JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u>

(4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I- SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D31101	Refrigeration	4	-	4
15D31102	Advanced Thermodynamics	4	-	4
15D31103	Conduction and Radiation Heat Transfer	4	-	4
15D31104	Principles of Air -Conditioning	4	-	4
	ELECTIVE-I	4	-	4
15D31105	Optimization of Design			
15D31106	Energy Conservation and Management			
15D31107	Advanced Thermal Storage Technologies			
15D31108	Design of Heat Exchangers			
	ELECTIVE-II	4	-	4
15D31109	Cogeneration and Waste Heat Recovery Systems			
15D31110	Total Quality Management			
15D32103	Renewable Energy Sources			
15D31111	Solar Refrigeration and Air - Conditioning			
15D31122	Refrigeration Lab	0	4	2
TOTAL	•	24	4	26

II - SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D31201	Design of Air-Conditioning Systems 4		-	4
15D31202	Convective Heat & Mass Transfer	4	-	4
15D31203	Refrigeration Equipment & Controls	4	-	4
15D31204	Advanced Fluid Mechanics	4	-	4
	ELECTIVE-III	4	-	4
15D31205	Cryogenic Engineering			
15D31206	D31206 Design of Heat Transfer Equipment			
15D31207	Air Handling Systems Design			
15D31208	Indoor Air Quality Control			
	ELECTIVE-IV	4	-	4
15D31209	HVAC System Design			
15D31210	Erection and Maintenance of Refrigeration and			
	Air-conditioning Equipments			
15D31211	Food Preservation Techniques			
15D31212	Materials for Low Temperature Applications			
15D54201	Research Methodology (Audit Course)			
15D31213	Air-conditioning Lab	0	4	2
TOTAL		24	4	26

III & IV SEMESTERS:

Code	Subject	Т	Р	С
15D31301	III Semester	0	4	2
	Seminar - I			
15D31401	IV Semester	0	4	2
	Seminar - II			
15D31302	III & IV Semester			44
	Project Work			
	Total	24	8	48

Note : All End Examinations (Theory and Practical) are of Three Hours Duration.

T – Tutorial L – Theory P- Practical / Drawing C - Credits

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u>

(4 SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

I-SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D31101	Refrigeration	4	-	4
15D31102	Advanced Thermodynamics	4	-	4
15D31103	Conduction and Radiation Heat Transfer	4	-	4
15D31104	Principles of Air -Conditioning	4	-	4
	ELECTIVE-I	4	-	4
15D31105	Optimization of Design			
15D31106	Energy Conservation and Management			
15D31107	Advanced Thermal Storage Technologies			
15D31108	Design of Heat Exchangers			
	ELECTIVE-II	4	-	4
15D31109	Cogeneration and Waste Heat Recovery Systems			
15D31110	Total Quality Management			
15D32103	Renewable Energy Sources			
15D31111	Solar Refrigeration and Air - Conditioning			
15D31122	Refrigeration Lab	0	4	2
TOTAL		24	4	26

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)

I SEMESTER		L	Р	С
		4	-	4
	REFRIGERATION			
	(15D31101)			

UNIT-I

Vapor Compression Refrigeration:

Analysis of vapor compression refrigeration cycle - reversed Carnot cycle for vapour - effect of suction temperature and condensing temperature on cycle performance – Practical refrigeration cycle – sub-cooled liquid and super heated vapor refrigeration cycles their effect on performance.

UNIT-II

Multi Pressure Systems- removal of flash gas- intercooling –compound compression (conversion)-multi vapor systems- cascade systems- dual compression- system practices.

UNIT-III

Simple vapor Absorption systems- actual vapor absorption cycle- H-C diagram- common refrigerant – Absorbent /Adsorbent systems.

Practical single effect Water- Lithium Bromide Absorption system- double effect system-Electrolux refrigerator- newer mixtures for absorption systems.

UNIT-IV

Aircraft Air refrigeration – working principle and types.

Steam jet refrigeration system - thermoelectric refrigeration systems - vortex refrigeration system - pulse tube refrigeration.

UNIT-V

Refrigerants:

Desirable properties- thermo dynamic-chemical and transport properties - designation of refrigerants - inorganic, halo carbon refrigerants - secondary refrigerants - Properties of mixtures of refrigerants.

Ozone depletion potential and global warming potential – effect of refrigerants- alternative refrigerants.

REFERENCE BOOKS:

- 1. R & A/C by F.Stoecker & Jerold. W.Jones-MGH Intrl.,1982.
- 2. R & A/C by C.P.Arora, TMGH-2000.
- 3. R & A/C by Manohar Prasad.
- 4. Principles of Refrigeration by Roy.J.Dossat, 1997.
- 5. Refrigeration by Gosney- Oxford University Press-1980.

4

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I SEMESTER L P C

ADVANCED THERMODYNAMICS (Common to R&A/C & Advanced I.C. Engines) (15D31102)

4

_

UNIT-I

THERMODYNAMIC RELATIONS:

Introduction-Helmhotz free energy function-Gibbs free energy function-coeffficient of volumetric expansion-isothermal compressibility-differential relation for U,H,G&F-Masxwell re;;atopms.

GENERALIZED RELATIONS:

Generalized relation for Cp, Cv ,K, B-relations for internal energy and enthalpy-the various Tds equation-clapeyron equation-gas tables-enthalpy and internal energy- pressure ratio-volume ratio-change of entropy-Introduction to third law of thermodynamics.

UNIT-II

EXERGY:

Introduction-availability of heat –availability of a closed system-availability function of the closed system-availability of steady flow system- availability function of open system.

IRREVERSIBILITY:

Introduction-irreversibility for closed and open system-steady flow process effectivenesssecond law analysis of the power plant.

UNIT-III

NONREACTIVE GAS MIXTURES:

Introduction-basic definitions for gas mixtures-PVT relations ship for mixtures of ideal gases-properties of mixtures of ideal gases-entropy change due to mixing – mixtures of perfect gases at different initial pressure and temperatures.

UNIT-IV

GAS SPOWER CYCLES:

Introduction-air standard cycles-carnot cycle-ottocycle –disel cycle-dual cycles-comparison between Otto,Diesel, dual cycles-variations between the air standard Otto cycle and actual cycle-Sterlling cycle-Erickson cycle-Atkinson cycle-Brayton cycle- Lenoir cycle.

UNIT-V

VAPOUR POWER CYCLES:

Introduction-the carnot vapor cycle-rankine cycle-effects of operation condition on efficiency-principles of increasing the thermal efficiency- method of increasing thermal efficiency.

DIRECT ENERGY CONVERSION:

Introduction-thermoelectric converters-thermo-ionic converters magneto hydrodynamics generators-solar power cells plant –fuel cell hydrogen –hydrogen fuel cells-direct and indirect oxidation fuel cells-biochemeical fuel cells.(no problems)

REFERENCE BOOKS:

- 1. Advanced Thermodynamics: Van Wyllan, TMGH
- 2. Engineering Thermodynamics:P.K.Nag,TMGH Advanced Thermodynamics:Ray & Sarao,Central Publishers.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)

I SEMESTER		L	Р	C
		4	-	4
	CONDUCTION AND RADIAT	ION HEAT 1	FRANSFE	R
	(Common to R&A/C & Adv	vanced I.C. En	igines)	
	(15D3110	3)	- /	

UNIT-I

Introduction of three modes of heat transfer, steady, unsteady state heat transfer process, governing equations and boundary conditions

Two dimensional steady state conduction, semi-infinite and finite flat plate; temperature field in infinite and finite cylinders, Conduction through spherical shells.

UNIT-II

Numerical methods, relaxation method and finite difference methods - simple problems.

UNIT-III

Heating and cooling of bodies with negligible internal resistance, sudden changes in the surface temperature of infinite plates, cylinders and semi-infinite bodies analytical and graphical solutions -simple problems.

UNIT-IV

Review of the thermal radiation - gas radiation, mean beam length exchange between gas volume and black enclosure, heat exchange between gas volume and gray enclosure, problems.

UNIT-V

Radiation network for an absorbing and transmitting medium, radiation exchange with specular surfaces, radiation exchange with transmissivity and reflecting, and absorbing medium.

Solar radiation: Radiation properties of environment, effect of radiation on temperature measurement.

REFERENCE BOOKS :

1) Heat Transfer	-Gibhart - Mc. Graw Hill.
2) Conduction Heat Transfer-	-Schneder Addition Wieslthy
3) Conduction of Heat in Solids	-Carslaw & Jaeger.
4) Heat transfer	-J.P. Holman,
	International student edition
5) Fundamentals of heat and mass transfer	-R.C. Sachdev New Age International
6). Heat Transfer by R. K. Rajput	Publishers

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I SEMESTER L P C 4 - 4

PRINCIPLES OF AIR-CONDITIONING (15D31104)

UNIT-I

Psychrometry: Properties of Moist air- Psychrometric relations - Psychrometric chart -Psychrometric processes - Bypass factor - Sensible heat factor

APPLIED PSYCHROMETRY: Effective and grand sensible heat factors- Selection of Air- Conditioning apparatus for cooling and dehumidification-High latent cooling load applications- All outdoor air application.

UNIT-II

Air-conditioning Processes –Mixing process- Summer, Winter and Year-round air conditioning systems - hot and dry out door condition, Hot and humid outdoor condition - winter air conditioning system - year round air-conditioning system.

UNIT-III

Process of Cooling, Heating and Dehumidifying coils - air washers - Cooling by dry and wet coils - use of hygroscopic solution in air washers - Adiabatic dehumidifier – Humidifier-water injection - steam injection. Heat pump - Different heat pump circuits air, ground water, earth - The linked air cycle heat pump - solar energy collections - Drying of materials.

UNIT-IV

Requirements of Comfort Air-conditions - Thermodynamics of human body - Body regulation process against heat or cold - comfort and comfort chart - Effective temperature - Factors governing optimum effective temperature -Design considerations-Selection of outside and Inside design conditions.

UNIT-V

Ventilation systems: Natural ventilation system - Mechanical - Extraction system - Supply system - Combined supply and extraction system - Air-cleaning - Equipment used for odour suppression and air sterilization. Air-conditioning controls systems - basic elements of the control systems - temperature, humidity and pressure controls and refrigeration flow controls - room thermostat.

REFERENCE BOOKS:

1.Hand Book of Air conditioning system design -Carrier

- 2.Refrigeration & Air-conditioning -C.P.ARORA, TMGH,2000.
- 3 Refrigeration & Air-conditioning --Domkundwar and Arora, DanpatRai& Sons, 2000.
- 5 Refrigeration & Air-conditioning --Stoecker.
- 6 Refrigeration & Air-conditioning -V.K.Jain.
- 7. ASHRE Guide and data book

С

4

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING

M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)

I SEMESTER

L P 4 -OPTIMIZATION OF DESIGN (ELECTIVE-I) (15D31105)

UNIT I

SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION:

One dimensional Optimization methods:- Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods.

UNIT II

Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. **Variable** metric method.

UNIT III

GEOMETRIC PROGRAMMING:

Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P

DYNAMIC PROGRAMMING:

Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.

UNIT IV

Linear programming – formulation – Sensivity analysis. Change in the constraints, cost coefficients , coefficients of the constraints, addition and deletion of variable, constraints.

Simulation – Introduction – Types – Steps – application – inventory – queuing – thermal system.

UNIT V

Integer Programming – introduction – formulation – Gomory cutting plane algorithm – Zero or one algorithm, branch and bound method.

JNTUACEA

STOCHASTIC PROGRAMMING:

Basic concepts of probability theory, random variables – distributions – mean, variance, Correlation, co variance, joint probability distribution – stochastic linear, dynamic programming.

REFERENCES:

- 1. Optimization theory & Applications/ S.S Rao/ New Age International
- 2. Introductory to operation research/Kasan & Kumar/Springar
- 3. Optimization Techniques theory and practice / M.C Joshi, K.M Moudgalya/ Narosa Publications.
- 4. S.D Sharma/Operations Research
- 5. Operation Research/H.A. Taha/TMH
- 6. Optimization in operations research/R.L Rardin
- 7. Optimization Techniques/Benugundu & Chandraputla/Person Asia.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I- SEMESTER L P C 4 - 4

ENERGY CONSERVATION AND MANAGEMENT (ELECTIVE - I) (15D31106)

UNIT-I

ENERGY CONSERVATION:

Rules for efficient energy conservation – technologies for energy conservation – outline of waste heat and material reclamation, load management, alternate energy sources, and energy storage.

UNIT-II

THERMAL INSULATION & REFRACTORS:

Heat loss through un-insulated surfaces, effects of insulation on current carrying wires – economic thickness of insulation – critical radius of insulation – properties of thermal insulators – classification of insulation materials – classification of refractors – properties of refractors – criteria for good refractory material – applications of insulating & refractory materials.

UNIT-III

WASTE HEAT RECOVERY SYSTEMS:

Guideline to identify waste heat – feasibility study of waste heat – shell and tube heat exchanger – thermal wheel – heat pipe heat exchanger – heat pump – waste heat boilers – incinerators.

