAYS Lecture Hrs:09 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Image: Control of Control o	ANOVA, O	Critique of F	E-test, ANOVA for four level factors, multiple level factors.								
 Typical test strategies, better test strategies, efficient test strategies, steps indesigning, conducting and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Textbooks: Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papen P. Bagchi/Preprice Hall 	UNIT - IV	ORTI	HOGONAL ARRAYS	Le	ctur	e Hr	s:09				
 and analyzing an experiment. Interpolation of Experimental Results: Interpretation methods, percent contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Textbooks: Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papan P. Bagchi/Prantice Hall 	Typical tes	st strategies,	better test strategies, efficient test strategies, steps indesig	ning	, cc	ondu	cting				
contributor, estimating the mean. UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Image: Constraint of the second secon	and analyz	ing an exper	riment. Interpolation of Experimental Results: Interpretation	metl	nods	s, pe	rcent				
UNIT - V SIX SIGMA AND THE TECHNICAL SYSTEM Lecture Hrs:09 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Image: Comparison of the services and small organizations, statistical foundations, statistical methodology. Textbooks: Image: Comparison of the services for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems I G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Image: Textbook Methods explained: Practical steps to Pohust Design /Papan P. Bagchi/Prentice Hall	contributor	, estimating	the mean.								
 Six sigma DMAIC methodology, tools for process improvement, six sigma in services and small organizations, statistical foundations, statistical methodology. Textbooks: Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papan P. Bagchi/Prentice Hall 	UNIT - V	SIX S	IGMA AND THE TECHNICAL SYSTEM	Le	ctur	e Hr	s:09				
 organizations, statistical foundations, statistical methodology. Textbooks: Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papan P. Bagchi/Prentice Hall 	Six sigma	DMAIC me	ethodology, tools for process improvement, six sigma in se	rvic	es a	ind s	small				
 Textbooks: Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papan P. Bagchi/Prentice Hall 	organizatio	ons, statistica	al foundations, statistical methodology.								
 Taguchi Techniques for Quality Engineering / Phillip J. Ross / McGraw Hill/ Intl. II Edition, 1995. Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papan P. Bagchi/Prentice Hall 	Textbooks	:									
 Quality Engineering in Production systems <i>I</i> G. Taguchi, A. Elsayed et al /Mc.Graw Hill Intl. Edition, 1989. Reference Books: Taguchi Methods explained: Practical steps to Pobust Design /Papan P. Bagchi/Prentice Hall 	1. Taguel 1995.	hi Techniqu	es for Quality Engineering / Phillip J. Ross / McGraw Hill	/ Int	1. II	Ed	ition,				
Reference Books:	2. Quality Edition	y Engineerir n, 1989 .	ng in Production systems I G. Taguchi, A. Elsayed et al /M	c.Gı	aw	Hill	Intl.				
1 Taguchi Methods explained: Practical stars to Pobust Design /Papan P. Bagchi/Prentice Hall	Reference	Books:									
1. Tagueni Memous explained. Tracileal sleps to Robust Design / apair L. Dagenin fendee fran	1. Tague	hi Methods e	explained: Practical steps to Robust Design /Papan P. Bagchi	Pre	ntice	e Ha	.11				
Pvt. Ltd., New Delhi.	Pvt. L	td., New Del	hi.								

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

- 1. <u>https://nptel.ac.in/courses/112/107/112107259/</u>
- $2. \ \underline{https://onlinecourses.nptel.ac.in/noc20_me27/preview}$
- 3. <u>https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-me27/</u>
- 4. <u>https://nptel.ac.in/courses/110/101/110101010/</u>
- 5. <u>https://onlinecourses.nptel.ac.in/noc20_mg18/preview</u>

Code(21D36103) PE – IIISemesterIPE – I3003Course Objectives:Course Objectives:To introduce the basic concepts of one dimensional and two dimensional Random Variables.To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis.To enable the students to use the concepts of multivariate normal distribution and principle components analysis.Course Outcomes (CO): Student will be able toThe course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problemsUNIT – IONE DIMENSIONAL RANDOM VARIABLESLecture Hrs:
Semester I PE – I 3 0 0 3 Course Objectives: •
 Course Objectives: To introduce the basic concepts of one dimensional and two dimensional Random Variables. To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis. To enable the students to use the concepts of multivariate normal distribution and principle components analysis. Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 Course Objectives: To introduce the basic concepts of one dimensional and two dimensional Random Variables. To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis. To enable the students to use the concepts of multivariate normal distribution and principle components analysis. Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 To introduce the basic concepts of one dimensional and two dimensional Random Variables. To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis. To enable the students to use the concepts of multivariate normal distribution and principle components analysis. Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 To provide information about Estimation theory, Correlation, Regression and Testing of hypothesis. To enable the students to use the concepts of multivariate normal distribution and principle components analysis. Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 hypothesis. To enable the students to use the concepts of multivariate normal distribution and principle components analysis. Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 To enable the students to use the concepts of multivariate normal distribution and principle components analysis. Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
components analysis. Course Outcomes (CO): Student will be able to • The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 Course Outcomes (CO): Student will be able to The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
 The course aims at providing the basic concepts of Probability and Statistical techniques for solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
solving mathematical problems which will be useful in solving Engineering problems UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
UNIT – I ONE DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
Random variables - Probability function – Moments – Moment generating functions and their
properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal
distributions – Functions of a Random Variable.
UNIT – II TWO DIMENSIONAL RANDOM VARIABLES Lecture Hrs:
Joint distributions - Marginal and Conditional distributions - Functions of two dimensional
random variables – Regression Curve – Correlation.
UNIT – III ESTIMATION THEORY Lecture Hrs:
Unbiased Estimators – Method of Moments – Maximum Likelihood Estimation - Curve fitting by
Principle of least squares – Regression Lines.
UNIT – IV TESTING OF HYPOTHESES Lecture Hrs:
Sampling distributions - Type I and Type II errors - Tests based on Normal, t, Chi-Square and F
distributions for testing of mean, variance and proportions – Tests for Independence of attributes
and Goodness of fit.
UNIT – V MULTIVARIATE ANALYSIS Lecture Hrs:
Random Vectors and Matrices - Mean vectors and Covariance matrices - Multivariate Normal
density and its properties - Principal components: Population principal components - Principal
components from standardized variables.
Textbooks:
1. Jay L. Devore, "Probability and statistics for Engineering and the Sciences", Thomson and
Duxbury, Singapore, 2002.
2. Richard Johnson. "Miller & Freund's Probability and Statistics for Engineer", Prentice–Hall of
India, Private Ltd., New Delhi, Seventh Edition, 2007.
3. Richard A. Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis",
Pearson Education, Asia, Fifth Edition, 2002.
Keterence Dooks:
1. Gupta S.C. and Kapoor V.K. Fundamentals of Mathematical Statistics, Sultan and Sons, New Date: 2001
Dellin, 2001. 2 Dellas E Johnson et al "Annlied multiveriete methods for dete englysic" Themson
2. Danas E Johnson et al., Applieu mutrivariate methous foi uata analysis, moment

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

- https://onlinecourses.nptel.ac.in/noc21_ma74/preview
- https://nptel.ac.in/courses/111/105/111105041/
- https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ma02/
- https://nptel.ac.in/courses/111/105/111105090/

Course	21D36104	DIMENSIONAL METROLOGY & INSPECTION	L	Τ	Р	С					
Code		(21D36104)									
Semester	Ι	PE – I	3	0	0	3					
Course Objectives: Students are expected to											
• Select suitable instrument / gauge / method of inspection for determining geometrical and											
dimensional measurements.											
Calibra	• Calibrate measuring instruments and also design inspection gauges.										
• Unders	• Understand the advances in Metrology such as use of CMM, Laser, Machine Vision System										
for Met	rology etc.										
• Select a	and apply app	ropriate Quality Control Technique for given application									
• Select	and Apply a	ppropriate Quality Management Tool and suggest appropriate	opria	te C	Qual	ity					
Manage	ement System	n (QMS).									
Course Ou	tcomes (CO): Student will be able to									
• Unders	tand the meth	nods of measurement and selection of measuring instrum	ents	,sta	nda	rds					
of meas	surement										
• Identify	and apply v	arious measuring instruments									
• Explain	tolerance, li	mits of size, fits, geometric and position tolerances and ga	uge	desi	gn						
• Recom	mend the Qua	ality Control Techniques and Statistical Tools appropriate	ly								
Analyz	e the Data col	llected									
Develop	p an ability o	f problem solving and decision making by identifying an	d ana	alyzi	ng	the					
cause fo	or variation a	nd recommend suitable corrective actions for quality imp	rovei	ment	t						
UNIT - I	LINEAR	MEASUREMENT AND ANGULAR	Lee	ctur	e H	rs:					
		REMENT									
Accuracy,	Precision, H	Readability, Sensitivity, Linear measuring instrument	s -	veri	nier	1					
micrometer	-Gauge bloc	cks- dial indicator-comparators – Angle standards –	veri	nier	be	vei					
protractor-s	$\frac{\sin \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta}$	DOCUMMATOR.	La		T La						
$\mathbf{UNII} - \mathbf{II}$	SI ANDA MEASUE	KDS FUK LINEAK AND ANGULAK DEMENTS	Lec	lure	e H r	S:					
Shop floor	standards and	their colibration light interference. Method of coincide	nco	Slin	0.01	100					
calibration	Massuremer	t then canoration, light interference, Method of confide	ice,	Sub	gat	ige					
		TREMENT APPI ICATION	Leo	rture	Hr	·c ·					
Measureme	ent of screw t	hreads and gears $-$ Radius measurement $-$ surface finish	mea	sure	mer	<u>s.</u> nt -					
Measureme	ent of straight	ness-flatness-narallelism – squareness-roundness – circul	arity	Juic	mei	п					
UNIT – IV		RN CONCEPTS	Leo	ture	Hr	s.					
Image proc	cessing and it	ts application in Metrology. Co-ordinate measuring mac	hine		mes	of					
CMM. Pro	obes used.	Application. Non-contact CMM using Electro-optica	al se	enso	rs	for					
dimensiona	al metrology.										
UNIT – V	MEASU	UREMENT SYSTEMS	Lec	cture	Hr	s:					
System co	nfiguration,	basic characteristics of measuring devices, Displacem	ent,	forc	e a	and					
torque me	asurement, s	standards, Calibration, Sensors, Basic principles and	i co	once	pts	of					
temperatur	e, Pressure an	d flow measurement, Destructive testing - Non-destructi	ve te	stinį	z.						
Textbooks	:										
1. R.K	.Jain ,Engine	ering metrology, khanna publisher, 2009.		_							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

2. M. Mahajan, Text book of Metrology, DhanpatRai& Co P Ltd ,2012

Reference Books:

- 1. Galyer J.F. and ShotboltC.R."Metrology for Engineers" ELBS, 1992.
- 2. Hune, K.J.Engineering Metrology, Kalyani Publishers, India, 1980.
- 3. Robinson, S.L. and Miller R.K. Automated Inspection and Quality Assurance, Marcel Dekker Inc.1989.