HEAT RECOVERY SYSTEMS & HEAT EXCHANGER NETWORKS:

Liquid to liquid heat exchangers – gas to liquid heat recovery systems, regenerators, recuperators, rotating regenerators – miscellaneous heat recovery methods – selection of materials for heat exchangers – combined radiation and convective heat exchanger, U-tube heat exchanger, tube heat exchanger, fluidized bed heat exchanger – economizer.

UNIT-IV

ENGINEERING ECONOMICS:

Managerial objectives, steps in planning – efficiency of organization- capital budgeting – classification of costs – interest – types – nominal and effective interest rates – discrete and continuous compounding – discounting - time value of money – cash flow diagrams – present worth factor, capital recovery factor, equal annual payments – equivalent between cash flows.

ENERGY AUDITING:

A definition – objectives – level of responsibility – control of energy – uses of energy – check lists – energy conservation schemes – energy index – cost index – pie charts – sankey diagrams – load profiles – types of energy audits – questionnaire – energy audit of industries – general energy audit – detailed energy audit – energy saving potential.

UNIT-V

PROJECT MANAGEMENT:

Method of investment appraisal – rate of return method, pay back method, net present value method (NPV) – adoption of the methods in energy conservation campaign – types of projects — propose of project management – classification – role and qualities of project manager – types of budgets - budget committee – budgeting.

ENERGY MANAGEMENT PROGRAMS:

Necessary steps of energy management programme – concepts of energy management – general principles of energy management – energy management in manufacturing and process industries – qualities and functions of energy managers – duties of energy manager - language of energy manager – checklist for top management.

REFERENCE BOOKS:

- 1. Waste heat recovery systems
- 2. Hand book of energy audits
- 3. Energy Management
- 4. Energy Conservation
- 5. Engineering Heat Audits

6. Hand book of energy audits

- 7. Energy Management Principles
- 8. The rols of Energy Manger
- 9. Industrial Engineering & Management
- 10. 'PERT CPM'

- -D.A. Reay/Pergmon Press
- -Albert Thumann
- -W.R. Murphy & G.Mickay, Butterworths
- -P.W.O' Callaghan, Pargamon Press 1981
- -C.P. Gupta & Rajendra Prakash, Nechand & Bros.
- -Albert Thumann, The F.Airmont Press Inc., Atlanta Georgia, 1979.
- -Craig B. Smithm, Pergarmon Press
- -EEO., U.K.
- -Dr. O.P.Khanna, Dhanapat Rai & Sons, 1992
- -L.S. Srinath

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU

DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I- SEMESTER L P C I- SEMESTER L P C ADVANCED THERMAL STORAGE TECHNOLOGIES (ELECTIVE - I)

(15D31107)

UNIT I INTRODUCTION

Necessity of thermal storage – types-energy storage devices – comparison of energy storage technologies - seasonal thermal energy storage - storage materials.

UNIT II SENSIBLE HEAT STORAGE SYSTEM

Basic concepts and modeling of heat storage units - modeling of simple water and rock bed storage system – use of TRNSYS – pressurized water storage system for power plant applications – packed beds.

UNIT III REGENERATORS

Parallel flow and counter flow regenerators – finite conductivity model – non – linear model – transient performance – step changes in inlet gas temperature – step changes in gas flow rate – parameterization of transient response – heat storage exchangers.

UNIT IV LATENT HEAT STORAGE SYSTEMS

Modeling of phase change problems – temperature based model - enthalpy model - porous medium approach - conduction dominated phase change – convection dominated phase change.

UNIT V APPLICATIONS

Specific areas of application of energy storage – food preservation – waste heat recovery – solar energy storage – green house heating – power plant applications – drying and heating for process industries.

TEXT BOOK:

1. Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons 2002.

REFERENCES:

1. Schmidt.F.W and Willmott.A.J, Thermal Storage and Regeneration, Hemisphere Publishing Corporation, 1981.

2. Lunardini.V.J, Heat Transfer in Cold Climates, John Wiley and Sons 1981.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I- SEMESTER L P C 4 - 4

DESIGN OF HEAT EXCHANGERS (ELECTIVE – I) (15D31108)

UNIT I FUNDAMENTALS OF HEAT EXCHANGER 9

Temperature distribution and its implications types – shell and tube heat exchangers – regenerators and recuperators – analysis of heat exchangers – LMTD and effectiveness method.

UNIT II FLOW AND STRESS ANALYSIS 9

Effect of turbulence – friction factor – pressure loss – stress in tubes – header sheets and pressure vessels – thermal stresses, shear stresses - types of failures.

UNIT III DESIGN ASPECTS 9

Heat transfer and pressure loss – flow configuration – effect of baffles – effect of deviations from ideality – design of double pipe - finned tube - shell and tube heat exchangers - simulation of heat exchangers.

UNIT IV COMPACT AND PLATE HEAT EXCHANGERS 9

Types – merits and demerits – design of compact heat exchangers, plate heat exchangers – performance influencing parameters - limitations.

UNIT V CONDENSERS AND COOLING TOWERS 9

Design of surface and evaporative condensers - cooling tower - performance characteristics.

TEXT BOOK:

1. Sadik Kakac and Hongtan Liu, Heat Exchangers Selection, Rating and Thermal Design, CRC Press, 2002

REFERENCES

1. Arthur. P Frass, Heat Exchanger Design, John Wiley & Sons, 1988.

2. Taborek.T, Hewitt.G.F and Afgan.N, Heat Exchangers, Theory and Practice, McGraw-Hill Book Co. 1980.

3. Hewitt.G.F, Shires.G.L and Bott.T.R, Process Heat Transfer, CRC Press, 1994.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I- SEMESTER L P C 4 - 4

Cogeneration and Waste Heat Recovery Systems (ELECTIVE - II) (15D31109)

UNIT I INTRODUCTION

Introduction – principles of thermodynamics – cycles – topping – bottoming – combined cycle – organic rankine cycles – performance indices of cogeneration systems – waste heat recovery – sources and types – concept of tri generation.

UNIT II

CONGENERATION TECHNOLOGIES

Configuration and thermodynamic performance – steam turbine congeneration systems – gas turbine cogeneration systems – reciprocating IC engines cogeneration systems – combined cycles cogeneration systems – advanced cogeneration systems: fuel cell, Stirling engines etc.,

UNIT III

ISSUES AND APPLICATIONS OF COGENERATION TECHNOLOGIES

Cogeneration plants electrical interconnection issues – utility and cogeneration plant interconnection issues – applications of cogeneration in utility sector – industrial sector – building sector – rural sector – impacts of cogeneration plants – fuel, electricity and environment.

UNIT IV

WASTE HEAT RECOVERY SYSTEMS

Selection criteria for waste heat recovery technologies – recuperators – Regenerators – economizers – plate heat exchangers – thermic fluid heaters – Waste heat boilers – classification, location, service conditions, design Considerations – fluidized bed heat exchangers – heat pipe exchangers – heat pumps – sorption systems.

UNIT V

ECONOMIC ANALYSIS

Investment cost – economic concepts – measures of economic performance – procedure for economic analysis – examples – procedure for optimized system selection and design – load curves – sensitivity analysis – regulatory and financial frame work for cogeneration and waste heat recovery systems.

TEXT BOOKS:

1. Charles H. Butler, Cogeneration, McGraw Hill Book Co., 1984.11

2. EDUCOGEN - The European Educational tool for cogeneration, Second Edition, 2001

REFERENCES:

1. Horlock JH, Cogeneration - Heat and Power, Thermodynamics and Economics, Oxford, 1987.

2. Institute of Fuel, London, Waste Heat Recovery, Chapman & Hall Publishers, London, 1963.

3. Seagate Subrata, Lee SS EDS, Waste Heat Utilization and Management, Hemisphere, Washington, 1983.

4. De Nevers, Noel., Air Pollution Control Engineering, McGrawHill, New York, 1995

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)

I- SEMESTER		L	Р	С
		4	-	4
	TOTAL QUALITY MANAGEMEN	Г (ELE	CTIVE-II)	
	(15D31110)			

UNIT – I

TQM – Overview, Concepts, Elements – History-Quality Management Philosophies-Juran, Deming, Crosby, Feigenbaum, Ishikawa– Stages of Evolution– Continuous Improvement – Objectives – Internal and External Customers. Quality Standards – Need for Standardization - Institutions – Bodies of Standardization, ISO 9000 series – ISO 14000 series – Other Contemporary Standards – ISO Certification Process-Third Party Audit UNIT – II

Process Management- Quality Measurement Systems (QMS) – Developing and Implementing QMS –TQM Tools & Techniques- 7 QC Tools- 7 New QC Tools. Problem Solving Techniques - Problem Solving Process – Corrective Action – Order of Precedence– System Failure Analysis Approach – Flow Chart – Fault Tree Analysis – Failure Mode Assessment and Assignment Matrix – Organizing Failure Mode Analysis – Pedigree Analysis.

UNIT – III

Quality Circles – Organization – Focus Team Approach – Statistical Process Control – Process Chart – Ishikawa Diagram – Preparing and using Control Charts.

UNIT – IV

Quality Function Development (QFD) – Elements of QFD – Benchmarking-Types-Advantages & Limitations of Benchmarking – Taguchi Analysis – Loss function - Taguchi Design of Experiments, Robust Design, Poka-yoke, Kaizen, Deming Cycle.

UNIT – V

Value Improvement Elements – Value Improvement Assault – Supplier Teaming; Business Process Reengineering & Elements of Supply Chain Management. Six Sigma Approach – Application of Six Sigma Approach to various Industrial Situations.

TEXT BOOKS:

1Total Quality Management, DakhBesterfield, Pearson Edu.

2. Total Quality Management, K.ShridharBhat, Himalaya.

REFERENCE BOOKS:

- 1. Quality management, Howard Giltow-TMH
- 2. Quality management, Evans.
- 3. Quality management, Bedi

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I SEMESTER L P C 4 - 4 RENEWABLE ENERGY SOURCES (ELECTIVE-II) (15D32103)

UNIT – I SOLAR ENERGY:

Availability of solar energy, Measurement of sunshine, solar radiation data, estimation of average solar radiation, the black body, absorptance and emittance, Kirchoff's law. Reflection from surfaces, Solar energy selection, selective surfaces, Construction of solar flat plate and evacuated tube collectors, Performance of solar energy collectors, Solar heating and cooling.

UNIT – II

WIND ENERGY:

Wind mills and wind turbine systems, Classification of wind machines: Horizontal & Vertical axis configuration. High and low solidity rotors, Elements of wind mills and wind turbine systems, Aerodynamic models, Rankine Froud Actuator disc model, Betz limit, angular momentum wake rotation theory, Aerofoil sections and their characteristics, Estimation of power output and energy production.

UNIT – III

OCEAN THERMAL ENERGY:

Ocean thermal energy sources, Ocean thermal energy power plant development, Closed and open cycles. Advantages and operating difficulties.

TIDAL & WAVE ENERGY

Tidal power sources, Conventional and latest design of tidal power system, The ocean wave, Oscillating water column (Japanese) and the Dam, Atol design.

UNIT - IV

GEOTHERMAL ENERGY :

Earth as source of heat energy, stored heat and renewability of earth's heat, Nature and occurrence of geo thermal field, Classification of thermal fields, Model of Hyper thermal fields & Semi thermal fields, drilling hot water measurements.

UNIT – V

FUEL CELL ENERGY:

Description, properties and operation of fuel cells, Major components & general characteristics of fuel cells, Indirect methanol fuel cell systems. Phosphoric acid fuel cell systems and molten carbonate fuel cell systems.

BIOMASS ENERGY:

Types of conversion techniques for the production of solid, liquid and gaseous fuels by chemical and biochemical methods, and Biomass gasifiers- Selection of a model and size, Technical, Climatic, geographical and economic issues.

BOOKS:

- 1. Principles of Solar Engineering: F.Kreith&J.F.Krieder/Mc.Graw Hill Book Co
- 2. Wind Energy conversion Systems: L.C.Freris, Prentice Hall, Inc..
- 3. Non-conventional Energy Sources: G.D. Rai
- 4. Energy Technology: S. Rao & B.B. Parulekar
- 5. Geo thermal energy: H.Christopher&H.Armstead.
- 6. Photo Voltaic Energy Systems, Design&Applications: Mathew Buresch, Mc Graw Hill Book Co..
- 7. Bio Gas Technology, A Practical Hand Book: K.C.Khendelwal&S.S.Mahdi Mc Graw Hill Book Co..
- 8. Hand Book of Batteries and Fuel cells: David Linden, Mc Graw Hill Book Co..
- 9. Energy Conversion Systems: H.A.Sorenson: John Wiely & S.jons
- 10. Renewable Energy Sources & Conversion technology: Bansal.K: Leemann&Meliss
- 11. Energy technology Hand Book: EdD.M.Considine
- 12. Principles of energy conversion AW.Culp

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> I SEMESTER L P C 4 - 4

SOLAR REFRIGERATION & AIR CONDITIONING (ELECTIVE - II) (15D31111)

UNIT - I

Review of Psychometric and (Air-conditioning) cooling load calculations-outline of Vapour Compression Refrigeration Systems – Cycle on p-h and T-o charts – C.O.P – Simple problems using property tables.

UNIT - II

Principle of working of working of vapour Absorption Refrigeration, steam jet refrigeration, thermoelectric refrigeration – classification of refrigerants – Desirable properties of ideal refrigerant - Properties of solvent - Solvent refrigerant combination properties.

UNIT - III

Solar cooling systems: vapour compression systems, Rankine cycle, Striling cycle, using P.V.Modules. Solar operated vapour absorption systems – vapour jet refrigeration systems.

UNIT - IV

Solar thermal energy storage - Active and passive systems TROMBE wall - equivalent thermal circuit - Solar green houses.

Solar cooling and dehumidification: Desiccant cooling - Solid and liquid desiccants - improving desiccant cycles - hybrid systems.

UNIT - V

Non –mechanical systems - Australian Rock system – Solar assisted Heat Pump – Economics of solar cooling systems.

Simulation of solar thermal systems - Salient features of DYNSYS, TRNSYS - model formulation - flow diagram of cooling systems.

REFERENCE BOOKS:

- 1. A course in Refrigeration & Air –conditioning, S.Domakundwar & S.C.Arora
- 2. Principles of Solar engineering, F.Kreith &J.F.Kreider, Mc Graw Hill Book company
- 3. Solar Cooling & Heating Volumes, I,II,III., T.Negat Vezirogulu
- 4. Entrepreneurship Development in New & Renewable Energy Technologies APPC & IREDA

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u>

I SEMESTER	L	Р	С
	0	4	2

REFRIGERATION LAB (15D31122)

Vapor compression Refrigeration system (v.c.r.s.)

- 1. Determination of C.O.P . and time taken for ICE making in the Domestic Vapor Compression Refrigeration.
- 2. Study on Compressor unit.
- 3. Determination of the pull-down characteristics of V.C.R.S.
- 4. Study of Condenser unit
- 5. Determination of the C.O.P of vapor Absorption Refrigeration system
- 6. Study on Expansion devices.
- 7. Determination of the cooling capacity and C.O.P. of evaporative condensing test rig.
- 8. Study of evaporators and condensers device.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u>

(II- SEMESTER COURSE STRUCTURE AND SYLLABUS)

EFFECTIVE FROM THE YEAR 2015-16

II - SEMESTER:

Subject Code	SUBJECT	L	Р	С
15D31201	Design of Air-Conditioning Systems	4	-	4
15D31202	Convective Heat & Mass Transfer	4	-	4
15D31203	Refrigeration Equipment & Controls	4	I	4
15D31204	Advanced Fluid Mechanics	4	I	4
	ELECTIVE-III	4	I	4
15D31205	Cryogenic Engineering			
15D31206	Design of Heat Transfer Equipment			
15D31207	Air Handling Systems Design			
15D31208	Indoor Air Quality Control			
	ELECTIVE-IV	4	-	4
15D31209	HVAC System Design			
15D31210	Erection and Maintenance of Refrigeration and			
	Air-conditioning Equipments			
15D31211	Food Preservation Techniques			
15D31212	Materials for Low Temperature Applications			
15D54201	Research Methodology (Audit Course)	3	-	-
15D31213	Air-conditioning Lab	0	4	2
TOTAL		24	4	26

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)

II- SEMESTER

L P C 4 - 4

DESIGN OF AIR-CONDITIONING SYSTEMS (15D31201)

UNIT-I

AIR-DISTRIBUTION

Room air distribution - types of supply air outlets - Mechanism of flow through outlets -Considerations for selection and location of outlets - Distribution patterns of outlets friction loss in ducts- grills, diffusers - registers - location of outlets and return air opening - friction loss in ducts - Rectangular equivalents of circular ducts - Air ducts design: duct construction - Duct design procedures- Equal Friction, Static Regain, Velocity Reduction methods.

UNIT-I

BUILDING SURVEY & COOLING LOAD ESTIMATION:

Location of equipment and- Heat gain through glass-Shading from reveals, overhangs and fins-Effect of shading device-Calculation of Solar heat gain through ordinary glass using tables, Fabric heat gain, overall heat transfer coefficient, periodic heat transfer through walls and roofs- solair temperature-Empirical methods to calculate heat transfer through walls and roofs using decrement factor and time lag-Equivalent temperature difference method-Infiltration-Stack effect-wind action- load due to infiltration.

COOLING LOAD ESTIMATION:

Occupancy load, lighting load, appliance load-Product load-system heat gains-cooling and heating load estimates-Heat storage, diversity and stratification.

UNIT-III

AIR CONDITIONING SYSTEMS:-

Central station Air conditioning system- All water, all air, air water - unitary, Split, district Air conditioning systems.

UNIT-IV

THERMAL INSULATION & AIR HANDLING APPARATUS:

Method of Heat transfer, desired properties of ideal insulating materials, types of insulating materials, Heat transfer through insulation, economic thickness of insulation, insulation of heated Buildings, insulation for cooling Buildings and cold storage, pipe insulation. Fans and Blowers-types of Fans-Fan characteristics-Centrifugal Fans-Axial Fans-Fan arrangements-Filters- general service – Noise - sources &control

UNIT-V

APPLICATIONS OF AIR-CONDITIONING: -

Industrial, Commercial, transport Air conditioning-Special applications-Computer, Hospital Cold storages, Printing, Textile & Leather industries.

REFERENCES BOOKS:

- 1. Hand Book of Air conditioning system design -Carrier
- 2. Refrigeration & Air-conditioning -C.P.ARORA, TMGH,2000.
- 3. Refrigeration & Air-conditioning --Domkundwar and Arora, DanpatRai & Sons, 2000.
- 4. Refrigeration & Air-conditioning -Stoecker.
- 5. Refrigeration & Air-conditioning -V.K.Jain.
- 6. ASHRAE Guide and Data Book

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II- SEMESTER L P C

CONVECTIVE HEAT &MASS TRANSFER (Common to R&A/C & Advanced I.C. Engines) (15D31202)

4

_

4

CONVECTIVE HEAT TRANSFER:

UNIT-I

Introduction to convection, review of conservation equations - Forced convection in laminar flow - Exact and approximate solutions of Boundary layer energy equation for plane isothermal plate in longitudinal flow - problems.

UNIT-II

Forced convection heat transfer in laminar tube flow - forced convection in turbulent flow – Internal Flows-Correlations-Problems. Approximate analysis of laminar free convective heat transfer on a vertical plate-external flows-correlations-problems.

UNIT-III

Boiling and condensation: Analysis of film condensation on a vertical surface – pool boiling - forced convection boiling inside tubes - problems.

MASS TRANSFER:

UNIT-IV

Definitions of concentration and velocities relevant to mass transfer, Fick's law, species conservation equation in different forms. Steady state diffusion in dilute solutions in stationary media, transient diffusion in dilute solutions in stationary media, one dimensional non dilute diffusion in gases with one component stationary.

UNIT-V

Convective mass transfer - governing equations-forced diffusion from flat plate- Dimension less correlation's for mass transfer. Simultaneous heat and mass transfer - analogy between heat, mass and momentum transfer.

REFERENCES BOOKS:

- 1. Heat transfer J. P. Holman.
- 2. Heat and Mass transfer- R.C. Sachdeva
- 3. Convective Heat and Mass transfer-Kays.
- 4. Heat and Mass transfer V.Gupta and I.Srinivasan Tata Mc.Graw Hill

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u>

II- SEMESTER

L	Р	C
4	-	4

REFRIGERATION EQUIPMENT & CONTROLS (15D31203)

UNIT-I

Compressors - types - equivalent shaft work - Volumetric efficiency - factors affecting total volumetric efficiency - compound compression with inters cooling - rotary compressors - surging - screw compressors - lubricating oils.

UNIT-II

Condensers - types -Water cooled Condensers-Air cooled, Evaporative types - Economic water rate - Economic water velocity - over all heat transfer co-efficient - design - temperature distribution and heat flow in a condenser - pressure drop - fouling factor - LMTD correction factor (no problems).

Cooling towers and spray ponds - classification - performance of cooling towers - analysis of counter flow cooling towers - enthalpy - temperature diagram of air and water - cooling ponds - types - cross flow cooling towers - procedure for calibration of outlet conditions.

UNIT-III

Evaporators - types - Flooded and dry Evaporators, natural and forced convection type - shell and tube - shell and coil, plate type - secondary Evaporators - temperature distribution and

heat flow in evaporator - pressure drop - fouling correction factor (no problems). Defrosting - necessity - methods - manual, automatic, periodic defrosting, solid and liquid adsorbents, water defrosting, defrosting by reversing the cycle, automatic hot gas defrosting, thermo balance defrosting, electric control defrosting. (no problems)

UNIT-IV

Expansion devices - Capillary tube, thermostatic expansion valve - float valves, externally equalized valves - automatic expansion valves - solenoid control valve - location of piping and pump design consideration.(no problems)

UNIT-V

Performance of complete Vapour compression system-Performance of condensing unitcompressor -Evaporator-balancing of load in two stage compression.(no problems)

Installation of vapour compression refrigeration system - evaluation and dehydration testing for leakages - charging - adding oil.(no problems)

REFERENCES:

- 1. 'Refrigeration and Air Conditioning'- by Stoecker TMGH– International Edition,1982
- 'Refrigeration and Air Conditioning' by Domkundwar Dhanpat Rai & Co., -2000
- 3. 'Refrigeration and Air Conditioning' by C.P.Arora TMGH 2000

4. ASHRAE Guide and Data book applications. JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING) II SEMESTER L P C 4 4

ADVANCED FLUID MECHANICS (Common to R&A/C & Advanced I.C. Engines) (15D31204)

UNIT - I

Basic concepts: Continuum hypothesis – Eulerian and Lagrangian descriptions. Derivation of general differential equations – continuity momentum and energy of incompressible flow-Navier Stokes equation for Viscous Fluids (Rectangular Co-Ordinate Systems)-Euler's equations for ideal fluids-Bernoulli's equations (one dimensional) – applications

UNIT - II

Laminar Flow Viscous Incompressible Fluids: Flow similarity – Reynolds number, flow between parallel flat plates, couette-flow, plane poiseuille flow, Hagen – poiseuille flow. Laminar boundary layer: Boundary layer concept, Prandtl's approximations, Blassius solution for a flat plate without pressure gradient – momentum integral equation – Von-Kerman integral relation – Pohlhausen method of obtaining approximate solutions. Displacement thickness, momentum thickness and energy thickness. Boundary layer separation and control, Kerman's integral equation.

UNIT - III

Introduction to turbulence: Origin of turbulence, nature of turbulent flow – Reynolds equations and Reynolds stresses, velocity profile.

Compressible Fluid Flow Basics: Mach number, Flow pattern in compressible flow, classification of compressible flow, isentropic flow, stagnation properties.

UNIT - IV

Gas Dynamics: Compressible flow through ducts and nozzles – area velocity relations. Flow through convergent and convergent divergent nozzles. Real nozzles flow at design conditions. Introduction to normal compression shock – normal shock relations. Introduction to Fanno Raleigh equations.

UNIT - V

Flow in ducts with friction: Fanno line, adiabatic constant area- Flow of perfect gas, chocking due to friction in constant area flow- Introduction to constant area flow with heat transfer (Raleigh line)

REFERENCE:

- 1. Yuan S.W. "Foundations of Fluid Mechanics", Prentice Hall Eastern economy edition 1983
- 2. Zucrwo M.J. and Hoffman J.D. "Gas Dynamics", Vol-I & Vol-II, John Wiley and Sons Inc. 1977
- 3. Yahya S.M. "Fundamentals of Compressible Flow", Wiley Eastern
- 4. Young, Munsen and Okiisyi, "A Brief Introduction to Fluid Mechanics" 2nd Edition, John Wiley 2000.
- 5. Frank.M.White, "Fluid Mechanics 5th Edn McGraw Hill 2005.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II-SEMESTER L P C 4 - 4 CRYOGENIC ENGINEERING (ELECTIVE-III)

(15D31205)

UNIT-I

Introduction necessity of low temperature - Multistage Refrigeration system -Cascade system - Manufacture of dry ice-Joule Thompson coefficient.

Liquification of air - Lindae system-Analysis-Dual pressure cycle analysis-Liquefaction of Hydrogen and Helium-problems.

UNIT-II

Application of Lower temperature-Effects on the properties of metals-strength-Thermal properties-super conductivity-super fluidity.

Applications like expansion fitting - cryobiology-cryosurgery - space research-computers under ground power lines.

UNIT-III

Low temperature insulation-Reflective insulation-Evacuated powders-Rigid foams-Super insulation.

UNIT-IV

Cooling by adiabatic de-magnetization - Gas separation and cryogenic systems-separation of gases- Rectifying columns-Air separating- single and double columns Air separation plant.