- 1. https://nptel.ac.in/courses/112/104/112104250/
- 2. https://nptel.ac.in/courses/116/102/116102029/
- 3. https://nptel.ac.in/courses/112/107/112107259/

Course Code	21D36105	SUPPLY CHAIN MANAGEMENT	L	Τ	Р	С					
Semester	Ι	(21D36105)	3	0	0	3					
		PE – II									
Comme Objectives											
Course Objectives:											
• To develop an understanding of basic concepts and role of Logistics and supply chain											
management in business.											
• To understand how supply chain drivers play an important role in redefining value chain											
• To develop	excellence of Firms.										
• To develop	of supply ch	and critical understanding & skins for plaining	, ue	sigin	ng a	mu					
To understa	and approved	and integrate various supply chain strategies									
Course Outcou	mes (CO) · S	Student will be able to									
Understand	the fundam	uentals of elements and functions of supply chain	rol	e of	driv	ers					
and demand	d forecasting		, 101	0 01	unv	015					
To apply va	arious techni	aues of inventory management and their practical	situ	atior	IS.						
Analyze ho	w supply ch	ain decisions related to facility location can be an	plie	d to	vario	ous					
industries a	and designing	g the supply chain.	Pne	u 10	, al l	540					
How variou	us warehous	sing management system and transportation can	be 1	pract	iced	in					
various ind	ustries?			L							
How logist	tics and sup	ply chain strategies can create value generation	an	d uti	ilise	IT					
application	s How suppl	y chain performance can be measured using various	us m	odel	s?						
UNIT – I IN	NTRODUC'	FION TO SUPPLY CHAIN	Lee	cture	Hrs	:					
M	IANAGEM	ENT									
Supply chain st	tages and de	cision phases process view of a supply chain. Sup	ply c	chair	ı flov	WS.					
Examples of su	ipply chains	. Competitive and supply chain strategies. Achiev	ing s	strate	egic	tit.					
Expanding stra	tegic scope.	Drivers of supply chain performance. Framework	c tor	stru	ctur	ing					
Univers - Obstac	DESIGNI	NC THE SUDDI V CHAIN NETWORK	La	oturo	Uro	•					
Distribution N	otworking	Pole Design Supply Chain Network (SCN)	Lee Po		Facto	ore					
Framework for	r Design D	ecisions Models for facility location and can	- Ku	alle	racii	лз, 01					
Impact of unce	ertainty on S	SCN – discounted cash flow analysis evaluating	nety	vork	des	ign					
decisions using	decision us	ing decision trees.	11000	, 0111	ues.	.9					
UNIT – III	SOURCIN	I. TRANSPORTATION AND PRICING	Lee	cture	Hrs	:					
Role of sourc	ing, supplie	er – scoring and assessment, selection and co	ntra	cts.	Des	ign					
collaboration.	Role of tran	sportation, Factors affecting transportation decis	ions	. M	odes	of					
transportation	and their p	performance characteristics. Designing transpor	tatio	n n	etwo	ork.					
Trade-off in t	ransportatio	n design. Tailored transportation, Routing and	scl	hedu	ling	in					
transportation.	Internationa	l transportation. Analytical problems. Role Reven	ue N	Iana	gem	ent					
in the supply	chain, Reve	enue management for: Multiple customer segme	ents,	, per	risha	ble					
assets, seasonal	I demand, bu	alk and spot contracts.	-								
UNIT – IV	COORDI	NATION AND TECHNOLOGY	Lee	cture	Hrs	:					
Co-ordination	in a supply	chain: Bullwhip effect. Obstacles to coordinati	on.	Mar	age	rial					
levers to achieve co-ordination, Building strategic partnerships. The role of IT supply Chain,											

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

The Supply Chain IT framework, CRM, Internal SCM, SRM. The role of E-business in a supply chain, The E-business framework, E-business in practice. Case discussion.

UNIT – VEMERGING CONCEPTSLecture Hrs:3PL- 4PL- Global Logistics -Reverse Logistics; Reasons, Activities, Role. Ware house
Management-RFID Systems; Components, applications, implementation. Lean supply
Chains-Sustainable supply ChainsLecture Hrs:

Textbooks:

- 1. Jeremy F.Shapiro, Modeling the supply chain, Thomson Duxbury, 2006.
- 2. David SimchiLevi, PhilipKaminsky and Edith Simchi Levi, Designing and Managing the Supply Chain, McGraw Hill, 2009

Reference Books:

- 1. Sunil Chopra, Peter Meindl and Kalra, Supply Chain Management, Strategy, Planning, and operation, Pearson Education, 2013.
- 2. Robert B Handfield, Ernest L Nichols, Jr., Supply Chain Redesign Transforming Supply Chains into Integrated Value Systems, Pearson Education, 2002.

- 1. https://nptel.ac.in/courses/110/106/110106045/
- 2. https://nptel.ac.in/courses/110/107/110107074/
- 3. https://nptel.ac.in/courses/110/108/110108056/
- 4. https://nptel.ac.in/courses/110/105/110105141/

Course Code	21D36106	TECHNOLOGY MANAGEMENT	L	Τ	Р	С		
Semester	Ι	(21D36106)	3	0	0	3		
		PE – II						
Course Object	tives:							
Understand	ing of the co	oncepts and techniques of strategy technology mar	ager	ment	t;			
• An ability t	o critically	analyse the behaviour or organizations and organi	satic	onal	men	ibers		
in developi	ng, impleme	enting, and managing technology from a strategic p	persp	ecti	ve; a	nd		
• The capacity	ity to critic	cally evaluate the strategic management of te	echno	olog	y w	ithin		
diversified	companies.							
Course Outco	mes (CO): S	Student will be able to						
• The learner	will demor	strate through a written class assignment the abil	ity to	o rea	ad co	ourse		
materials an	nd textbook,	, analytically comprehend the content, organize a	nd sı	umm	nariz	e the		
major poin	ts to others	in an effective and concise manner consist w	ith a	ı jur	nior	level		
university s	student.							
• The learner	r will demo	nstrate through a written class assignment the a	bilit;	y to	rese	earch		
course rel	ated literat	ture, understand and compose comprehensi	ve	and	coi	ncise		
definitions/	descriptions	of specific terminology, management princip	les,	mai	nage	ment		
theory and	managemen	t practices directly related to the course of study.						
• The learner	will demon	nstrate the ability to conduct a comprehensive re	view	/ of	litera	ature		
outside the	course text	book and to develop written documents that effe	ctive	ely e	xpla	in to		
others the	key areas o	f understanding and practices that are required	of c	conte	empo	orary		
managers of	of technolog	y. The learner will demonstrate through class	part	icipa	ation	and		
required wr	ritings a wor	king knowledge of and an advanced understandin	g of	the o	disci	pline		
that constitu	utes technol	ogy management.						
• The learne	er will den	nonstrate through discussion boards, written	assig	nme	ents,	and		
classroom	presentation	the ability to effectively apply the principles	and	pra	ctice	es of		
technology	managemen	t to a real-world environment/enterprise.						
UNIT – I	INTRODU	UCTION	Lec	cture	e Hrs	•		
Technology ma	anagement -	Scope, components, and overview. Technology	and	envi	ironn	nent,		
Technology an	d society, T	Technology Impact analysis, environmental, soci	al, le	egal,	pol	itical		
aspects, techni	ques for an	alysis - steps involved. Technology policy strat	egy:	Sci	ence	and		
technology Policy of India, implications to industry, The dynamics of technology change.								
UNIT – II	TECHNO	LOGY FORECASTING	Lec	cture	e Hrs	•		
Need, methodology and methods - trend Analysis, Analogy, Delphi, Soft System								
Methodology, Mathematical Models, Simulation, and System Dynamics.								
UNIT - III TECHNOLOGY CHOICE AND EVALUATION Lecture Hrs:								
Issues in the development new high tech products, Methods of analyzing alternate								
technologies, Techno-economic feasibility studies, Need for multi-criteria considerations such								
as, social, environmental, and political, Analytic hierarchy method, Fuzzy multi-criteria								
decision makin	g, and other	methods.	T					
UNIT – IV	TECHNO	LOGY TRANSFER AND ACQUISITION		cture	Hrs	<u>:</u>		
Import regulati	ions, Implic	ations of agreements like Uruguay Round and	wTC), В	argai	ning		
process. Trans	ster option.	NIQU- Technology Adoption and Producti	V1tv		Adoi	oting		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

technology-human interactions, Organizational redesign and re-engineering, Technology productivity.

UNIT – V TECHNOLOGY ABSORPTION AND INNOVATION Lecture Hrs:

Present status in India, Need for new outlook, Absorption strategies for acquired technology, creating new/improved technologies, Innovations, Technology Measurement- Technology Audit, Risk and exposure, R&D portfolio management

Textbooks:

- 1. Irvin M. Rubin, Organisational behavior an experimental approach, Prentice Hall, 1995
- 2. Gerard H. Gaynor, Handbook of Technology Management, McGraw-Hill Professional, 1996
- 3. Richard C. Dorf, Technology Management Handbook, CRC, 1999

Reference Books:

- 1. Joseph M. Putti, Management A Functional Approach, McGraw Hill, 1997
- 2. Kenneth C. Lauden, MIS: Organisation and Technology, Prentice Hall, 1995
- 3. James A.Senn, Information technology in Business, Prentice Hall, 1995
- 4. Ronald J. Jordan, Security analysis and Portfolio Management, Prentice Hall, 1995

- 1. https://onlinecourses.nptel.ac.in/noc20_mg60/preview
- 2. https://nptel.ac.in/courses/110/105/110105148/