UNIT-V

Storage and handling of cryogenic liquids - Dewars and other types of containers.

REFERENCE BOOKS:

- 1. Cryogenics by Barron. Oxford University Press 1980.
- 2. Cryogenic Engineering by Timmerhaus
- 3. Cryogenic Engineering by Huston: McGraw Hill
- 4. Refrigeration and Air-conditioning by S.Domkundwar.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II- SEMESTER L P C 4 - 4

DESIGN OF HEAT TRANSFER EQUIPMENT (ELECTIVE - III) (15D31206)

UNIT - I

DESIGN OF HEAT EXCHANGERS:

Exchangers-mean temperature differences for parallel and counter flow- effectiveness method(N.T.U)-keys and London charts.

DESIGN OF CONDENSERS:

Types overall heat transfer coefficients- temperature distribution and heat flow in a condenser-pressure drop in a condenser –extended fin surfaces-consideration of fouling factor-L.M.T.D. correction factor.

UNIT - II

DESIGN OF EVAPORATORS:

Temperature distribution and heat flow in an evaporator-pressure drop- factor to be consider in the design of heat transfer equipment-types of heat consideration of fouling factor – correction factor

DESIGN OF COMPRESSORS:

Types-equivalent shaft work-volumetric efficiency-factors affecting total volumetric efficiency –compound compression with inter cooling- rotary compressors-surging.

UNIT - III

DESIGN OF COOLING TOWERS AND SPRAY PONDS:

Classification-performance of cooling towers – analysis of counter flow cooling towersenthalpy-temperature diagram of air and water- cooling ponds- types of cooling ponds –cross flow cooling towers- procedure for calculation of outlet conditions.

UNIT - IV

DESIGN OF DUCTS:

Continuity equation-Bernoulli's equation-pressure losses-frictional charts- coefficient of resistance for fillings- duct sizing methods.

DESIGN OF FANS:

Standard air-fan horsepower-fan efficiency-similarity laws-fan laws-performance coefficients- theoretical expression for total pressure drop by a fan-centrifugal fan- axial flow fan-system resistance.

UNIT - V

PIPING SYSTEM:

Requirements of a good piping system-pressure drop in pipes-moody chart-refrigerant pipingdischarge line-liquid line-suction line-piping arrangement

REFERENCE BOOKS:

- 1. Heat and mass transfer by Arora & Domkundwar.
- 2. Refrigeration & Air-Conditioning by P.L.Ballaney
- 3. .Refrigeration & Air-Conditioning by C.P.Arora.
- 4. .Refrigeration & Air-Conditioning by Stoecker

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU

DEPARTMENT OF MECHANICAL ENGINEERING M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING) II- SEMESTER L P C II- SEMESTER L P C AIR HANDLING SYSTEMS DESIGN (ELECTIVE – III)

(15D31207)

UNIT I

BASIS CONCEPTS

Psychrometric, Classifications of Air-Handling Units, Main components, Selection of Air-Handling units, economizer cycle, single zone system, multi zone system-Design Consideration, duct designstatic Regain-equal friction-T method.

UNIT II

CONSTANT AND VARIABLE VOLUME SYSTEMS

Terminals reheat system, Double-Duct systems, Sub zone heating, Draw-through cooling, Triple-Duct system, Fan Coil Unit, Induction system. Various System Configurations -Hydronic heat pump, Heat recovery and Economizer, Indirect evaporative cooling, Energy conservation and system retrofit.

UNIT III

AIR SYSTEM: COMPONENTS

Fan-types, Construction, Arrangement, and Selection, Coil Characteristics and Accessories, Condensate control and Freeze-up protection

UNIT IV

VENTILATION FOR CONTROL OF WORK ENVIRONMENT

Ventilation, Measurements control and exhaust, Air cleaning devices, Rating and Assessments, Test method for air filters, and replacement-Air system, evaluation and control of the thermal Environment, Indoor Air Quality and Outside Air Requirements

UNIT V

AIR CONTROLS

Demand control ventilations, Thermostats, Damper and damper motor, Automatic Valves, Direct digital control, Application of fuzzy logic & neural network-Demand control ventilation.

REFERENCES

1. Ysen - Yao Sun, Air handling system design, McGraw-Hill, Inc., NY - 1994

2. William A. Burges, Michael j. Ellen Becker, Robert D. Treitman, Ventilation for control of the work environment, A Wiley - Interscience Publication NY - 1989.

3. John I. Levenhagen, Donald H. Spethmann, HVAC controls and systems, McGraw – Hill international Edition. NY - 1992. Allan T. Kirkpatrick & James S. Elleson, cold air distribution system design guide, ASHEAC - 1996 USA.

4. Shan K.Wang, Handbook of Air-conditioning and Refrigeration, McGraw -Hill, 2001.

5. SMACNA, HVAC System Duct Design, SMACNA Virginia - 1990.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU

DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II- SEMESTER L P C 4 - 4

INDOOR AIR QUALITY CONTROL (ELECTIVE - III) (15D31208)

UNIT I AIR QUALITY

Air Pollution–Indoor, Outdoor; statistics in India-Contaminants-sources-effects of air quality on health and productivity-IAQ-ASHRAE standards.

UNIT II INDOOR AIR QUALITY & SICK BUILDING SYNDROME

Effect of temperature , Velocity , Pressure , Humidity on IAQ-Noise-Source-damping methods-Air distribution-diffuser design-location-air charge calculations-age of air-SBS- psycho social effects-Parameters causing SBS-Bio contaminants-diagonising Building problems-NIOSH standards.

UNIT III AIR FILTRATION

Principles of air filtration-impingement filters, HEPA & ULPA filters, Electronic air cleaners, filters-Filter Standards-filter efficiency-filter testing methods-NAFA certification.

UNIT IV DESIGN OF CLEANROOMS

History of clean rooms-classification-clean room standards-different contaminants-ISO classification-interiors-Recommended practices-Design of clean rooms for Hospitals, Pharmaceutical, micro electronic, Bio technology food industries and manufacture industries-International standards

UNIT V IAQ MEASUREMENTS & CONTROL

Contaminants measurement-sampling sampling methods-Quality assurancecalibrationdata interpretation-instruments-specifications-source control–prevention-Dilution Ventilation- demand control volume method.

TEXT BOOKS:

1. Whyte W. Clean Room Design II Edition, John Wiley & Sons (NY)–1999.

REFERENCES:

1. American Institutes of Architects (AIA), Guidelines for Design & Construction of Hospital & Health care facilities, AIA, Washington–2001.

2. Thad Godish , Sick Buildings , Lecois Publishers , Ann Arbor , 1994.

3. National Air Filtration Association, NAFA guide to Air Filtration-III edition-NAFA Washington DC-2001.

5. ASHRAE Hand Book, HVAC Systems and Equipment, I-P Edition 1996.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II- SEMESTER L P C 4 - 4

HVAC SYSTEM DESIGN (ELECTIVE - IV) (15D31209)

UNIT-I

Applied Psychrometry, Psychrometric processes using chart Load Estimation: solar heat gain, study of various sources of the internal and external heat gains, heat losses, etc. Methods of heat load calculations: Equivalent temperature Difference Method, Cooling Load Temperature Difference, and Radiance Method, RSHF, GSHF, ESHF, etc. Inside and outside design conditions.

UNIT-II

Air Distribution: Fundamentals of air flow in ducts, pressure drop calculations, design ducts by velocity reduction method, equal friction method and static regain method, duct materials and properties, insulating materials, types of grills, diffusers, wall registers.

UNIT-III

Ventilation and Infiltration: Requirement of ventilation air, various sources of infiltration air, ventilation and infiltration as a part of cooling load. Fans and Blowers: Types, performance characteristics, series and parallel arrangement, selection procedure.

UNIT-IV

Direct and Indirect Evaporative Cooling: Basic psychometric of evaporative cooling, types of evaporative coolers, design calculations, Air Conditioning Equipments and Controls: Chillers, Condensing units, Cooling coils, bypass factors, humidifiers, dehumidifiers, various types of filters, air washers, thermostat, humidistat, cycling and sequence controls, modern control of parity, odour and bacteria, Air filtration- Study of different types of filters, Cooling Towers

UNIT-V

Air conditioning systems: Classification, design of central and unitary systems, typical air conditioning systems such as automobile, air plane, ships, railway coach air-conditioning, warm air system, hot water systems, heat pump, clean rooms (descriptive treatments only). Standards and Codes: ASHRAE/ARI, BIS standards study and interpretation, ECBC, NBC codes

REFERENCES:

1. ASHRAE Handbooks

2. ISHRAE Handbook.

3. Handbook of Air Conditioning System Design, Carrier Incorporation, McGraw Hill Book Co., USA.

- 4. Trane air conditioning manual,
- 5. Refrigeration and Air conditioning, ARI Prentice Hall, New Delhi.
- 6. Norman C. Harris, Modern air conditioning

7. Jones W. P., Air conditioning Engineering, Edward Arnold Publishers Ltd, London, 1984.

8. Jones W. P., Air conditioning Engineering - Applications, Edward Arnold Publishers Ltd, London, 1984

9. Hainer R. W., Control System for Heating, Ventilation and Air conditioning, Van Nastrand Reinhold Co., New York, 1984.

10. Refrigeration and Air conditioning- C P Arora, Tata McGraw Hill Publication, New Delhi.

11. McQuiston, Faye; Parker, Jerald; Spitler, Jeffrey 2000, Heating, Ventilating and Air Conditioning-Analysis and Design, 5th ed. John Wiley & Sons.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II SEMESTER L P C 4 - 4 EDECTION AND MAINTENANCE OF DEEDLCED ATION AND AID

ERECTION AND MAINTENANCE OF REFRIGERATION AND AIR-CONDITIONING EQUIPMENTS (ELECTIVE-IV) (15D31210)

UNIT I INTRODUCTION

Refrigeration and air-conditioning plant layout, parameters affecting the location, organisational approach.

UNIT II ERECTION OF R&AC SYSTEMS

Erection methodology, foundation, padding, network analysis, critical path, interconnections; safety precautions, air handling equipments, locations in the systems, corrosion, noise, vibration monitoring and control.

UNIT III TESTING OF EQUIPMENTS

Testings/ISI standards, testing of compressors, condensers, evaporators, and cooling towers. Testing of control systems, circuitry and trouble shoot, condition monitoring.

UNIT IV PREVENTIVE MAINTENANCE

TPM Principles, Corrective and preventive measures, Reliability analysis, Signature analysis, Different types of preventive maintenance procedures, Practical hints, Failure Mode and Effect Analysis, Problem Solving Techniques.

UNIT V MAINTENANCE ASPECTS

Maintenance procedures, leak detection, vacuumising, charging, trial run, prevention, lubrication, different methods. Studies on different maintenance schedules followed by various industries.

TEXT BOOKS:

1.Robert C.Rosciler, HVAC Maintenance and operations Hand Book,Mc Graw.Hill,1997.

2.Althouse A.D. and Turnquist C.H., Modern Refrigeration and Airconditioning, Good Heart-Wilcoz Co Inc., 2004.

REFERENCE BOOKS:

1.ISHRAE Hand book on Refrigeration & Air conditioning, ISHRAE Bangalore, 1998.

2. Nelson C.W., Commercial and Industrial Refrigeration, McGraw-Hill, 1982.

3. Paul F. Goliber, Laboratory Manual, Depuar publishing Inc., 1980.

4. Reed G.H., Refrigeration, A Practical Manual, Applied Science Publishers Ltd., London, 1982.

5. Russel E. Smithy, Electricity for Refrigeration, Heating and Air-conditioning, Duxbury Press, Massachusetts, 1980.

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.Tech. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II- SEMESTER L P C 4 - 4 FOOD PRESERVATION TECHNIQUES (ELECTIVE – IV) (15D31211)

UNIT-I

Theories and method of chilling, freezing and free de-humidification – preparation for freezing, freezing methods: commercial freezing methods – sharp, quick and air blast freezing, freeze-drying. Methods of pre-cooling fruits and vegetables – hydro cooling, forced air cooling and vacuum cooling.

UNIT-II

Processing of meat products: Refrigeration systems for carcass chilling and holding – chilled brine spray, sprayed coil – dry coil systems, chilling and freezing variety meats – overnight chilling, quick chilling, effect of freezing temp on qualify of meat product

Fishery products: icing of fish – saltwater icing, freezing methods – slow freezing, blast freezing, plate freezing and immersion freezing of fish.

UNIT-III

Dairy products: Milk processing, handling, dairy plant procedure, standardizing, pasteurization, homogenizing, and container filling.

UNIT-IV

Fruit juice concentrations: Processing and quality control – selection, grading and handling of fresh fruit, washing, juice extraction, heat treatment, flavor fortification, packaging storage and distribution- convection methods- freezing and mechanical separation, low temperature vacuum evaporation, direct refrigerant contact method, indirect refrigerant contact methods, high temperature short time evaporations.

UNIT-V

Refrigerated warehouse: factors affecting ware house design- building location, design reduction, shipping and receiving plant forms, utility space, controlled atmospheric storage rooms, jacketed storages, automated ware house – insulation, cold storage doors. Refrigerated trucks, trailers & containers: temperature control methods, body design & construction, auxiliary equipment, types of refrigeration systems- railway refrigeration cars.

REFERENCE BOOKS:

- 1. ASHRE Guide and data book
- 2. Refrigeration & Air-conditioning- C.P.Arora
- 3. Hand Book of Air conditioning system design -Carrier

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING <u>M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING)</u> II- SEMESTER L P C 4 - 4 MATERIALS FOR LOW TEMPERATURE APPLICATIONS (ELECTIVE - IV) (15D31212)

UNIT-I

MATERIAL BEHAVIOR:

Deformation process in pure, impure metals and alloys-effect of low temperature transformation, plastic deformation at constant stress-creep, Role of dislocations, Tensile, Shear strength of perfect and real crystals, Strengthening mechanisms, Work hardening, strain and strain rate on plastic behavior-super plasticity Ductile and Brittle Failure, Crack Propagation-Fracture, Toughness-fracture toughness, Griffith's theory, stress intensity factor and fracture toughness Toughening mechanisms-Ductile, brittle transition in steel

UNIT-II

MATERIALS SELECTION

Compatibility with liquid oxygen and other process fluids-external environment, Toughness pressure vessel codes, Motivation for selection-cost basis and service requirements–Selection for surface durability, corrosion and wear resistance– Relationship between materials selection and processing–Case studies in materials selection.

UNIT-III

NON METALLIC MATERIALS

Polymeric materials for Cryogenic Application, Ceramics and Glasses, Cryogenic properties of Composites, Polymeric materials–Formation of polymer structure– Production techniques of fibres, foams, adhesives and coatings–Structure, properties and applications of engineering polymers–Advanced structural ceramics, WC, TiC, TaC, Al2O3, Sic, Si3N4, CBN and diamond–properties, processing and applications.

UNIT-IV

TESTING METHODS AND TECHNIQUES

Basic types of Cryostat and cooling system, Modification, Variations, and special purpose attachments-multiple specimen testing, compression testing, Flexural, torsional, fatigue and impact testing, Extensionetry-Resistive strain gauges, Displacement Transducers, Capacitance gauges.

UNIT V

MODERN METALLIC MATERIALS

Dual phase steels, micro alloyed, High strength low alloy (HSLA) steel, Transformation induced plasticity (TRIP) steel, Maraging steel-intermettallics, Ni and Ti aluminides–smart materials, shape memory alloys–Metallic glass–Quasi crystal and nano crystalline materials.

TEXT BOOKS:

1. Wigley D.A., "Mechanical Properties of Materials at Low Temperatures", Plenum Press, New York, 1972.

REFERENCES:

1. Richard P. Reed, Alan F. Clark, Materials at low Temperature, ASME International, Dec 1983.

2. Thomas H.Courtney, "Mechanical Behavior of Materials", (2 nd Edition), McGraw-Hill, 2004.
JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS): ANANTAPURAMU DEPARTMENT OF MECHANICAL ENGINEERING M.TECH. HEAT POWER (REFRIGERATION & AIR-CONDITIONING) **II- SEMESTER** L Р С 4 2

AIR-CONDITIONING LAB (15D31213)

_

- 1. Study the Humidification and Dehumidification process.
- 2. Find out the Efficiency of the Air-washer test rig.
- 3. Study on Gas charging unit
- 4. Find our over-all efficiency of cooling Tower.
- 5. Find out the capacity and by-pass factor of the window air conditioning.
- 6. Study the various process and by-pass factor by using Air conditioning test Rig.
- 7. Study on Heat pump
- 8. Study on Air-condition system. Split Air conditioning system and Cnetral Air conditioning system.

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

HEAT POWER REFRIGERATION AND AIR CONDITIONING

I SEMESTER

S.No.	Course	Course Subject Name Cate		Ho	urs 1 Weel	Per K	Credits
	Code	-	Gory	L	Т	Ρ	
1	21D31101	Advanced Refrigeration	PC	3	0	0	3
2	21D31102	Advanced Thermodynamics	PC	3	0	0	3
3	Profession	al Elective – I					
	21D31103	Conduction and Radiation Heat Transfer					
	21D31104	Design Optimization	PE	3	0	0	3
	21D31105	Food Preservation Techniques					
4	Profession	al Elective – II	•				
	21D31106	Principle of Air Conditioning					
	21D31107	Cryogenic Engineering	PE	3	0	0	3
	21D31108	Solar Refrigeration and Air Conditioning					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies					
7	21D31109	Refrigeration Lab	PC	0	0	4	2
8	21D31110	Heat Transfer Lab	PC	0	0	4	2
		Total		16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

HEAT POWER REFRIGERATION AND AIR CONDITIONING

II SEMESTER

S.No.	Course Subject Name Cate		Cate	Ho	urs 1 Weel	Per c	Credits
	Code		Gory	L	Т	Ρ	
1	21D31201	Design of Air-Conditioning Systems	PC	3	0	0	3
2	21D31202	Convective Heat and Mass Transfer	PC	3	0	0	3
3	Profession	al Elective – III					
	21D31203	Refrigeration Equipments & Control	PE				
	21D31204	Design of Heat Transfer Equipment		3	0	0	3
	21D31205	Advanced Thermal Storage Technologies					
4	Profession	al Elective – IV					
	21D31206	Advanced Fluid Mechanics					
	21D31207	Design of HVAC Systems	PE	3	0	0	3
	21D31208	Energy Conservation and Management					
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga					
7	21D31209	Air-Conditioning Laboratory	PC	0	0	4	2
8	21D31210	Advanced Fluid Mechanics Lab	PC	0	0	4	2
		Total		14	00	12	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF MECHANICAL ENGINEERING

HEAT POWER REFRIGERATION AND AIR CONDITIONING

III SEMESTER

S.No.	Course	Subject Name	Cate	Ho	urs Weel	Per s	Credits
	Coue		GOLA	L	Т	Ρ	
1	Profession	al Elective – V					
	21D31301	Design of Air Handling Systems					
	21D31302	Indoor Air Quality Control	PE	3	0	0	3
	21D31303	Cogeneration and Waste Heat Recovery		_			-
		Systems					
2	Open Elect	ive		•			
	21D30301	Mechatronics	OE	3	0	0	3
3	21D31304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-curricular Activities	PR				2
	Total				00	20	18

IV SEMESTER

S.No.	Course	Subject Name	Cate	Но	urs I Weel	Per s	Credits
	Code		GOLA	L	Т	Р	
1	21D31401	Dissertation Phase – II	PR	0	0	32	16
Total					00	32	16

Course Code	21D31101	ADVANCED REFRIGERATION	L	Т	Р	С		
Semester	Ι	(21D31101)	3	0	0	3		
Course Objectives:								
1. To understar	1. To understand the principles of refrigeration.							
2. To understar	nd different v	apor Absorption systems.						
3. To know Air	craft Air refr	igeration systems.						
4. To gain know	wledge about	refrigerants.						
5. Ozone deple	tion potential	and global warming potential.						
Course Outco	mes (CO): S	tudent will be able to						
1. Illustrate the	basic concep	ots of refrigeration system.						
2. Analyze the	vapour comp	ression cycle and interpret the usage of refrigerar	ıts.					
3. Explain the	components of	of vapour absorption system.						
4. Demonstrate	the use of re	frigerants.						
5.Discuss the th	heory Ozone	depletion potential and global warming potential.						
UNIT - I		· · · · · · · · · · · · · · · · · · ·	Lec	ture	Hrs	5:		
Vapor Compre	ssion Refrige	ration:						
Analysis of var	oor compress	ion refrigeration cycle - reversed Carnot cycle for	r vap	our	- eff	ect		
of suction ten	nperature an	d condensing temperature on cycle performation	nce	– P	racti	cal		
refrigeration c	ycle – sub-c	ooled liquid and super-heated vapor refrigeration	ion c	cycle	es th	neir		
effect on perf	ormance. M	ulti Pressure Systems- removal of flash gas-	inte	ercoc	oling	<u> </u>		
compound co	mpression	(conversion)-multi vapor systems- cascade	syst	ems∙	- d	ual		
compression- s	ystem practic	ces.	2					
UNIT – II			Lec	ture	Hrs	5:		
Simple vapor A	Absorption sy	stems- actual vapor absorption cycle- representat	ion o	of the	ecy	cle		
on H-C diagrar	n- common r	efrigerant- (Absorbent)Adsorbent) systems.			•			
Practical single	e effect Wate	er- Lithium Bromide Absorption system- double	e effe	ect s	syste	-m		
Electrolux refri	igerator- new	er mixtures for absorption systems.			•			
UNIT – III			Lec	ture	Hrs	5:		
Aircraft Air ref	rigeration – I	Functions – working conditions – types.						
Steam jet wate	er vapor syst	ems- thermoelectric refrigeration systems - vort	ex re	efrig	erat	ion		
system - pulse	tube refrigera	ition.		U				
UNIT – IV			Lec	ture	Hrs	5:		
Refrigerants:								
Desirable prop	erties- therm	o dynamic-chemical and transport properties -	des	igna	tion	of		
refrigerants - inorganic, halo carbon refrigerants - secondary refrigerants - Properties of								
mixtures of ref	rigerants							
UNIT – V			Lec	ture	Hrs	5:		
Ozone depletion potential and global warming potential – effect of refrigerants- alternative								
refrigerants- newer refrigerants.								
Textbooks:								
1. R & A/C by F.Stoecker& Jerold. W.Jones-MGH Intrl., 1982.								
2. R & A/C by C.P.Arora, TMGH-2000.								
3. R & A/C by	Manohar Pra	isad.						

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

4. Principles of Refrigeration by Roy.J.Dossat, 1997.

5. Refrigeration by Gosney- Oxford University Press-1980.

Reference Books:

- 1. R & A/C by F.Stoecker& Jerold. W.Jones-MGH Intrl., 1982.
- 2. R & A/C by C.P.Arora, TMGH-2000.
- 3. R & A/C by Manohar Prasad.
- 4. Principles of Refrigeration by Roy.J.Dossat, 1997.
- 5. Refrigeration by Gosney- Oxford University Press-1980.

Online Learning Resources:

https://nptel.ac.in/courses/112/105/112105129/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31102	ADVANCED THERMODYNAMICS (21D31102)	L	Т	Р	С
Semester	Ι		3	0	0	3

Course Objectives:

- The objective of this course is to prepare students to effectively solve theoretical and applied thermodynamics problems that are directly applicable to situations faced in research and industry.
- Significant emphasis is placed on the integration of recent thermodynamics-related research into the traditional resources in order to foster critical analysis of current work as it relates to fundamental principles.

Course Outcomes (CO): Student will be able to

- Describe and calculate thermodynamic properties
- Apply the laws of statistical and classical thermodynamics to chemically reactive systems, kinetics, and combustion.
- Relate course principles to solve problems regarding gas turbines, combustion, refrigeration, and solar energy.

UNIT – I	THERMODYNAMIC PROPERTYRELATIONS AND	Lecture Hrs:9
	AVAILABILITY ANALYSIS	

Thermodynamic relations: Differential relation for U,H,G&F-Maxwell relations. Generalized relation for Cp, Cv ,K, B-relations for internal energy and enthalpy-the various Tds equation-clapeyron equation-gas tables-enthalpy and internal energy- pressure ratio-volume ratio-change of entropy-Introduction to third law of thermodynamics.

EXERGY:

Introduction-availability of heat –availability of a closed system-availability function of the closed system-availability of steady flow system- availability function of open system.

IRREVERSIBILITY:

Introduction-irreversibility for closed and open system-steady flow process effectivenesssecond law analysis of the power plant.

UNIT – IINON REACTIVE GAS MIXTURESLecture Hrs:9Introduction-basic definitions for gas mixtures-PVT relations ship for mixtures of ideal gases-
properties of mixtures of ideal gases-entropy change due to mixing – mixtures of perfect gases
at different initial pressure and temperatures.Entropy change due to mixing – mixtures of perfect gases

UNIT –	CHEMICAL THERMODYNAM	CS AND	Lecture Hrs:9
III	EQUILIBRIUM		

Thermo chemistry-First law analysis of reacting systems-Adiabatic flame temperature–entropy change of reacting systems- Second law analysis of reacting systems- Criterion for reaction equilibrium. Equilibrium constant for gaseous mixtures-evaluation of equilibrium composition.

UNIT – IV	ANALYSIS OF VAPOUR POWER & VAPOUR
	COMPRESSION REFRIGERATION CYCLES

Lecture Hrs:9

Introduction-the carnotvapor cycle-rankine cycle-effects of operation condition on efficiencyprinciples of increasing the thermal efficiency- method of increasing thermal efficiency. Super –critical and ultra-super-critical Rankine cycle.