Course Code	21D36107	DATA ANALYSIS TECHNIQUES	L	Т	P	C			
Semester	Ι	(21D36107)	3	0	0	3			
		PE – II		<u> </u>					
Course Objectives:									
• Gather suff	icient releva	ant data, conduct data analytics using scientific m	etho	ds, a	ind n	nake			
appropriate	and powe	rful connections between quantitative analysis	s an	d re	eal-w	/orld			
problems.									
Demonstrat	e a sophisti	cated understanding of the concepts and methods	s; kn	IOW 1	the e	exact			
scopes and	possible lim	itations of each method; and show capability of us	sing	data	anal	ytics			
skills to pro	ovide constru	ictive guidance in decision making.							
• Use advance	ced techniqu	ies to conduct thorough and insightful analysis,	and	inte	rpret	t the			
results corre	ectly with de	etailed and useful information.							
• Show subst	tantial under	rstanding of the real problems; conduct deep da	ta ar	ialyt	ics u	ising			
correct me	thods; and	draw reasonable conclusions with sufficient	exp	lana	tion	and			
elaboration.									
• Write an i	nsightful ar	nd well-organized report for a real-world case	stuc	iy, i	nclu	ding			
thoughtful a	and convinci	ing details.							
Course Outcon	$\frac{\text{mes}(CO): S}{1}$	Student will be able to				<u>C (1</u>			
• To provide	delegates w	ith both an understanding and practical experience	e to e	i ran	ge of	f the			
more comm	non analytica	al techniques and representation methods for nume	erical	i data	a				
• To give de	elegates the	ability to recognize which types of analysis a	re b	est s	suite	d to			
particular ty	ypes of prob	lems							
• To give de	legates suff	icient background and theoretical knowledge to	be a	able	to jı	ıdge			
when an ap	plied technic	que will likely lead to incorrect conclusions							
• To provide	delegates v	with a working vocabulary of analytical terms t	o en	able	ther	n to			
converse w	with people	who are experts in the areas of data analys	is. s	statis	stics	and			
probability	and to be a	ble to read and comprehend common textbooks at	nd io	nirne	l art	icles			
in this field			ia jo	61110	i uit	10105			
To introduc	o somo basi	a statistical matheds and concents							
			Lar		ILas				
UNII – I	SIAIISI.	ICAL DATA ANALYSIS	Lec	ture	Hrs:	C			
Data and Statis	tics- Review	of Basic Statistical Measures-Probability Distribute	ltion	s-1e	sting	5 OI			
Hypotheses-Ind			Lac	turo	Ura				
UNII – II Introduction	DATA AN	ALISISI nta Univariata Di variata and Multi variata ta	chri		$\frac{\Pi S}{T}$				
Introduction – Basic concepts – Uni-variate, Bi-variate and Multi-variate techniques – Types									
or multivariate techniques – Classification of multivariate techniques – Guidennes for multivariate analysis and interpretation. Approaches to multivariate model building									
Intervalue Interpretation – Approaches to intervalue model building. UNIT III DATA ANALVSIS II									
UNII – III DAIA ANALISIS II Lecture Hrs: Simple and Multiple Linear Degression Analysis Introduction Desig concerts Multiple									
linear regression model – Least square estimation – Inferences from the estimated regression									
function – Validation of the model. Factor Analysis: Definition – Objectives – Approaches to									
factor analysis	– Methods	of estimation – Factor rotation – Factor scores -	Sun	n of	vari	ance			
explained – Int	erpretation of	of results .Canonical Correlation Analysis - Object	tives	3 – C	lanor	nical			
variates and canonical correlation – Interpretation of variates and correlations.									

UNIT – IVDATA ANALYSIS IIILecture Hrs:
Multiple Discriminant Analysis - Basic concepts - Separation and classification of two
populations - Evaluating classification functions - Validation of the model. Cluster Analysis -
Definitions – Objectives – Similarity of measures – Hierarchical and Non – Hierarchical
clustering methods – Interpretation and validation of the model.
UNIT - VDATA ANALYSIS IVLecture Hrs:
Conjoint Analysis - Definitions - Basic concepts - Attributes - Preferences - Ranking of
Preferences – Output of Conjoint measurements – Utility - Interpretation. Multi-Dimensional
Scaling - Definitions - Objectives - Basic concepts - Scaling techniques - Attribute and Non-
Attributes based MDS Techniques - Interpretation and Validation of models. Advanced
Techniques – Structural Equation modelling
Textbooks:
1. Richard A Johnson and Dean W.Wichern, Applied Multivariate Statistical Analysis,
Prentice Hall, New Delhi, 2012.
Reference Books:
1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham& William C. Black, Multivariate
Data Analysis, Pearson Education, New Delhi, 2010.
2. David R Anderson, Dennis J Sweeney and Thomas A Williams, Statistics for Business and
Economics, Thompson, Singapore, 2011.
Online Learning Resources:
1 https://pptel.ag.ip/courses/110/104/110104004/

- 2. https://nptel.ac.in/courses/110/104/110104094/
- 3. https://onlinecourses.nptel.ac.in/noc21_mg02/preview

Course	21D36108	QUALITY ENGINEERING-I	L	Т	Р	С			
Code		LABORATORY							
Semester	Ι	(21D36108)	0	0	4	2			
Course C	bjectives:								
Course C	utcomes (CO):							
List of Ex	xperiments:								
1. Te di	1. Testing the goodness of fit for the quality characteristic of component using normal distribution.								
2. те	sting the good	lness of fit for the quality characteristic using Poisso	on dis	stribu	ition				
3. Te di	esting the goo stribution.	odness of fit for the given quality characteristic	e usi	ng]	Bino	mial			
4. Testing the goodness of fit for the given quality characteristic using uniform distribution.									
5. Aj	oplication of 7	QC tools as applied to manufacturing and service o	perat	ions					
6. Assessment of process capability of the given manufacturing process using normal probability paper method.									
Reference	es:								
Online lea	arning resourc	es/Virtual labs:							

SemesterII(21D36109)004Course Objectives:• To understand the various Simulation ProcessesCourse Outcomes (CO):LIST OF EXPERIMENTS:LIST OF EXPERIMENTS:CYCLE-I: DEMO EXPERIMENTS1. MATLAB Commands and Examples2. Built-in functionsRELIABILITY SOFTWARE MODULES1. SPARE Software package2. Failure Mode Software Package2. Failure Mode Software package3. FMEA-RPN Software package4. SPC Software package2. Characteristics of Binomial and Poisson distributions2. Characteristics of Binomial and Poisson distributions2. Characteristics of Normal and Log-Normal distributions3. Characteristics of Normal and Log-Normal distributions4. Determination of MTTF for series and parallel systems5. Evaluation of Limiting State Probabilities (LSPs)References:	Course Code	21D36109	SIMULATION-I LABORATORY	L	Τ	Р	C
Course Objectives: Image: Constant of the various Simulation Processes Course Outcomes (CO): Image: Constant of the various Simulation Processes Course Outcomes (CO): Image: Constant of the various Simulation Processes LIST OF EXPERIMENTS: Image: Constant of the various Simulation Processes CYCLE-1: DEMO EXPERIMENTS Image: Constant of the various Simulation Processes Image: CYCLE-1: DEMO EXPERIMENTS Image: Constant of the various Simulation Processes Image: CYCLE-1: DEMO EXPERIMENTS Image: Constant of the various Simulation Processes Image: Cycle Simulation Processes Image: Constant of the various Simulation Processes Image: Cycle Simulation Processes Image: Cycle	Semester	II	(21D36109)	0	0	4	2
Course Objectives: • To understand the various Simulation Processes Course Outcomes (CO): LIST OF EXPERIMENTS: CYCLE-I: DEMO EXPERIMENTS 1. MATLAB Commands and Examples 2. Built-in functions RELIABILITY SOFTWARE MODULES 1. SPARE Software package 2. Failure Mode Software Package 3. FMEA-RPN Software package 4. SPC Software package 1. Characteristics of Binomial and Poisson distributions 2. Characteristics of Exponential and Weibull distributions 3. Characteristics of Normal and Log-Normal distributions 4. Determination of MTTF for series and parallel systems 5. Evaluation of Limiting State Probabilities (LSPs)	Semester				Ŭ	-	
 To understand the various Simulation Processes Course Outcomes (CO): LIST OF EXPERIMENTS: CYCLE-I: DEMO EXPERIMENTS MATLAB Commands and Examples Built-in functions RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	Course Object	ives:					
Course Outcomes (CO): LIST OF EXPERIMENTS: CYCLE-I: DEMO EXPERIMENTS 1. MATLAB Commands and Examples 2. Built-in functions RELIABILITY SOFTWARE MODULES 1. SPARE Software package 2. Failure Mode Software Package 3. FMEA-RPN Software package 4. SPC Software package CYCLE-II: TESTING PROGRAMS 1. Characteristics of Binomial and Poisson distributions 2. Characteristics of Exponential and Weibull distributions 3. Characteristics of Normal and Log-Normal distributions 4. Determination of MTTF for series and parallel systems 5. Evaluation of Limiting State Probabilities (LSPs) References:	• To understa	nd the various	Simulation Processes				
LIST OF EXPERIMENTS: CYCLE-I: DEMO EXPERIMENTS 1. MATLAB Commands and Examples 2. Built-in functions RELIABILITY SOFTWARE MODULES 1. SPARE Software package 2. Failure Mode Software Package 3. FMEA-RPN Software package 4. SPC Software package CYCLE-II: TESTING PROGRAMS 1. Characteristics of Binomial and Poisson distributions 2. Characteristics of Exponential and Weibull distributions 3. Characteristics of Normal and Log-Normal distributions 4. Determination of MTTF for series and parallel systems 5. Evaluation of Limiting State Probabilities (LSPs) References:	Course Outcon	mes (CO):					
LIST OF EXPERIMENTS: CYCLE-I: DEMO EXPERIMENTS 1. MATLAB Commands and Examples 2. Built-in functions RELIABILITY SOFTWARE MODULES 1. SPARE Software package 2. Failure Mode Software Package 3. FMEA-RPN Software package 4. SPC Software package CYCLE-II: TESTING PROGRAMS 1. Characteristics of Binomial and Poisson distributions 2. Characteristics of Exponential and Weibull distributions 3. Characteristics of Normal and Log-Normal distributions 4. Determination of MTTF for series and parallel systems 5. Evaluation of Limiting State Probabilities (LSPs) References:							
 LIST OF EXPERIMENTS: CYCLE-I: DEMO EXPERIMENTS MATLAB Commands and Examples Built-in functions RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 							
 CYCLE-I: DEMO EXPERIMENTS MATLAB Commands and Examples Built-in functions RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	LIST OF EXP	ERIMENTS:					
 CYCLE-I: DEMO EXPERIMENTS MATLAB Commands and Examples Built-in functions RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 							
 MATLAB Commands and Examples Built-in functions RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) References: References: Command: State Probabilities (LSPs) References: References: Command: State Probabilities (LSPs) References: Command: State Probabilities (LSPs) References: References: Command: State Probabilities (LSPs) References: References: Command: State Probabilities (LSPs) References: Command: State Probabilities (LSPs) References: Command: State Probabilities (LSPs) Command: State Probabilities (LSPs) Command: State Probabilities (LSPs) Command: State Probabilities (CYCLE-I: DE	MO EXPERI	MENTS				
 Built-in functions RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	1. MATLA	AB Commands	and Examples				
 RELIABILITY SOFTWARE MODULES SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	2. Built-in	functions					
 SPARE Software package Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	RELIABII	JITY SOFTW	ARE MODULES				
 Failure Mode Software Package FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	1. SPARE	Software pack	age				
 FMEA-RPN Software package SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	2. Failure	Mode Software	e Package				
 4. SPC Software package CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) References: 	3. FMEA-	RPN Software	package				
 CYCLE-II: TESTING PROGRAMS Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) References: 	4. SPC So	ftware package	•				
 Characteristics of Binomial and Poisson distributions Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) 	CYCLE-II: TI	ESTING PRO	GRAMS				
 Characteristics of Exponential and Weibull distributions Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) References:	1. Charact	eristics of Bind	omial and Poisson distributions				
 Characteristics of Normal and Log-Normal distributions Determination of MTTF for series and parallel systems Evaluation of Limiting State Probabilities (LSPs) References:	2. Charact	eristics of Exp	onential and Weibull distributions				
 4. Determination of MTTF for series and parallel systems 5. Evaluation of Limiting State Probabilities (LSPs) 	3. Charact	eristics of Nori	nal and Log-Normal distributions				
5. Evaluation of Limiting State Probabilities (LSPs) References:	4. Determi	nation of MTT	F for series and parallel systems				
References:	5. Evaluat	ion of Limiting	State Probabilities (LSPs)				
References:		c					
	References:						