Lecture Hrs:9

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Vapour compression refrigeration Systems, Analysis of vapour refrigeration systems, Commonly used refrigerants.

UNIT – V ANALYSIS OF GAS POWER CYCLES

IC Engines : Air standard Otto, Diesel and Dual cycle

Gas turbines: Air standard Brayton cycle, Effect of reheat, inter cooling and regeneration, Combined gas and vapour power cycles.

Textbooks:

- 1. Kenneth Wark Jt. m, Advanced Thermodynamics for Engineers, McGrew Hill Inc., 1995.
- 2. Bejan, A., Advanced Engineering Thermodynamics, John Wiley and Cons, 1988.
- 3. Holman, J.P., Thermodynamics, Fourth Edition, McGraw-HillInc., 1988.
- 4. Fundamentals of Engineering Thermodynamics by V.Babu

Reference Books:

- 1. Smith, J.M. and VanNess., H.C., Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw–HillInc., 1987.
- 2. Sonntag, R.E., and Van Wylen, G, Introduction to Thermodynamics, Classical and Statistical Themodynamics, Third Edition, John Wiley and Sons, 1991.
- 3. Sears, F.W. and Salinger G.I., Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Third Edition, Narosa Publishing House, New Delhi, 1993.
- 4. DeHotf, R.T., Thermodynamics in Materials Science, McGraw Hill Inc., 1993. Rao,Y.V.C.Postulational and Statistical Thermodynamics, Allied Publisher Limited, NewDelhi,1999

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103/103/103103162/
- 2. https://onlinecourses.nptel.ac.in/noc20_ch03/preview

Course	21D31103	CONDUCTION AND RADIATION HEAT	L	Т	Р	C
Semester	Т	(21D31103)	3	0	0	3
Semester	1	$\mathbf{PE} - \mathbf{I}$	5	v	U	5
	11					
Course Obj	ectives:					
1. To unders	tand three mo	des of heat transfer.				
2. To unders	tand Conduct	ion through spherical shells.				
3. To know	Heating and c	ooling of bodies with negligible internal resistance	e.			
4. To gain k	nowledge abo	ut thermal radiation.				
5. To unders	tand Radiatio	n network for an absorbing and transmitting medi	um.			
Course Out	comes (CO):	Student will be able to				
1. Tackle 2	D heat transfe	r problems by applying appropriate governing eq	Jatior	is and	b	
boundary	conditions.					
2. Apply su	itable method	s to solve various Conduction formulations.				
3. Setup ba	sic technique	s to understand and analyze physical systems.				
4. Examine	several mean	s and assumptions for analyze radiation heat trans	fer pr	oble	ms.	
5. Use acqu	ired knowled	ge to develop systems suitable for Industrial appli	catior	ıs.		
UNIT – I			Le	cture	Hrs:	10
CONDUCT	ION : Introd	luction of three modes of heat transfer, steady,	unste	eady	state	heat
transfer proc	ess, governin	g equations and boundary conditions				
Two dimens	ional steady s	tate conduction, semi-infinite and finite flat plate	temp	eratu	ire fie	ld in
infinite and	finite cylinder	S				
UNIT – II			Le	cture	Hrs:	10
Conduction problems.	through sphe	erical shells. Numerical method: finite differen	ce me	ethod	l - si	mple
UNIT – III			Le	cture	Hrs:	10
Heating and	cooling of bo	dies with negligible internal resistance, sudden cl	ange	s in t	he su	rface
temperature	of infinite pla	tes, cylinders and semi-infinite bodies-simple pro	blem	s.		
UNIT IV			Lo	oturo	LI.r.a.	10
			Le	cture	: 1115.	10
RADIATIO	'n : be thermel r	adjustion as radiation mean beam length ex	rhang	a ha	twaan	0.000
volume and	he ulennar i black enclosu	re heat exchange between gas volume and grave	nclos	ure i	roble	gas
UNIT V		ie, neat exchange between gas volume and gray e		$\frac{100}{1000}$	Hree	<u>10</u>
$\mathbf{D}\mathbf{N}\mathbf{\Pi} = \mathbf{v}$	twork for an e	absorbing and transmitting medium radiation av	hange	viit	$\frac{115}{2}$	10 Jular
surfaces rad	istion exchan	absorbing and transmitting medium, radiation exc	adiun	$r = F_0$	rmula	ulai
for numerica	al solution	ge with transmissivity and reflecting absorbing in	curun	1. 1.0	imuia	luon
Solar radiat	ion: Radiatio	n properties of environment effect of radiat	ion c	n te	mner	atura
measurement the radiation heat transfer coefficient problems						
Texthooke		in neut transfer coefficient, problems.				
1) Heat trans	fer IP Holm	nan International Student Edition TMH				
2) Heat Tran	sfer -Gibbart	- Mc Graw Hill				
3) Conduction Heat TransferSchneider Addison -Wiesthly						
4) Conduction	on of Heat in S	Solids -Carslaw& Jaeger, ASME				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Reference Books:

Fundamentals of Heat and Mass Transfer -R.C. Sachdev New Age International
 Heat and Mass Transfer by R. K. Rajput, S.Chand Technical Publishers

Online Learning Resources:

https://nptel.ac.in/courses/112/105/112105271/

Course Code	21D31104	DESIGN OPTIMIZATION	L	Т	P	С
Semester	Ι	(21D31104)	3	0	0	3
		$\mathbf{PE} - \mathbf{I}$				

 Understand the various optimization techniques such as classified optimization, linear programming. One dimensional minimization methods, unconstrained optimization techniques, constrained optimization techniques and dynamic programming. Understand the necessary sufficient conditions for finding the solution of the problems in classical optimization. Comprehend the numerical methods for finding approximate solution of complicated problems. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, gradient of function, steepest decent method, eco interpolation methods, lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient of function, steepest decent method, Fletcher reeves method. VAIT - II Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principle	Course Objectives:						
programming. One dimensional minimization methods, unconstrained optimization techniques, constrained optimization techniques and dynamic programming. 2. Understand the necessary sufficient conditions for finding the solution of the problems in classical optimization. 3. Comprehend the numerical methods for finding approximate solution of complicated problems. 4. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to 1. Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SIGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods, interpolation: Direct search method, Fibonacci method, golden section method, interpolation: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods. UNIT - II Lecture Hrs: Genetine method. <td< td=""><td>1. Understand the various optimization techniques such as classified o</td><td>ptimization, linear</td></td<>	1. Understand the various optimization techniques such as classified o	ptimization, linear					
 iechniques, constrained optimization techniques and dynamic programming. Understand the necessary sufficient conditions for finding the solution of the problems in classical optimization. Comprehend the numerical methods for finding approximate solution of complicated problems. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section methods, interpolation: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient of function, steepest decent method, Fletcher reeves method. VAriable metric method. UNIT - II Lecture Hrs: GEOMETRIC PROGRAMMING: Polymentic regression of final problem to an initial value problem, splication of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	programming. One dimensional minimization methods, unconstrained optimization						
 2. Understand the necessary sufficient conditions for finding the solution of the problems in classical optimization. 3. Comprehend the numerical methods for finding approximate solution of complicated problems. 4. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Unimation methods, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method: UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Multi stage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic	techniques, constrained optimization techniques and dynamic program	ming.					
 in classical optimization. Comprehend the numerical methods for finding approximate solution of complicated problems. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT · I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Uni-modal function, elimination method, Fibonacci method, golden section methods illinitation: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT · II Lecture Hrs: GEOMETRIC PROGRAMMING: Poynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multi stage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV	2. Understand the necessary sufficient conditions for finding the solution	on of the problems					
 Comprehend the numerical methods for finding approximate solution of complicated problems. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Uni-modal function, elimination method, Fibonacci method, golden section methods, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - II Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multi stage decision process, principles of optimality, examples, conversion of final problem to an initital value problem, application of dynamic programming, produc	in classical optimization.	Ĩ					
problems. 4. Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to 1. Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reves method. UNIT - II Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Lecture Hrs:	3. Comprehend the numerical methods for finding approximate solution	on of complicated					
 Apply methods like North West corner rule, least count method etc. to solve the transportation problem. Course Outcomes (CO): Student will be able to Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci methods, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods - gradient methods, gradient of function, steepest decent method, Fletcher reeves method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multi stage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	problems.	1					
transportation problem. Course Outcomes (CO): Student will be able to 1. Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci methods, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Polynomials – arithmetic – geometric inequality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.	4. Apply methods like North West corner rule, least count method	etc. to solve the					
Course Outcomes (CO): Student will be able to 1. Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Uni-modal function, elimination method, Fibonacci methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs:	transportation problem.						
 Design of mechanical systems and interdisciplinary engineering applications and business solutions using suitable optimization technique. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	Course Outcomes (CO): Student will be able to						
 business solutions using suitable optimization technique. 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - II Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	1. Design of mechanical systems and interdisciplinary engineering	applications and					
 2. Apply numerical or iterative techniques in power systems for optimal power flow solutions. Optimize the parameters in control systems for desired steady state or transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	business solutions using suitable optimization technique.						
 solutions. Optimize the parameters in control systems for desired steady state or transient response. Optimize the cost function in deciding economic factors of power systems. Design of electrical systems optimally using suitable techniques like univariate method,steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods: Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	2. Apply numerical or iterative techniques in power systems for op	timal power flow					
transient response. 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs:	solutions. Optimize the parameters in control systems for desire	d steady state or					
 3. Optimize the cost function in deciding economic factors of power systems. 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	transient response.	-					
 4. Design of electrical systems optimally using suitable techniques like univariate method, steepest descent method etc. UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: 	3. Optimize the cost function in deciding economic factors of power syst	ems.					
method,steepest descent method etc. Lecture Hrs: UNIT - I Lecture Hrs: SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. Lecture Hrs: UNIT - III Lecture Hrs: GEOMETRIC PROGRAMMING: Lecture Hrs: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. UNIT - IV Lecture Hrs: Lecture Hrs:	4. Design of electrical systems optimally using suitable technique	es like univariate					
UNIT - ILecture Hrs:SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods.UNIT - IILecture Hrs:Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method.UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING:Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:	method, steepest descent method etc.						
SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION: One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. Lecture Hrs: GEOMETRIC PROGRAMMING: Lecture Hrs: GEOMETRIC PROGRAMMING: Univariant G.P DYNAMIC PROGRAMMING: DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. Lecture Hrs: UNIT - IV Lecture Hrs:	UNIT - I	Lecture Hrs:					
One dimensional Optimization methods:Uni-modal function, elimination method, Fibonacci method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. Lecture Hrs: GEOMETRIC PROGRAMMING: Lecture Hrs: GEOMETRIC PROGRAMMING: Lecture Hrs: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. Lecture Hrs: UNIT - IV Lecture Hrs:	SINGLE VARIABLE NON-LINEAR UNCONSTRAINED OPTIMITION	I:					
method, golden section method, interpolation methods- quadratic & cubic interpolation methods. UNIT - II Lecture Hrs: Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method. Lecture Hrs: GEOMETRIC PROGRAMMING: Lecture Hrs: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement. Lecture Hrs: UNIT - IV Lecture Hrs:	One dimensional Optimization methods:Uni-modal function, elimination	method, Fibonacci					
methods.Lecture Hrs:Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method.Variable metric method.Lecture Hrs:GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients of the constraints addition and deletion of variable constraints	method, golden section method, interpolation methods- quadratic & c	ubic interpolation					
UNIT - IILecture Hrs:Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method.– Univariant Univariant Method – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method. Variable metric method.UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients of the constraints addition and deletion of variable constraints	methods.						
Multi variable non-linear unconstrained optimization: Direct search method – Univariant Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method.Variable metric method.Lecture Hrs:UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.Lecture Hrs:UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients of the constraints addition and deletion of variableconstraints	UNIT - II	Lecture Hrs:					
Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock search methods – gradient methods, gradient of function, steepest decent method, Fletcher reeves method.Variable metric method.Lecture Hrs:UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.Lecture Hrs:UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients of the constraints, addition and deletion of variableconstraints	Multi variable non-linear unconstrained optimization: Direct search me	thod – Univariant					
gradient methods, gradient of function, steepest decent method, Fletcher reeves method.Variable metric method.UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING:Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.PDYNAMIC PROGRAMMING:Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints	Method – pattern search methods – Powell's – Hook – Jeeves, Rosenbrock	search methods –					
Variable metric method.Lecture Hrs:UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING: Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.P DYNAMIC PROGRAMMING: Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints	gradient methods, gradient of function, steepest decent method, Fletch	er reeves method.					
UNIT - IIILecture Hrs:GEOMETRIC PROGRAMMING:Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.PDYNAMIC PROGRAMMING:Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable – constraints	Variable metric method.						
GEOMETRIC PROGRAMMING:Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.PDYNAMIC PROGRAMMING:Multistage decision process, principles of optimality, examples, conversion of final problemto an initial value problem, application of dynamic programming, production inventory.Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, costcoefficients coefficients of the constraints, addition and deletion of variable constraints	UNIT - III	Lecture Hrs:					
Polynomials – arithmetic – geometric inequality – unconstrained G.P – constrained G.PDYNAMIC PROGRAMMING:Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints	GEOMETRIC PROGRAMMING:						
DYNAMIC PROGRAMMING:Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints	Polynomials – arithmetic – geometric inequality – unconstrained G.P – cor	strained G.P					
Multistage decision process, principles of optimality, examples, conversion of final problem to an initial value problem, application of dynamic programming, production inventory. Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints	DYNAMIC PROGRAMMING:						
to an initial value problem, application of dynamic programming, production inventory.Allocation, scheduling replacement.UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints	Multistage decision process, principles of optimality, examples, conversion of final problem						
Allocation, scheduling replacement. Lecture Hrs: UNIT - IV Lecture Hrs: Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints.	to an initial value problem, application of dynamic programming, production inventory.						
UNIT - IVLecture Hrs:Linear programming – formulation – Sensitivity analysis. Change in the constraints, costcoefficients coefficients of the constraints addition and deletion of variable constraints	Allocation, scheduling replacement.						
Linear programming – formulation – Sensitivity analysis. Change in the constraints, cost coefficients coefficients of the constraints, addition and deletion of variable constraints.	UNIT - IV	Lecture Hrs:					
coefficients coefficients of the constraints addition and deletion of variable constraints	Linear programming – formulation – Sensitivity analysis. Change in th	e constraints, cost					
coefficients, coefficients of the constraints, addition and deletion of variable, constraints.							
Simulation–Introduction–Types–Steps –application –inventory – queuing – thermal system.							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