Course Code	21D36201	RELIABILITY ENGINEERING	L	Т	P	С		
Semester	II	(21D36201)	3	0	0	3		
Course Objectives:								
• This course	is designed	to introduce basic concepts of maintenance and	relia	bilit	y to	the		
students, to	introduce va	rious methods of reliability analysis with real tim	e pr	oblei	, ms w	vith		
constraints	and to make	understanding the applications of Reliability and	nd N	Main	tena	nce		
analysis in c	lifferent type	s of systems.						
Course Outcor	nes (CO): St	udent will be able to						
• Explain the	basic concep	ts of Reliability Engineering and its Understand n	neas	ures				
• Predict the l	Reliability at	system level using various models.						
• Design the t	test plan to m	eet the reliability Requirements.						
• Predict and	estimate the	reliability from failure data.						
• Develop and	d implement	a successful Reliability programme.						
UNIT - I RI	ELIABILITY	Y CONCEPTS	Le	cture	Hrs	:		
Reliability defi	inition – Qı	ality and Reliability- Reliability mathematics	3 —	Rel	iabil	ity		
functions – Ha	zard rate –	Measures of Reliability – Design life – A priori	and	d po	steri	ori		
probabilities – I	Mortality of a	component – Mortality curve – Useful life.		•				
UNIT – II LI	FE DATA A	NALYSIS	Le	cture	Hrs	:		
Data collection	-Non Paran	netric methods: Ungrouped/Grouped, Complete/	Cens	sored	l dat	a –		
Time to failure	distributions	: Exponential, Weibull – Probability plotting –	Goo	odnes	ss of	fit		
tests.								
UNIT – III I	RELIABILI	FY ASSESSMENT	Le	cture	Hrs	:		
Different confi	gurations – 1	Redundancy - k out of n system - Complex s	yste	ms:	RBI) –		
Baye's approact	h – Cut and t	ie sets – Fault Trees – Standby systems.						
UNIT – IV R	ELIABILIT	Y MONITORING	Le	cture	Hrs	:		
Life testing me	thods: Failure	e terminated – Time terminated – Sequential Test	ing	-Re	liabi	lity		
growth monitor	ing – Reliabi	lity allocation – Software reliability-Human relial	<u>oility</u>	у.				
UNIT – V RI	ELIABILITY	Y IMPROVEMENT	Le	cture	Hrs	:		
Analysis of do	wntime – R	epair time distribution - System repair time -	Ma	intai	nabi	lity		
prediction – Me	easures of ma	intainability – Inspection decisions –System Avai	labi	lity.				
Textbooks:								
1. Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH 2000								
Reference Boo	ks:							
1. Roy Bi	lling ton ar	d Ronald N. Allan, "Reliability Evaluation	of	Engi	neer	ing		
Systems", Springer, 2007.								
Online Learning Resources:								
1. https://n	ptel.ac.in/cou	urses/105/108/105108128/						
2. https://w	www.youtube	.com/watch?v=uw8-XO630dw						
3. https://www.youtube.com/watch?y=uutg8iKrL9w								

Course Code	21D36202	LEAN MANUFACTURING AND SIX SIGMA	L	Т	Р	С		
Semester	II	(21D36202)	3	0	0	3		
			<u> </u>					
Course Objectives:								
• To imp	• To impart knowledge for facilitating worker environment to identify hidden							
	rt knowledge	on systematic approach for implementing						
Course Ou	tcomes (CO)	• Student will be able to						
Identify	and Quantify	the hidden manufacturing wastes in industries						
 Analyze 	the effective	ness of lean manufacturing tools						
 Develor 	a roadman f	or successful implementation of lean principles						
 Identify 	and organize	the elements of just in time manufacturing						
UNIT - I		TION TO LEAN MANUFACTURING AND SIX	Lect	ure	Hr	s:		
	SIGMA		2000					
Introduction	n to Lean- D	efinition, Purpose, features of Lean ; top seven was	stes,	Nee	ed t	for		
Lean, Elem	ents of Lean	Manufacturing, Lean principles, the lean metric, Hidd	len ti	ime	tra	ps.		
Introduction	n to quality,	Definition of six sigma, origin of six sigma, Six si	igma	co	nce	pt,		
Critical suc	cess factors fo	or six sigma.						
UNIT – II	LEAN SIX	SIGMA APPROACH	Lect	ure	Hrs	3:		
Evolution o	of lean six sign	ma, the synergy of Lean and six sigma, Definition of le	ean s	ix s	ign	na,		
the principl	es of lean six	x sigma, Scope for lean six sigma, Features of lean si	ix si	gma	1, T	he		
laws of lear	n six sigma, B	enefits of lean six sigma, Introduction to DMAIC tools						
UNIT – III	INITIATI	ON FOR LEAN SIX SIGMA	Lect	ure	$\frac{\text{Hrs}}{2}$	s:		
Top manag	gement comm	nitment – Infrastructure and deployment planning, F	roce	SS 1	toci	us,		
organization	hal structures,	, Measures – Rewards and recognition, infrastructure to	SOIS,	stru	acti	ire		
UNIT IV		SELECTION FOR LEAN SIX SIGMA	Loci	uro	Un			
$\mathbf{U}\mathbf{N}\mathbf{I}\mathbf{I} = \mathbf{I}\mathbf{v}$	FROJECT	action Selection of Black helts. Selecting projects	Leci Boni	uie afit/		s. ort		
graph Pro	nu project ser	y value stream manning Balanced score card	for	r n	roie	ect		
identificatio	on. project sui	table for lean six sigma.	101	· P	TOJ			
UNIT – V	THE DMA	IC PROCESS AND INSTITUTIONALIZING	Lec	ture	Hr	s:		
	THE LSS							
Predicting a	and improvin	g team performance, Nine team roles, Team leader	ship,	D	MA	IC		
process, Institutionalizing lean six sigma, Design for lean six sigma, Case study								
presentations.								
Textbooks:	-							
1. Mic	hael L. Georg	e, Lean Six Sigma, McGraw-Hill, 2002.	200	2				
2. James P. Womack, Daniel T. Jones, Lean Thinking, Free press business, 2003.								
Reference Books:								
I. Forr	istical Method	ds. 1999.	ution	.15	US1	ng		
2. Ron	ald G.Askin	and Jeffrey B.Goldberg. Design and Analysis of Le	an P	rodı	ucti	on		
Systems, John Wiley & Sons, 2003.								

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

3. Rother M. and hook J., Learning to See: Value Stream Mapping to add value and Eliminate Muda, Lean Enterprise Institute, Brookline, MA.

- 1. https://nptel.ac.in/courses/110/105/110105039/
- https://henryharvin.com/ppc/six-sigmacertification?gclid=Cj0KCQiA15yNBhDTARIsAGnwe0V9po4fZdt3tVqFISJo3TZxei cEUwBKk88NIPLRQ_77iN5a-nybW1oaAmYQEALw_wcB
- 3. http://www.nptelvideos.in/2012/12/six-sigma.html

Course Code	21D36203	PRODUCTION AND OPERATIONS MANAGEMENT	L	Т	Р	С			
Cour	п	(21D36203)	2	Δ	•	2			
Semester	11	PE – III	3	U	U	3			
Course Ol	ojectives:								
 Course Objectives: The objective is to introduce concepts and techniques related to the design, planning, control and improvement of businesses in both manufacturing and service sectors. This course aims at developing a focus and critical thinking important to solve problems in the operations of business. The students will be required to understand and apply the tools of management learned in the course to practical situations. To produce the desired product this has marketability at the most affordable price by properly planning the manpower, material and processes. To achieve the objective of delivering the right goods of right quantity as well as quality, at right place and at right time one needs to understand and apply the concepts of Production and operations management. Efficient Advanced Production and operations management, give benefits to various sections including consumers, investors, employees, suppliers and community in different ways. Course Outcomes (CO): Student will be able to Understand the principles of production and operations Management Understand the operations process, be able to analyze and solve problems pertaining to constrained. 									
 Onders Apprai Manag 	se how oth ement.	er functional areas of business are integrated w	vith	Ope	erati	ons			
UNIT – I	OPERATI	ON MANAGEMENT	Le	cture	Hr	s:			
Definition operations Product de – concepts Introductio	Definition – Objectives – Types of production systems – historical development of operations management – Current issues in operation management. Product design – Requirements of good product design – product development – approaches – concepts in product development – standardization – simplification – Speed to market –								
UNIT – II	VALUE B	ENGINEERING	Le	cture	e Hrs	s:			
Objective – types of values – function & cost – product life cycle- steps in value engineering – methodology in value engineers – FAST Diagram – Matrix Method. Location – Facility location and layout – Factors considerations in Plant location- Comparative Study of rural and urban sites – Methods of selection plant layout – objective of good layout – Principles – Types of layout– line balancing									
UNIT – II	I AGGRE	GATE PLANNING	Le	cture	e Hrs	s:			
UNIT - III AGGREGATE PLANNINGLecture Hrs:Definition - Different Strategies - Various models of Aggregate Planning - Transportation and graphical models TransportationAdvance inventory control systems push systems - Material Requirement - Terminology - types of demands - inputs to MRP- techniques of MRP - Lot sizing methods - benefits and									
drawbacks of MRP – Manufacturing Resources Planning (MRP –II), Pull systems – Vs Push									

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (QUALITY ENGINEERING AND MANAGEMENT)

system – Just in time (JIT) philosophy Kanban System – Calculation of number of Kanbans Requirements for implementation JIT – JIT Production process – benefits of JIT. UNIT IV SCHEDULING T actures Uno.

UNII – IV SCHEDULING	Lecture Hrs.
Policies - Types of scheduling - Forward and Backward Scheduling - Gant	t Charts – Flow
shop Scheduling - n jobs and 2 machines, n jobs and 3 machines - job shop	Scheduling – 2
jobs and n machines – Line of Balance.	

UNIT – V PROJECT MANAGEMENT Lecture Hrs:

Programming Evaluation Review Techniques (PERT) – three times estimation- critical path - probability of completion of project - critical path method - crashing of simple nature.

Textbooks:

- 1. Production and Operations Management/ Chary/ McGraw Hill/2004
- 2. Operations Management/ Richard Chase/ McGraw Hill/2006
- 3. Production and Operation Management / PannerSelvam / PHI.
- Production and Operation Analysis/ Nahima/ McGraw Hill/2004 4.

Reference Books:

- 1. Operations Management/ E.S. Buffs/ John Wiley & Sons / 2007
- 2. Operations Management Theory and Problems/ Joseph G. Monks / Macmillan / McGraw Hill / 3rd Edition.
- 3. Production Systems Management/ James I. Riggs / John Wiley & Sons.

- 1. https://nptel.ac.in/courses/110/107/110107141/
- 2. https://nptel.ac.in/courses/111/107/111107128/
- 3. https://nptel.ac.in/courses/112/106/112106131/
- 4. https://nptel.ac.in/courses/112/106/112106134/

Course 21D36204 SOFTWARE QUALITY MANAGEMENT	r	т	р	С				
Code (21D36204)		I	I	C				
Semester II PE – III	3	0	0	3				
Course Objectives:								
• This course is aimed at introducing the primary important concept	ts	of	proj	ect				
management related to managing software development projects.								
• They will also get familiar with the different activities involved in Sof	ftw	are	Proj	ect				
Management.								
• Further, they will also come to know how to successfully plan and implement	ent	a so	oftw	are				
project management activity, and to complete a specific project in time with	h th	ne av	/aila	ble				
budget.								
Course Outcomes (CO): Student will be able to								
• Identify the different project contexts and suggest an appropriate manageme	ent s	strat	egy.					
• Practice the role of professional ethics insuccessful software development.								
• Identify and describe the key phases of project management.			0					
• Determine an appropriate project management approach through an eval	lua	tion	of	the				
business context and scope of the project.	r	4	TT					
UNII - I SUFTWARE QUALITY	Lec	Control	Hrs	: 				
Definition of Software Quality, Quality Planning, Quality system – Quality	y (Con	trol	vs				
UNIT IL SOFTWARE ENCINEEDING ACTIVITIES	Lac	turo	Uro					
Estimation Software requirements gathering Analysis Architecture Design	Lee de		onm	ont				
Testing and Maintenance	, ut		opm	cm				
Instruction INIT - III SUPPORTING ACTIVITIES	Lec	ture	Hrs	•				
Metrics Reviews – SCM – Software quality assurance and risk management		, ture	1115	•				
UNIT – IV SOFTWARE QUALITY MANAGEMENT TOOLS	Lec	ture	Hrs	:				
Seven basic Ouality tools – Checklist – Pareto diagram – Cause and effect d	iag	ram	- R	lun				
chart – Histogram – Control chart – Scatter diagram – Poka Yoke – Statistical p	oroc	cess	cont	rol				
- Failure Mode and Effect Analysis - Quality Function deployment -	_ (Con	tinuo	ous				
improvement tools – Case study.								
UNIT – V QUALITY ASSURANCE MODELS J	Lec	cture	Hrs	:				
Software Quality Standards, ISO 9000 series - CMM, CMMI - P-CMM - Case s	tud	y.						
Textbooks:								
1. Software Engineering: A Practitioners Approach, 5 th Edition Roger	S.	. Pr	essn	nan				
McGraw – Hill International Edition, 6 th Edition, 2006.								
2. Ramesh Gopalswamy, Managing global Projects ; Tata McGraw Hill, 2002.								
Reference Books:								
1. Norman E – Fenton and Share Lawrence P flieger, Software metrics, International								
Thomson Computer press, 1997.								
2. GordanSchulmeyer. G. and James L. McHanus, Total Quality ma	inag	gem	ent	tor				
sontware, International Linomson Computer press, USA, 1990.	-1:£	ња г)	inc				
5. Dunin Kobert M., Software Quanty: Concepts and Plans, Englewood C	Hall Inc. 1990							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

4. Metrics and Models in Software Quality Engineering, Stephen, Stephen H. Kan, Pearson education, 2006, Low price edition.

- 1. https://nptel.ac.in/courses/106/105/106105218/
- 2. https://onlinecourses.nptel.ac.in/noc19_cs70/preview
- 3. https://nptel.ac.in/courses/106/101/106101061/

Course	21D36205	INDUSTRIAL SAFETY AND HYGIENE	L	т	Р	С		
Code	21050205	(21D36205)		*	-			
Semester	II	PE – III	3	0	0	3		
Course Ol	biectives:							
Anticir	pate. recogniz	ze, evaluate and control hazardous conditions and pra	actic	es a	ffect	ing		
people.	property and	d the environment:				0		
• Comm	unicate and in	nteract effectively with technical and non-technical au	dien	ces:				
• Integra	te ethical, so	cial, current, and global issues and responsibilities in	their	r pra	ctice	e as		
a profe	ssional in the	e field;		I ···				
Work i	individually o	or on a team to critically analyze, interpret, and provi	de le	eade	rshir	to to		
address	s and manage	problems in occupational safety and health; and			1			
• Recogn	nize that the	practice of occupational safety and health requires of	ngoi	ng le	earni	ng.		
and un	dertake appro	priate activities to address this need.	υ	0		0,		
Course Ou	utcomes (CC): Student will be able to						
• An ab	ility to iden	tify, formulate, and solve broadly defined technic	al c	or so	cient	ific		
probler	ns by applyi	ng knowledge of mathematics and science and/or tec	hnic	cal to	opics	s to		
areas re	elevant to occ	cupational safety and health.			-			
• An abi	lity to formul	late or design a system, process, procedure or program	to r	neet	desi	red		
needs.								
• An abi	lity to develo	op and conduct experiments or test hypotheses, analy	ze a	nd i	nterŗ	oret		
data an	d use scienti	fic judgment to draw conclusions.						
• An abi	lity to comm	unicate effectively with a range of audiences.						
• An ab	ility to unde	erstand ethical and professional responsibilities and	the	e im	pact	of		
technic	al and/or sc	ientific solutions in global, economic, environment	al, a	and	socie	etal		
context	ts.							
• An abi	lity to function	on effectively on teams that establish goals, plan tasks,	mee	et de	adlir	ies,		
and and	alyze risk and	l uncertainty.	T					
UNIT - I	OPERATI	ONAL SAFETY	Le	cture	: Hrs	3:		
Hot metal	operation, bo	oiler, pressure vessels – heat treatment shop – gas furr	lace	oper	ation	n –		
electroplat	ing – hot ber	nding pipes – safety in welding and cutting, Cold – m	etal	oper	ation	n –		
safety in m	hachine shop	– cold bending and chamfering of pipes- metal cutting	- st	lot b	lasti	ng,		
grinding,	painting – p	ower press and other machines. Management of t	OX1C	gas	es a	ina		
chemicals – industrial fires and prevention – road safety – highway and urban safety – safety								
or sewage disposal and cleaning – control of environmental pollution – managing								
Control of	maior indust	rial bazards	ne a	ina c	JII 5.	ne.		
UNIT II			Ιρ	cture	Hrc			
Human sid	de of safety	- personal protective equipment - causes and co	st o	f acc	/ IIIS cider	<u>).</u> nte		
Accidente	nrevention r	personal protective equipment – causes and control strategies – $H\Delta 70$)P t	raini	ng 🤅	and		
developme	ent of employ	vees – first aid – fire fight devices – accident reportin	σ_in	vest	igati	on		
Measurem	ent of safety	v performance, accident reporting and investigation	_, _ 1	olant	saf	etv		
inspection.	job safety a	nalysis – safety permit procedures. Product safety – p	lant	safe	ty ru	lles		
and proce	dures – saf	ety sampling – safety inventory systems. Determ	ninin	ig th	ie c	ost		
effectiveness of safety measurement.								

UNIT – III OCCUPATIONAL HEALTH	Lecture Hrs:
Concept and spectrum of health functional units and activities of operational	health service –
occupational and related disease - levels of prevention of diseases - notifial	ole occupational
diseases Toxicology Lead – Nickel, chromium and manganese toxicity – gas	poisoning (such
as CO, Ammonia Chlorise, So2, H2s.) their effects and prevention - effect	s of ultra violet
radiation and infrared radiation on human system.	
UNIT – IV SAFETY AND HEALTH REGULATIONS	Lecture Hrs:
Safety and health standards - industrial hygiene - occupational diseases pre-	evention welfare
facilities. The object of factories act 1948 with special reference to safety pr	rovisions, model
rules 123a, history of legislations related to safety – pressure vessel act – Ine	dian boiler act –
the environmental protection act – electricity act – explosive act.	
UNIT – V SAFETY MANAGEMENT	Lecture Hrs:
Evaluation of modern safety concepts – safety management functions – safe	ety organization,
safety department- safety committee, safety audit - performance mea	asurements and
motivation – employee participation in safety - safety and productivity.	
Textbooks:	
1. John. V. Grimaldi and Rollin. H Simonds, "Safety Managenent", A	ll India traveler
Book seller, New Delhi – 1989.	
2. Krishnan N.V, "Safety in Industry", Jaico Publisher House, 1996.	
Reference Books:	
1. Occupational Safety Manual BHEL.	
2. Industrial Safety and the law by P.M.C Nair Publishers, Trivandrum.	
3. Managing emergencies in industries, loss prevention of India Ltd., pro	ceedings, 1999.
4. Safety security and Risk management by U.K singh& J.M D	ewam, A.P.H.
publishing company, New Delhi, 1996.	
5. Singh, U.K and Dewan, J.M., "Sagety, Security and Risk Mana	agement", APH
publishing company, New Delhi, 1996.	
6. John V Grimaldi, Safety Management. AITB publishers, 2003.	
7. Safety Manual. EDEL engineering Consultancy, 2000.	
Unline Learning Resources:	
1. https://nptel.ac.in/courses/110/105/110105094/	
2. https://onlinecourses.nptel.ac.in/noc20_mg43/preview	
5. https://hptef.ac.hl/h0c/courses/h0c20/SEW12/h0c20-ing45/	