UNIT - V		Lecture Hrs:
Integer Program	nming – introduction – formulation – Gomory cutting plane al	gorithm – Zero
or one algorithm	n, branch and bound method.	
STOCHASTIC	PROGRAMMING:	
Basic concepts	of probability theory, random variables – distributions – r	mean, variance,
Correlation, c	o variance, joint probability distribution – stochastic li	near, dynamic
programming.		
Textbooks:		
1. Optimization	n theory & Applications/ S.S Rao/ New Age International	
2. Introductory	to operation research/Kasan& Kumar/Springar	
3. Optimization	n Techniques theory and practice / M.C Joshi, K.M Moudgalya	/ Narosa
Publications		
4. S.D Sharma/	Operations Research	
5. Operation Re	esearch/H.A. Taha/TMH	
6. Optimization	n in operations research/R.L Rardin	
Reference Boo	ks:	
1. Optimization	n theory & Applications/ S.S Rao/ New Age International	
2. Introductory	to operation research/Kasan& Kumar/Springar	
3. Optimization	n Techniques theory and practice / M.C Joshi, K.M Moudgalya	/ Narosa
Publications		
4. S.D Sharma/	Operations Research	
5. Operation Re	esearch/H.A. Taha/TMH	
6. Optimization	n in operations research/R.L Rardin	
Online Learni	ng Resources:	

• https://nptel.ac.in/courses/112/101/112101298/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31105	FOOD PRESERVATION TECHNIQUES	L	Τ	Р	С
Semester	Ι	(21D31105)	3	0	0	3
		$\mathbf{PE} - \mathbf{I}$				

Course Objectives: 1. Locate and appraise legislative requirements or authoritative guidelines relevant to shelf life extension in fresh, minimally processed and processed foods. 2. Recognize the elements of the Hazard Analysis Critical Control Point (HACCP) system 3.Identify the principles of preservation processes Operate or observe equipment used in preservation processes with an understanding of the mechanism of preservation employed and the effects of the individual unit operations. 4. Apply principles of food preservation to pilot scale production of processed food and evaluate variation in processing parameters or product formulation on product properties 5. Prepare for practical exercises, organize team work and reflect on issues arising from practical exercise(s) and or production simulation(s) utilizing the communication tools 6. Identify and examine the method of packaging, packaging materials and storage practices employed in shelf life extension of fresh, minimally processed and processed foods. 7. Recognize and analyze spoilage symptoms in fresh, minimally processed and processed foods and relate same to the causes of food spoilage. Course Outcomes (CO): Student will be able to 1. Participation in practical sessions in the pilot plant and laboratory culminating with the submission of a scientific report with feedback on your prac performance and reporting. 2. Submission of a literature review assignment on a topic of significance and relevance to the area of study with feedback on your selection, review and critical appraisal of literature. 3. A two hour closed book final examination at the end of the semester that will address specific learning outcomes. UNIT – I Lecture Hrs: Theories and method of chilling, freezing and free de-humidification - preparation for freezing, freezing methods: commercial freezing methods - sharp, quick and air blast freezing, freeze-drying. Methods of pre-cooling fruits and vegetables - hydro cooling, forced air cooling and vacuum cooling. UNIT – II Lecture Hrs: Processing of meat products: Refrigeration systems for carcass chilling and holding - chilled brine spray, sprayed coil – dry coil systems, chilling and freezing variety meats – overnight chilling, quick chilling, effect of freezing temp on qualify of meat product Fishery products: icing of fish - saltwater icing, freezing methods - slow freezing, blast freezing, plate freezing and immersion freezing of fish. UNIT – III Lecture Hrs: Dairy products: Milk processing, handling, dairy plant procedure, standardizing, pasteurization, homogenizing, and container filling.

UNIT – IV	Lecture Hrs.	:					
Fruit juice concentrations: Processing and quality control – selection, grading and handling							
of fresh fruit, washing, juice extraction, heat treatment, flavor fortification, packaging							
storage and distribution- convection methods- freezing and mechanical separation, low							
temperature vacuum evaporation, direct refrigerant contact method, indirect refrigerant							
contact method	s, high temperature short time evaporations.						
UNIT – V	Lecture Hrs	:					
Refrigerated w	varehouse: factors affecting ware house design- building location, desi	gn					
reduction, shipp	ping and receiving plant forms, utility space, controlled atmospheric stora	ıge					
rooms, jackete	ed storages, automated ware house - insulation, cold storage doo	ors.					
Refrigerated tr	ucks, trailers & containers: temperature control methods, body design	&					
construction, au	uxiliary equipment, types of refrigeration systems- railway refrigeration car	s.					
Textbooks:							
1. ASHRE - Gu	ide and data book						
2. Refrigeration	n & Air-conditioning- C.P.Arora						
3. Hand Book c	of Air conditioning system design –Carrier						
Reference Boo	ks:						
1. ASHRE - Gu	iide and data book						
2. Refrigeration	n & Air-conditioning- C.P.Arora						
3. Hand Book c	of Air conditioning system design –Carrier						
Online Learnin	ng Resources:						
• http://ec	coursesonline.iasri.res.in/course/view.php?id=639						

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING

(HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31106	PRINCIPLES OF AIR-CONDITIONING	L	Τ	P	С
Semester	Ι	(21D31106)	3	0	0	3
		$\mathbf{PE} - \mathbf{II}$				

Course Objectives:

UNIT - I

- 1. Will understand well, the importance of maintaining the thermal environment for human comfort which ultimately enhances the working efficiency.
- 2. Will be in a position to understand the necessity of maintaining the temperature and humidity for various processes in process and pharmaceutical industries.
- 3. Will become fully aware of the techniques for controlling the contamination of environment which is a must for modern A C systems.

Course Outcomes (CO): Student will be able to

1. Define the need and importance of HVAC, handling of different HVAC systems.

- 2. Describe thermal comfort, its principles and practices, clothing and activities and their impact on comfort and productivity
- 3. Interpret ventilation impact on human comfort, productivity and health.
- 4. Propose psychrometry application to HVAC engineering and design different HVAC systems.
- 5. Explain air and water/refrigerant flow in ducts and pipes, duct and piping design, air distribution in rooms.
- 6. Paraphrase control of HVAC systems- automatic and manual, different control systems used.

Lecture Hrs:

Psychrometry: Properties of Moist air- Psychrometric relations - Psychrometric chart -Psychrometric processes in air-conditioning equipment - Bypass factor - Sensible heat factor APPLIED PSYCHROMETRY: Effective and grand sensible heat factors- Selection of Air-Conditioning apparatus for cooling and dehumidification-High latent cooling load applications- All outdoor air application.

UNIT - II Lecture Hrs: Air-conditioning Processes -Mixing process- Summer, Winter and Year-round air conditioning systems - hot and dry out door condition, Hot and humid outdoor condition winter air conditioning system - year round air-conditioning system. UNIT - III

Lecture Hrs:

Process of Cooling, Heating and Dehumidifying coils - air washers - Cooling by dry and wet coils - use of hygroscopic solution in air washers - Adiabatic dehumidifier - Humidifierwater injection - steam injection. Heat pump - Different heat pump circuits air, ground water, earth - The linked air cycle heat pump - solar energy collections - Drying of materials. UNIT - IV Lecture Hrs:

Requirements of Comfort Air-conditions - Thermodynamics of human body - Body regulation process against heat or cold - comfort and comfort chart - Effective temperature -Factors governing optimum effective temperature -Design considerations- Selection of outside and Inside design conditions. UNIT - V

Lecture Hrs:

Ventilation systems: Natural ventilation system - Mechanical - Extraction system - Supply

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

system - Combined supply and extraction system - Air-cleaning - Equipment used for odour suppression and air sterilization. Air-conditioning controls systems - basic elements of the control systems - temperature, humidity and pressure controls and refrigeration flow controls - room thermostat.

Textbooks:

1.Hand Book of Air conditioning system design -Carrier

- 2. Refrigeration & Air-conditioning -C.P.ARORA, TMGH, 2000.
- 3 Refrigeration & Air-conditioning --Domkundwar and Arora, DanpatRai& Sons, 2000.
- 4 Refrigeration & Air-conditioning --Stoecker.
- 5 Refrigeration & Air-conditioning -V.K.Jain.

6. ASHRE - Guide and data book

Reference Books:

1.Hand Book of Air conditioning system design -Carrier

- 2. Refrigeration & Air-conditioning -C.P.ARORA, TMGH,2000.
- 3 Refrigeration & Air-conditioning --Domkundwar and Arora, DanpatRai& Sons, 2000.
- 4 Refrigeration & Air-conditioning --Stoecker.
- 5 Refrigeration & Air-conditioning -V.K.Jain.

6. ASHRE - Guide and data book

Online Learning Resources:

• https://onlinecourses.nptel.ac.in/noc19_me58/preview

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31107	CRYOGENIC ENGINEERING	L	Τ	P	С			
Semester	Ι	(21D31107)	3	0	0	3			
		PE – II							
Course Objectives:									
1.Examine basi	c principles of	of cryogenics							
2.Apply the	knowledge	of cryogenics in different applications of c	ryo	geni	cs l	ike			
spacetechnol	logy, gas indu	ustry, electronics							
3.Design low to	emperature sy	stem by considering properties and principles of	mix	tures	5				
4.Identify theorem	retical and ma	athematical methods of liquefaction systems							
5.Construction	of liquefaction	on system for different gases							
Course Outco	mes (CO): S	tudent will be able to							
1.Acquire know	vledge about	cryogenics and properties of cryogenic fluids							
2.To recognize	the liquefact	ion systems for different gases							
3.Apply theore	tical and mat	hematical methods of liquefaction system							
4.Design low to	emperature sy	ystem by considering properties and principles of	mix	tures	5				
5.Understand a	nd demonstra	ate the insulation required for fluid storage and tra	insfe	er					
6.Apply the kn	owledge of c	ryogenic fluid storage and transfer systems							
UNIT - I			Le	cture	e Hrs	\$:			
Introduction n	ecessity of	low temperature - Multistage Refrigeration sy	/ster	n -C	Casca	ade			
system - Manu	facture of dry	v ice-Joule Thompson coefficient.							
Liquification o	f air - Linda	e system-Analysis-Dual pressure cycle analysis-	Liqu	lefac	ction	of			
Hydrogen and	Helium-prob	lems.	-						
UNIT - II			Le	cture	Hrs	<u>;:</u>			
Application of	Lower tem	perature-Effects on the properties of metals-st	reng	gth-Т	Therr	nal			
properties-supe	r conductivit	y-super fluidity.							
Applications li	ke expansion	n fitting - cryobiology-cryosurgery - space rese	arch	1-001	nput	ers			
under ground p	ower lines.		т						
	· 1			cture	Hrs	3:			
Low temperati	are insulatio	n-Reflective insulation-Evacuated powders-Rig	a r	oam	s-Su	per			
insulation.									
UNIT - IV			Le	cture	e Hrs	3:			
Cooling by adi	abatic de-ma	gnetization - Gas separation and cryogenic system	ns-s	epar	atior	ı of			
gases- Rectifying columns-Air separating- single and double columns Air separation plant.									
			T						
$\frac{\text{UNII} - \text{V}}{\text{O}}$	11' C		Le	cture	e Hrs	3:			
Storage and handling of cryogenic liquids - Dewars and other types of containers.									
Textbooks:									
1. Cryogenics b	by Barron. Or	xford University Press 1980.							
2. Cryogenic Engineering by Timmerhaus									
3. Cryogenic E	3. Cryogenic Engineering by Huston: McGraw Hill								
1 Defrigeration	and Air cor	ditioning by S Dombundwar							

4. Refrigeration and Air-conditioning by S.Domkundwar.

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Reference Books:

- 1. Cryogenics by Barron. Oxford University Press 1980.
- 2. Cryogenic Engineering by Timmerhaus
- 3. Cryogenic Engineering by Huston: McGraw Hill
- 4. Refrigeration and Air-conditioning by S.Domkundwar.