Course	21D35208	OPTIMIZATION TECHNIQUES	T.	т	Р	С	
Code	21055200	(21D35208)		1	1	C	
Semester	II	PE – IV	3	0	0	3	
Course Objectives:							
• To introduce the advanced optimization techniques such as classical optimization							
techniq	ues, numeric	cal optimization techniques and genetic algorithms.					
• Learn t	he knowledg	e to formulate optimization problems					
Course Ou	itcomes (CC): Student will be able to					
 Studen probler 	ts at the end	of the course learn advanced optimization techniques	to sł	low 1	real-	life	
• Studen	ts can able	to formulate and solve various practical optimizati	on	prob	lems	in	
manufa	cturing and s	service organizations	1				
UNIT - I	Classical o	ptimization techniques	Le	cture	Hrs	:	
Single var	iable optimi	zation with and without constraints, multi – variat	ble (optin	nizat	ion	
without co	onstraints, m	ulti – variable optimization with constraints – meth	od (of La	agrai	ige	
multipliers	, Kuhn-Tuck	er conditions.			U	U	
UNIT – II	Numerica	l methods for optimization	Le	cture	Hrs	:	
Nelder Me	ad's Simple	x search method, Gradient of a function, Steepest of	desc	ent 1	neth	od,	
Newton's 1	nethod, type	s of penalty methods for handling constraints.					
UNIT – II	I Genetic a	algorithm (GA) & Multi-Objective GA	Le	cture	Hrs	:	
Genetic a	lgorithm (GA) : Differences and similarities between co	nve	ntion	al a	and	
evolutiona	ry algorithm	s, working principle, reproduction, crossover, mutat	ion,	term	ninat	ion	
criteria, di	fferent repro	oduction and crossover operators, GA for constrained	ed o	ptim	izati	on,	
draw backs	s of GA,						
Multi-Obj	ective GA:	Pareto's analysis, Non-dominated front, multi – obje	ctiv	e GA	A, No	on-	
dominated	sorted GA, c	convergence criterion, applications of multi-objective p	prob	lems			
UNIT – IV	Genetic l	Programming (GP)	Le	cture	Hrs	:	
Principles	of genetic pr	ogramming, terminal sets, functional sets, differences	bet	weer	n GA	. &	
GP, randor	n population	generation, solving differential equations using GP.					
UNIT – V	Application systems	ons of Optimization in Design and Manufacturing	g I	Lectu	re H	rs:	
Some typi	cal applicati	ons like optimization of path synthesis of a four-	bar	mecl	hanis	sm,	
minimizati	on of weight	of a cantilever beam and general optimization model	of	a ma	chin	ing	
process.							
Textbooks	:						
1. Opt	timal design	- JasbirArora, McGraw Hill (International) Publishers					
2. Opt	timization for	r Engineering Design – Kalyanmoy Deb, PHI Publishe	ers				
3. Eng	gineering Op	timization – S.S.Rao, New Age Publishers					
Reference	Books:						
1. Gei	netic algorith	ams in Search, Optimization, and Machine learning -	- D.	E.Go	oldbe	rg,	
Ad	dison-Wesley	y Publishers					
2. Gei	netic Program	nming- Koza					
3. Mu	Iti objective	Genetic algorithms - Kalyanmoy Deb, PHI Publishers					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Online Learning Resources:

- 1. https://www.youtube.com/watch?v=eo2tOPV3AoE
- 2. https://www.youtube.com/watch?v=4t3z8y4CAcs
- 3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0002introduction-to-computational-thinking-and-data-science-fall-2016/lecture-videos/lecture-1-introduction-and-optimization-problems/
- 4. https://ocw.mit.edu/courses/sloan-school-of-management/15-093j-optimization-methods-fall-2009/lecture-notes/
- 5. https://web.eng.fiu.edu/arleon/courses/Optimization/Lectures/Classical_Optimization.pdf
- 6. https://nptel.ac.in/content/storage2/courses/105108127/pdf/Module_1/M1L4_LN.pdf
- $7. \ https://www.iare.ac.in/sites/default/files/OT\%20Complete\%20Notes_1.pdf$

Course Code	21D34208	REVERSE ENGINEERING (21D34208)	L	Т	Р	С
Semester	II	$\frac{211034200}{PE - IV}$	3	0	0	3
Course Ohi	activas					
• The pure	ose of rever	se engineering is to facilitate the maintenance wor	·k hi	, im	rovi	inσ
the unde	rstandability	of a system and to produce the necessary docume	nts *	for a	lega	acv
system.	j					
Course Outcomes (CO): Student will be able to						
CO1. Understand the problem in the existing process.						
CO2. Collec	t the large nu	umber of data/ information for the product				
CO3. Depth	analyze of th	ne products and extraction of real time data				
CO4. Under	stand the pr	inciples behind the design of the product, ways	to re	edesi	gn a	ınd
impro	ve the perfor	mance of the system				
UNIT - I			Lee	cture	Hrs	:
INTRODU	CTION					
Scope and ta	<u>usks of RE - I</u>	Domain analysis- process of duplicating				
UNIT – II			Lee	cture	Hrs	:
TOOLS FO	R RE					
Functionality	y- dimension	al- developing technical data - digitizing technique	:S - C	const	ruct	ion
ofsurface i	nodel - so	olid-part material- characteristics evaluation	-sot	twar	e a	ind
applicationp	rototyping- v	rerification	T			
UNIT – III			Lee	cture	Hrs	:
CONCEPT	S	December of a section for the form				
History of F	keverse Engi	stion Technical Data Concention Data Varif	stag	e pro	Duci	s -
Evaluation	and verific	ation- recimical Data Generation, Data verifi	Call	on,	Proj	ect
			La	oturo	Ura	
DATA MAI		Т	Lee	cluie	1115	•
DATA MAI	AGENIEN	a Three data Reverse engineering strategies	Г	ofin	ition	
organization	data issues -	$S_{\rm s} = 1$ finding reusable software	- L 2 CO	mno	nent	s _
Recycling r	eal-timeemb	edded software – Design experiments to evalu	iate	a F	Reve	rse
Engineering	tool – Rule	baseddetection for reverse Engineering user inter	face	s – F	Reve	rse
Engineering	of assembly	programs: Amodel based approach and its logical b	asic	s		
UNIT – V			Le	cture	Hrs	:
INTEGRA	ΓΙΟΝ					
Cognitive ap	pproach to pr	ogram understated – Integrating formal and structure	ured	met	hods	in
reverseengin	ieering – I	ntegrating reverse engineering, reuse and spe	ecifi	catio	n te	loc
environment	ts to reversee	ngineeringcoordinate measurement feature cap	turii	ng –	surfa	ace
and solid me	embers					
Textbooks:						
1. Desi 1991	gn Recovery	for Maintenance and Reuse, T J Biggerstaff, IE	EE	Corp	n. J	uly
2. Whit 1994	e paper on I	RE, S. Rugaban, Technical Report, Georgia Instt.	of 7	Fech	nolo	gy,

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

- 3. Reverse Engineering, Katheryn, A. Ingle, McGraw-Hill, 1994
- 4. Data Reverse Engineering, Aiken, Peter, McGraw-Hill, 1996

Reference Books:

- 1. Reverse Engineering, Linda Wills, Kluiver Academic Publishers, 1996
- 2. Co-ordinate Measurement and reverse engineering, Donald R. Honsa, ISBN
- 1555897, AmericanGear Manufacturers Association

Online Learning Resources:

1. http://www.digimat.in/nptel/courses/video/112102101/L52.html

Course	21D36206	DECISION SUPPORT SYSTEMS	L	т	Р	С	
Code	21050200	(21D36206)		1	1	C	
Semester	II	PE - IV	3	0	0	3	
Course Ol	Course Objectives:						
• To revi	• To review and clarify the fundamental terms, concepts and theories associated with						
Decisio	Decision Support Systems, computerized decision aids, expert systems, group support						
system	s and executi	ive information systems.			<i>.</i>	1	
• Io exa	mine exampl	es and case studies documenting computer support for	c org	anız	atio	nal	
	n making, an	de various planning, analysis and control tasks.	of				
• 10 uist	tarized Decis	ion Support Systems	Л				
	mine user int	and support systems.	nd o	anak	iliti	20	
• 10 exa	ision Support	t Systems	nu c	apat	11110	28	
To imp	rove hands-c	on skills using HTMI Microsoft Access and Excel at	nd Is	vaS	crint		
for buil	lding state-of	-the-art Decision Support Systems especially Web-B	ased	svst	tems		
that use	e advanced co	omputing and networking technologies.	u500	. 5 9 5 .			
• To und	erstand that r	most Decision Support Systems are designed to suppo	rt ra	ther	than	l	
replace	decision ma	kers and the consequences of this perspective for desi	gnin	g DS	SS.		
To disc	uss organiza	tional and social implications of Decision Support Sy	stem	IS.			
Course Ou	itcomes (CO	D): Student will be able to					
Provide	e students v	vith the main concepts of Decision Support Syst	em	(DS	S) a	and	
manage	ement science	es					
• Study	the compone	ents of DSS and the main players who participate	in t	he d	lecis	ion	
process	5.						
• Study of	lifferent type	es of modeling and analysis.					
• Explain	n key areas c	ontributing to DSS such as knowledge acquisition, ex	pert	syst	em a	and	
knowle	dge base sys	tems					
• Study g	group decisio	n support and groupware technologies within organiz	atior	1			
UNIT - I	DECISION	N MAKING	Lee	cture	Hrs	<u>;:9</u>	
Manageria	l decision r	naking, system modeling and support-preview of	the	e m	odel	ıng	
process-ph	ases of decis	ion making process.	T.	-	TLuc		
	MODELI	ING AND ANALYSIS		cture		;:9 :	
DSS comp	is DSS devel	a warenousing, access, analysis, mining and visualize	zatio	n-m	odel	mg	
	IS-DSS devel	EDCE MANACEMENT	Ιe	oture	Hra	0.0	
Group sup	nort systems	s- enterprise DSS- supply chain and DSS-knowled	ge n	nana	σem	ent	
methods. to	echnologies a	and tools.	50 H	iuna	Sem	Unt	
UNIT – IV	/ INTELL	IGENT SYSTEMS	Le	cture	Hrs	3:9	
Artificial i	ntelligence a	and expert systems-concepts, structure, types-knowle	dge	acq	uisit	ion	
and validat	ion, knowled	lge representation	U	1			
UNIT – V	UNIT – V IMPLEMENTATION Lecture Hrs:9						
Implement	Implementation, integration and impact of management support systems.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Textbooks:

- 1. C.R. Bacon, Practical Risk-Adjusted Performance Measurement, John Wiley & Sons Ltd, Oxford, UK, 2012.
- 2. K. Soetaert, Solving Differential Equations in R, Springer, Berlin, Heidelberg, 2012.
- J.C.H. Chen, H.A. Wu, Aesthetic Creativity: Bridging Arts, Culture, and Education, in: S. Leong, B.W. Leung (Eds.), Creative Arts in Education and Culture: Perspectives from Greater China, Springer Netherlands, Dordrecht, 2013: pp. 43–53.

Reference Books:

- 1. L. Randall, Extra dimensions and warped geometries, Science. 296 (2002) 1422–1427.
- G. Smith, J. Yard, Quantum communication with zero-capacity channels, Science. 321 (2008) 1812–1815.
- 3. Y. Yang, Y. Dong, N.V. Chawla, Predicting node degree centrality with the node prominence profile, Sci. Rep. 4 (2014) 7236.
- 4. S.M. Grenon, M. Jeanne, J. Aguado-Zuniga, M.S. Conte, M. Hughes-Fulford, Effects of gravitational mechanical unloading in endothelial cells: association between caveolins, inflammation and adhesion molecules, Sci. Rep. 3 (2013) 1494.

Online Learning Resources:

- 1. https://scholarworks.uni.edu/facbook/67/
- 2. https://nptel.ac.in/courses/110/105/110105147/
- 3. https://onlinecourses.nptel.ac.in/noc20_mg59/preview
- 4. https://alison.com/course/decision-support-systems-for-inventory

Course	21D36207	QUALITY ENGINEERING – II	т	т	р	C			
Code	21D30207	LABORATORY		1	1	C			
Semester	II	(21D36207)	0	0	4	2			
Course Objectives:									
Course O	utcomes (CC):							
LICEOF		NADO							
LIST OF	EXPERIME	NTS:							
1. A	ssessment of	process capability of the given manufacturing proc	cess 1	using	g pro	cess			
ca	apability indic	es.							
2. Assessment of process capability of the given manufacturing process using process									
Б	igital motoriz	ed multifunctional height gauge		-					
	igitui inotoriz				Б.				
3. C	onstruction of	of control chart for variable quality characteris	tic i	using	; D1	gital			
n	otorized mult	ifunctional height gauge.							
4. C	onstruction o	f control chart for variable quality characteristic u	sing	SQC	C dis	play			
u	nit.								
5. C	onstruction of	f control chart for variable quality characteristic usin	ig SC)C so	oftwa	are.			
6 0	onstruction	of Repeatability and reproducibility studies for	יס~ א אר אר	nnra	iser	and			
0. C	onstruction	of Repeatability and reproductority studies it	Ла	ppra	1301	and			
ir	strument usin	g R & R software.							
Reference	es:								
.									
Online learning resources/Virtual labs:									

Course Code	21D3	6208	8 SIMULATION-II LABORATORY	L	Т	Р	C		
Semester	I	[(21D36208)		0	0	4	2	
		I			1	1		<u> </u>	
Course Ol	ojectiv	es:							
• To und	To understand the various Simulation Processes								
Course Ou	Course Outcomes (CO):								
• To lear	n vario	us sof	vares to design.						
LIST OF EXPERIMENTS:									
CYCLE-I: DEMO EXPERIMENTS									
	1. MATLAB Commands and Examples								
	2. Built-in functions								
	RELI	ABIL	TY SOFTWARE MODULES						
	3.	SPA	E Software package						
	4.	Failu	e Mode Software Package						
	5.	FME	A-RPN Software package						
	6.	SPC	oftware package						
CYCLE-I	I: TES	TING	PROGRAMS						
	1.	Evalu	tion of basic probability indices for se	eries and para	llel s	syste	m		
	2.	Paran	etric Boot-Strap estimation and findin	ng best parame	eters				
	3.	Chi-S	uare Goodness of Fit						
	4.	Deter coeffi	nination of Covariance, Correlation	ation and	Cros	ss-Co	orrela	ition	
	5.	Neura	Network design to Block box model	S					
	6.	Testi	g of sampling methods						
	7.	Chara	teristics of Histogram, Scatter diagram	am, Process I	Flow	diag	gram	and	
		Paret					-		
Reference	s:								

Semester-III											
S.No.	Course	Course Name	Category	Hours per		Hours per		Hours per		•	Credits
	Code			L	Т	Р					
1.		 Program Elective Course – V a. Total Quality Management b. Quality Management Systems c. Quality Concepts in Product Development 	PE	3	0	0	3				
2.		Open Elective	OE	3	0	0	3				
3.		Dissertation Phase – I	PR	0	0	20	10				
4.		Co-curricular Activities					2				
		Total					18				

Course Code	21D36301	TOTAL QUALITY MANAGEMENT	L	Т	Р	С
Semester	III	$(\mathbf{PE} - \mathbf{V})$	3	0	0	3
Course Ol	ojectives:					
1. Implen	nent the prin	ciples and concepts inherent in a Total Quality Mana	igen	nent	(TQ	M)
approach to managing a manufacturing or service organization.						
2. Explain the system of documentation, implementation and assessment of quality						
3. Assess	exactly whe	re an organization stands on quality management wit	h re	spec	t to	the
ISO 9000 quality management standard.						
4. Develo	p a strategy f	tor implementing TQM in an organization				
Course Ou	itcomes (CU): Student will be able to		1		
1. Develo	p an understa	anding on quality management philosophies and frame	wor	K		
2. Develo	be application	now redge on various tools and techniques of quality in	anag	eme	m.	
J. Learnin	ne applicatio	skills for investigating and analyzing quality managem	onti	00110	a in	tha
4. Develo	y and sugges	t implement able solutions to those		issue	5 111	une
UNIT - I		t implement able solutions to mose.	Le	ctur	e Hr	s:
INTRODU	UCTION: T	he concept of TOM. Quality and Business performan	ice.	attitu	ide a	and
involveme	nt of top	management, communication, culture and manage	emer	nt s	vster	ns.
Manageme	ent of Proces	ss Quality: Definition of quality, Quality Control,	a bi	rief	, histc	ory,
Product In	spection vs,	, Process Control, Statistical Quality Control, Cont	trol	Cha	rts a	ind
Acceptance	e Sampling.					
UNIT – II			Le	ctur	e Hr	'S:
CUSTOM	ER FOCUS	S AND SATISFACTION: The importance of custom	mer	satis	facti	ion
and loyalty	y- Crating s	atisfied customers, Understanding the customer nee	ds, l	Proc	ess]	Vs.
Customer,	internal cust	omer conflict, quality focus, Customer Satisfaction, ro	le o	f Ma	rketi	ing
and Sales,	Buyer – Sup	pplier relationships. Bench Marketing: Evolution of Be	ench	Ma	cketi	ng,
meaning o	of Bench mai	rketing, benefits of bench marketing, the bench mai	rketi	ng p	proce	ss,
pitfalls of t	sench market	ling.	Ta		. II.	
$\frac{UNII - II}{OPCANU}$	I ZINC EOD '	TOM. The sustains engrees h Orsenizing for suslitud		ctur	e Hr	'S:
UKGANIA making the	LING FUR	rom a traditional to a TOM organizing. Quality Circle	mpi m E	Produ		DII,
Quality an	d Reengineer	ring. The leverage of Productivity and Quality Mana	78. Ι σem	ent o	evete	ms
Vs Techno	ology Measu	ring Productivity Improving Productivity Re-engineer	gem rino	cm a	syste	ms
UNIT – IV	7		Le	ctur	e Hr	s:
THE COS	ST OF OUA	LITY: Definition of the Cost of Quality. Quality C	osts	. Me	asur	ing
Quality C	Costs, use o	of Quality Cost Information, Accounting System	is a	nd	Qua	lity
Manageme	ent.					·
UNIT – V			Le	ctur	e Hr	's:
ISO9000:	Universal	Standards of Quality: ISO around the world,	Th	ne I	SO9	000
ANSI/ASC	QCQ-90. Seri	ies Standards, benefits of ISO9000 certification, the t	hird	par	ty at	ıdit,
Documenta	ation ISO900	00 and services, the cost of certification implementing t	he s	ystei	n.	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Textbooks:

- 1. Total Quality Management- A Practical Approach/H. Lal
- 2. Quality Management/KanishkaBedi/Oxford University Press/2011
- 3. Total Engineering Quality Management/Sunil Sharma/Macmillan

Reference Books:

- 1. Total Quality Management / Joel E.Ross/Taylor and Franscis Limited
- 2. Total Quality Management/P.N.Mukherjee/PHI
- 3. Beyond TQM / Robert L.Flood
- 4. Statistical Quality Control / E.L. Grant / McGraw Hill.

Online Learning Resources:

- https://nptel.ac.in/courses/110/104/110104080/
- https://onlinecourses.nptel.ac.in/noc21_mg03/preview
- https://nptel.ac.in/courses/110/104/110104085/
- <u>https://nptel.ac.in/content/syllabus_pdf/110104080.pdf</u>

Course	21D36302	QUALITY MANAGEMENT SYSTEMS	L	Т	Р	C	
Code		$(\mathbf{PE} - \mathbf{V})$					
Semester	III		3	0	0	3	
Course Ol	ojectives:			~			
• To imp	bart knowled	ge on the concept of quality, tools for analyzing qua	lity	,Sta	tisti	cal	
tools in quality acceptance sampling and life testing							
• underst	anding of the	e laws, principles and phenomena in the field of quality	man	age	mer	it,	
• adoptio	on of theore	ctical and practical knowledge and skills in the fi	eld	OI	qua	lity	
	itcomes (CC): Student will be able to					
Define	the basic cor	cents, terminology and overcome legislative framework	l in	tha	ouhi	oct	
Define area of	quality qual	ity control and quality management system	x III	uie	subj	eci	
• describ	e ways of an	nlying quality management in the actual organization					
 demon 	strate the can	ability of making quality process for the selected process	22				
 perceiv 	ing the or	ganization to determine the existence or nonexist	stena	re	of	the	
implen	nented quality	v management system.	JUIN		01	une	
demon	strate the ca	pability of making quality process, given the well-k	now	n p	roce	ess.	
identify	y the standar	rd that could be applied, the roles and responsibilitie	es of	f ret	fere	nce	
legislat	ive framewo	rk					
• choose the optimal approach to the analysis of a given process by describing the activities							
UNIT - I Lecture Hrs:						s:	
Introductio	on to the co	oncept of quality - quality control - quality assura	ance	-	qua	lity	
manageme	nt - quality	and total quality - small q and big Q - concept o	f to	tal	qua	lity	
manageme	nt - TQM ax	tioms - major contributions of deeming, juran and cros	s by	v to	qua	lity	
manageme	nt - enablers	for total quality - strategic quality management					
UNIT			Ιe	otur	o Hr	·c ·	
П			LU	ctur		5.	
Ouality co	sts - analysis	of quality costs - loss function - Taguchi methods - tot	al ai	ıalit	v to	ols	
- pare to cl	nart - fishbon	e diagram – check sheet - histograms - scatter diagram	s - r	un d	char	ts -	
flow diagra	am – Bench M	Marking-Overview of ISO 9000:2000 certification-Qual	ity c	circl	es.		
		_					
UNIT –			Lee	ctur	e Hı	s:	
III							
Experimen	tal design-G	uidelines Overview of fact oral experiments, replication	1, Ge	ener	al Io	dea	
on Process	optimizatio	n- Process Robustness Studies, Quality function deplo)yme	ent,	fail	ure	
mode, effe	mode, effect and criticality analysis, continuous process improvement- The PDSA cycle-						
Kaizen.							
UNIT –			Le	ctur	e Hr	s:	
IV						~.	
Statistical	tools in qua	lity - making predictions using the normal, Poisson	and	l bi	non	nial	
probability distributions - statistical process control - control charts for variables – X and R							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

charts - process capability indices - control charts for attributes - P, np, c and u charts

UNIT – V Lecture Hrs:

Module IV (12 hours) Acceptance sampling - lot by lot acceptance using single sampling by attributes - OC curve - average outgoing quality and the AOQL - double sampling - multiple and sequential sampling - ATI and AFI - introduction to life testing and reliability, MTBF, MTTR, system reliability-components in series and parallel

Textbooks:

- 1. Gerals M Smith-2004, Statistical Process Control and Quality Improvement-5th edition ,Pearson Education, New Delhi
- 2. Grant, Statistical Quality Control, McGraw Hill

Reference Books:

- 1.BesterField,DaleH,CarolBoeterfreld-Muchna,GlenH,BoeterfreldMeryBoeterfeld-Scare, 2003,
- 3. Total Quality Management, 3rd edition, Pearson Education, New Delhi.
- 4. Juran J.M., Gryna I.M., "Quality Planning and Analysis", Tata McGraw Hill Publishing Company.
- 5. Montgomery, douglas C2001,Introduction to statical quality control, fourth edition,JohnWiley&sonsInc, New Delhi

Online Learning Resources:

https://nptel.ac.in/courses/110/101/110101010/

• https://nptel.ac.in/courses/110/105/110105039/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Course Code		Program Elective Course – V	L	Τ	Р	С
Semester	III	a. QUALITY CONCEPTS IN PRODUCT DEVELOPMENT	3	0	0	3
						•

Course Objectives:

- Understand the concepts of tools and techniques in the Integrated Product Development area of the Engineering Services industry.
- Relate the engineering topics into real world engineering applications.

Course Outcomes (CO): Student will be able to

- Summarise the various trends affecting product decision
- Identify the requirements to create new product
- Compare different techniques involved in design creation and design testing
- Rephrase the methods of model creation and integration between software and hardware.
- Illustrate the need of end of life and patenting.

 UNIT - I
 DESIGN FUNDAMENTALS, METHODS AND
 Lecture Hrs:9

 MATERIAL SELECTION
 Image: Comparison of the second se

Design – The Design Process – Computer Aided Engineering – Concurrent Engineering – Competition Bench Marking – Creativity – Theory of Problem solving (TRIZ) – Value Analysis - Design for Manufacture, Design for Assembly – Design for casting, Forging, Metal Forming, Machining and Welding

UNIT – IIDESIGN FOR QUALITYLecture Hrs:9Quality FunctionDeployment -House of Quality-Objectives and functions-Targets-
Stakeholders-Measures and Matrices-Design of Experiments –design process-Identification
of control factors, noise factors, and performance metrics - developing the experimental
plan- experimental design –testing noise factors- Running the experiments –Conducting the
analysis-Selecting and conforming factor-Set points-reflecting and repeating.

 UNIT – III
 FAILURE MODE EFFECT ANALYSIS
 AND
 Lecture Hrs:9

 DESIGN FOR SIX SIGMA

Basic methods: Refining geometry and layout, general process of product embodiment -Embodiment checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA method- linking fault states to systems modeling - Basis of SIX SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and small organizations - SIX SIGMA and lean production –Lean SIX SIGMA and services

UNIT – IV	Lecture Hrs:9						
Importance of	Experiments, Experimental	Strategies, Basic princip	les of Design,				
Terminology, AN	OVA, Steps in Experimentation	on, Sample size, Single Fact	or experiments -				
Completely Randomized design, Randomized Block design, Statistical Analysis, Multifactor							
experiments - Tv	vo and three factor full Facto	rial experiments, 2K factor	ial Experiments,				
Confounding and	Blocking designs, Fractional	factorial design, Taguchis an	pproach - Steps				
in experimentation, Design using Orthogonal Arrays, Data Analysis, Robust Design- Control							
and Noise factors	S/N ratios		-				

UNIT – V	STATISTICAL	CONSIDERATION	AND	Lecture Hrs:9			
	RELIABILITY						
Frequency distri	ibutions and Histogram	ms- Run charts -stem and lea	af plots- P	areto diagrams-			
Cause and Effect diagrams-Box plots- Probability distribution-Statistical Process control-							
Scatter diagrams – Multivariable charts – Matrix plots and 3-D plotsReliability-Survival and							
Failure-Series and	nd parallel systems-M	ean time between failure-Wei	ibull distri	bution			
Textbooks:	Textbooks:						
1. The Manager	1. The Management and control of Quality-6th edition-James R. Evens, William M Lindsay						
Pub:son south-w	vestern(www.swlearni	ng.com)					
2. Fundamentals	s of Quality control an	d improvement 2nd edition, A	AMITAVA	A MITRA,			
Pearson Educati	ion Asia, 2002.						
Reference Bool	ks:						
1. Dieter, Geor	rge E., "Engineering	Design - A Materials and	l Processi	ing Approach",			
McGraw Hill, Ir	nternational Editions, S	Singapore, 2000.					
2. Product Des	ign Techniques in R	everse Engineering and Nev	w Produc	t Development,			
KEVIN OTTO	& KRISTIN WOOD, 1	Pearson Education (LPE), 200	01.				
3. Product Desig	gn And Development,	KARL T. ULRICH, STEVE	IN D. EPP	INGER, TATA			
McGRAW-HIL	L- 3rd Edition, 2003.						
Online Learnin	ng Resources:						
• https://nptel.	.ac.in/courses/112/107	/112107217/					
• https://online	ecourses.nptel.ac.in/nc	oc21_me83/preview					
• https://nptel.	.ac.in/courses/112/106	/112106249/					
• https://nptel.	.ac.in/courses/110/105	/110105088/					

Course Code		Open Elective	L	Т	Р	С
Semester	III	Mechatronics	3	0	0	3
Course Objecti	ves:					
To impart knowledge on						
To impart know	wledg	e on about the elements and techniques involved i	n M	lecha	atron	ics
systems which a	re ve	ry much essential to understand the emerging field of au	itom	atio	1.	
Course Outcon	nes (C	CO): Student will be able to				
1.Students can a	ble to	o understand the concepts, need and importance of mecha	atror	nics.		
2. They can able to know the concepts of 8085 microprocessor, 8051 microcontroller						
3. They can able	e to ui	nderstand the Programmable peripheral Interface				
4. Students can	able t	o know the structure, programming and selection of PLC	2			
5. They can a	ble t	o know the working principle and design concept	S O	f ac	tuato	ors,
mechatronic sys	tem.					
UNIT – I			Lee	cture	Hrs	:
Introduction to]	Mech	atronics – Systems – Concepts of Mechatronics approad	ch –	Nee	d	
for Mechatronic	s - E	merging areas of Mechatronics – Classification of Mec	hatr	onics	s.	
Sensors and	Trans	sducers: Static and dynamic Characteristics of	Se	enso	r,	
Potentiometers -	-LV	DT – Capacitance sensors – Strain gauges – Eddy curre	ent s	sensc	or	
– Hall effect sen	sor –	Temperature sensors – Light sensors.				
UNIT – II Lecture Hrs:						:
8085 MICROPH	ROCE	SSOR AND 8051 MICROCONTROLLER	_			
Introduction – A	rchit	ecture of 8085– Pin Configuration – Addressing Modes	–Ins	struc	tion	
set, Timing diag	ram o	of 8085 – Concepts of 8051 microcontroller – Block dia	gran	n,.		
UNIT – III			Lee	cture	Hrs	:
PROGRAMMA	BLE	PERIPHERAL INTERFACE				
Introduction – A	Archit	ecture of 8255, Keyboard interfacing, LED display –in	terf	acing	5,	
ADC and DAC	inte	rface, Temperature Control – Stepper Motor Control	- 'I	ratti	C	
Control interfact	e.		T			
UNIT - IV			Lee	cture	Hrs	:
PROGRAMMA	BLE	LOGIC CONTROLLER				
Introduction –	Basic	c structure – Input and output processing – Progra	mm	ıng	_	
Mnemonics – T	imer	s, counters and internal relays – Data handling – Se	lecti	on c)İ	
PLC.	1		т			
UNIT - V			Lee	cture	Hrs	:
ACTUATORS	AND	MECHATRONIC SYSTEM DESIGN	1			
Types of Steppe	er and	Servo motors – Construction – Working Principle – A	dvar	itage	S J	
and Disadvanta	iges.	Design process-stages of design process – Iraditi	Dia	i an	0. 	
mileconatronics d	esign	Concepts – Case studies of Mechatronics systems –	PIC	k an	a	
place KODOL – E	iigine	wanagement system – Automatic car park barrier.				
1 Dolton "Mart	otes	ice" Drintice Hell 2008 2 Demach & Coopher "Mine				
1.Bolton, "Mech	iatron	nics, Frince Hall, 2008 2. Kamesh S Gaonkar, "Micro	proc		n N	
Arcmiecture, Pi	ograf	mining, and Applications with the 8085, 5th Edition	, Property (1)	entic	e	

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (QUALITY ENGINEERING AND MANAGEMENT)

Hall, 2008.

Reference Books:
1. Michael B.Histand and Davis G.Alciatore, "Introduction to
Mechatronics and Measurement systems", McGraw Hill
International edition,2007.
2. Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics",
Chapman and Hall, 1993.
3. Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for
Intelligent Machines", Oxford University Press, 2007.
4. DevadasShetty and Richard A. Kolk, "Mechatronics Systems Design",
PWS publishing company,2007.
5. Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of
India,2007.
6. Clarence W, de Silva, "Mechatronics" CRC Press, First Indian Re-print, 2013
Online Learning Resources:
https://nptel.ac.in > courses > noc21 > SEM1 > noc21-me27