Online Learning Resources:

- 1. www.nasa.gov
- 2. www.cryogenicsociety.org/
- 3. www.iifiir.org/
- 4. www.linde.com
- 5. www.airliquide.com/
- 6. www.cern.ch

Course Code	21D31108	SOLAR REFRIGERATION AND AIR-	L	Т	Р	С
Semester	Ι	CONDITIONING	3	0	0	3
		(21D31108)		-		
		PE – II				
	•					
Course Object	tives:					
1. To understar	nd thermodyn	amic relations.				
2. To understar	nd exergy and	l irreversibility.				
3. To understar	nd different ty	pes of solar cooling systems				
4.To understan	d the thermo	dynamic modeling				
5.To understan	d the Econon	nics of different cooling systems				
Course Outco	mes (CO): S	tudent will be able to				
1. To be able	to state the	Psychometric and (Air-conditioning) cooling lo	ad c	alcu	latio	ns-
outline of V	apour Comp	ression Refrigeration Systems.				
2. To be able	to identify a	nd describe energy Principle of working of working	rking	g of	vap	our
Absorption	Refrigeration	n, steam jet refrigeration, thermoelectric refrigerat	ion.			
3. To be able	to explain at	a level understandable by a non-technical pers	on h	low	vari	ous
P.V.Module	es. Solar oper	ated vapour absorption systems.				
4. To be able to	o apply the So	plar thermal energy storage.				
5. To be able to	o perform Sir	nulation of solar thermal systems - Salient featur	es of	f DY	NS	YS,
TRNSYS.	1					
UNIT - I			Le	cture	Hrs	;:
Review of Psy	chometric an	d (Air-conditioning) cooling load calculations-ou	ıtline	e of	Vap	our
Compression 1	Refrigeration	Systems – Cycle on p-h and T-o charts – C	2.O.I	P –	Sim	ple
problems using	g property tab	les.	r			
UNIT - II			Le	cture	Hrs	:
Principle of wo	orking of wor	king of vapour Absorption Refrigeration, steam	jet re	efrig	erati	on,
thermoelectric	refrigeration	– classification of refrigerants – Desirable pro	pert	ies o	of id	eal
refrigerant - Pr	operties of sc	lvent - Solvent refrigerant combination properties	s			
UNIT - III			Le	cture	Hrs	5:
Solar cooling	systems: vap	our compression systems, Rankine cycle, Strili	ng c	cycle	, us	ing
P.V.Modules. S	Solar operate	d vapour absorption systems – vapour jet refrigera	atior	n sys	tems	5.
UNIT - IV			Le	cture	Hrs	3:
Solar thermal	energy stora	ge - Active and passive systems TROMBE wa	all –	eau	iival	ent
thermal circuit	- Solar green	houses.		. 1		
Solar cooling	and dehumi	dification: Desiccant cooling - Solid and liqu	id c	lesic	cant	s -
improving desi	ccant cycles	- hybrid systems.				
UNIT - V			Le	cture	Hrs	3:
Non –mechan	ical systems	- Australian Rock system - Solar assisted	He	at P	umr) _
Economics of s	solar cooling	systems.		-	-r	
Simulation of	solar therma	d systems - Salient features of DYNSYS. TR	NSY	′S –	mo	del
formulation – f	low diagram	of cooling systems.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Textbooks:

- 1. A course in Refrigeration & Air -conditioning, S.Domakundwar&S.C.Arora
- 2. Principles of Solar engineering, F.Kreith&J.F.Kreider, McGraw Hill Book company
- 3. Solar Cooling & Heating Volumes, I,II,III., T.NegatVezirogulu
- 4. Entrepreneurship Development in New & Renewable Energy Technologies APPC & IREDA

Reference Books:

- 1. A course in Refrigeration & Air -conditioning, S.Domakundwar&S.C.Arora
- 2. Principles of Solar engineering, F.Kreith&J.F.Kreider, McGraw Hill Book company
- 3. Solar Cooling & Heating Volumes, I,II,III., T.NegatVezirogulu
- 4. Entrepreneurship Development in New & Renewable Energy Technologies APPC & IREDA

Online Learning Resources:

• https://www.coursera.org/learn/photovoltaic-solar-energy

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31109	REFRIGERATION LABORATORY	L	Т	Р	С				
Semester	Ι	(21D31109)	0	0	4	2				
Course Objectives:										
1.To make stude	ent understand	working of various machines related to refri	gerat	tion a	and t	heir				
energy efficiency	y related perfe	ormance								
2.To explain stu	dent working	of various components of refrigeration system	ms							
Course Outcom	nes (CO):									
1.Analyze the pe	erformance De	omestic Vapor Compression Refrigeration sy	rstem							
2.Evaluate the p	erformance of	the Vapor compression and Air conditioning	g uni	ts						
3.Analyze the Ex	xpansion devi	ces								
4.Evaluate the p	erformance of	E capacity and cop. of evaporative condensing	g test	rig.						
List of Experim	ients:									
1. Find out the	Cop. and tim	e taken for ICE making in the Domestic V	apor	Con	npres	sion				
Refrigeration	1.									
2. Study on Com	pressor unit.									
3. Find out the p	ull-down cha	racteristics of V.C.R.S.								
4. Study of Cond	denser unit									
5. Find our the c	.o.p. of vapor	Absorption Refrigeration system								
6. Study on Expa	6. Study on Expansion devices.									
7. Find our the c	ooling capaci	ty and cop. of evaporative condensing test rig	g.							
8. Study on Evap	porating devic	ce.								
References:										

Online learning resources/Virtual labs:

Course Code	21D31110	HEAT TRANSFER LABORATORY	L	Т	P	С
Semester	I	(21D31110)	0	0	4	2
Course Objecti	ves:					
1.Understand the	e various form	ns of heat transfer and their applications in re	al lif	e pro	oblen	ns.
2.Analyze differ	ent methods t	o calculate the heat transfer coefficient in va	ariou	s hea	it trai	nsfer
problems.						
3.Analyze the th	eoretical kno	wledge and apply it in conducting experime	nts ir	the	forn	ns of
heat transfer.						
Course Outcom	nes (CO):					
1. Perform stead	ly state condu	iction experiments to estimate thermal condu	ictivi	ty of	diffe	erent
materials for	plane, cylindr	rical and spherical geometries				
2. Perform the	transient hea	t conduction experiment and obtain variati	on o	f ter	npera	ature
along the len	gth of the pin	fin.				
3. Estimate hea	t transfer coe	fficients in forced convection, free convect	tion a	and c	leter	mine
effectiveness	of heat excha	ingers				
4. Perform radi	ation experin	nents:determine surface emissivity of a test	plar	ie an	nd ste	efan-
Boltzmann's	constant and	compare with theoretical values				
5. Estimate heat	transfer coeff	icients in condensation, boiling and effective	eness	of h	eat p	ipe
List of Experim	ients:					
1. Determine hea	at transfer in s	hell and tube heat exchanger(Parallel and C	ount	er).		
2. Thermal cond	uctivity of ins	sulating material through lagged pipe appara	tus			
3. To phenomen	on of critical	radius of insulation				
4. Thermal Cond	luctivity of m	etal rod (conductor).				
5. Determine eff	ectiveness of	finned tube heat exchanger by LMTD Metho	bd			
6. Experiment of	n Transient H	eat Conduction				
7. Heat transfer	coefficient in	forced convection.				
8. Heat transfer	coefficient in	natural convection				
9. Experiment of	n Parallel and	counter flow heat exchanger.				
10. Emissivity o	f a gray body	through Emissivity apparatus.				
11. Experiment	on Stefan Bol	tzman Apparatus.				
12. Heat transfer	in drop and f	ilm wise condensation.				
13. Pin Fin appa	ratus (Forced	convection)				
14. Study of hea	t pipe and its	demonstration.				
15. Study of Tw	o – Phase flow	ν.				

Course	21D31201	DESIGN OF AIR-CONDITIONING SYSTEMS	L	Т	Р	C		
Code	тт	(21D31201)	2	0	0	2		
Semester	11		3	U	U	3		
Course Ob	iectives.							
1 Unders	tand the envi	ronmental and social impact of old and alternative re	frige	erant	S			
2. Ability	to design an	d select the various components of refrigeration syste	ms.	Jun				
3. Ability	to carry out	thermodynamic analysis of multi pressure. cryogenic	2 and	d oth	er no	on-		
conven	tional refrige	eration systems.						
4. Ability	to carry out	heat load calculation						
Course Ou	tcomes (CO): Student will be able to						
1. Analyz	e and unders	stand the design of the air-distribution Room air dist	ribu	tion	- ty	pes		
of supp	ly air outlets	plants.				-		
2. Thorou	gh knowled	ge of the basic design principles of building survey	& c	ooli	ng lo	oad		
estimat	ion.Location	of equipment power plants.			-			
3. Unders	tand the eco	nomic, environmental, and regulatory issues related to	o ce	ntral	stat	ion		
air con	ditioning sys	tem.						
4. Unders	tand applic	ations of air-conditioning Industrial, commercial	, tr	ansp	ort	air		
conditi	oning.							
UNIT –I	AIR-DIST	RIBUTION	Lee	cture	Hrs	:		
Room air d	istribution -	types of supply air outlets - Mechanism of flow th	roug	gh o	utlet	s –		
Considerati	ons for selec	tion and location of outlets - Distribution patterns of	out	lets	frict	ion		
loss in duct	s- grills, diff	users - registers - location of outlets and return air op	peni	ng -	frict	ion		
loss in duct	s - Rectangu	lar equivalents of circular ducts - Air ducts design: d	uct c	const	ruct	ion		
- Duct desig	n procedure	s- Equal Friction, Static Regain, Velocity Reduction	neth	nods.				
UNIT – II	BUILDIN	G SURVEY & COOLING LOAD	Le	cture	Hrs			
		FION:						
Location of	equipment	and- Heat gain through glass-Shading from reveals,	ove	erhar	igs a	ind		
fins-Effect	of shading c	levice-Calculation of Solar heat gain through ordin	ary	glas	s us	ing		
tables, Fabr	ic heat gain,	overall heat transfer coefficient, periodic heat transfer	er th	roug	h wa	alls		
and roots- s	olar tempera	ature-Empirical methods to calculate heat transfer this	oug	h wa	alls a	ind		
roots using	decrement	factor and time lag-Equivalent temperature diffe	eren	ce n	neth	od-		
Infiltration-	Stack effect-	wind action- load due to infiltration.						
COOLING	LOAD ES	IIMATION:	•					
besting los	load, fightin	Ig Ioad, appliance load-Product load-system near ga	ins-(coon	ing a	ina		
	AID CC	NDITIONING SYSTEMS.	I.a		IImo			
Control stat	AIK CC	JUNDITIONING SISIEMS:		nlit	; ms	riot		
Air conditio	ning system	s	у, З	pin,	uisu	ICt		
	Air conditioning systems.							
	APPARA	ATUS:		curt	/ 1113	•		
Method of	Heat transfer	, desired properties of ideal insulating materials, typ	es c	of ins	sulat	ing		
materials, H	leat transfer	through insulation, economic thickness of insulation	n, i	nsula	ation	of		
heated Buil	dings insula	ation for cooling Buildings and cold storage, pipe i	nsul	latio	n. Fa	ans		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

and Blowers-types of Fans-Fan characteristics-Centrifugal Fans-Axial Fans-Fan arrangements- Filters- general service – Noise - sources &control

UNIT – V APPLICATIONS OF AIR-CONDITIONING: -

Lecture Hrs:

Industrial, Commercial, transport Air conditioning-Special applications-Computer, Hospital Cold storages, Printing, Textile & Leather industries.

Textbooks:

- 1. Hand Book of Air conditioning system design -Carrier
- 2. Refrigeration & Air-conditioning -C.P.ARORA, TMGH, 2000.
- 3. Refrigeration & Air-conditioning --Domkundwar and Arora, DanpatRai& Sons, 2000.
- 4. Refrigeration & Air-conditioning -Stoecker.
- 5. Refrigeration & Air-conditioning -V.K.Jain.
- 6. ASHRAE Guide and Data Book

Reference Books:

Online Learning Resources:

- https://www.free-education.in/hvac-design-and-drafting-course-online-free/
- https://www.usbr.gov/tsc/techreferences/mands/mands-pdfs/HVACManl.pdf

Course	21D31202	CONVECTIVE HEAT & MASS TRANSFER	L	Т	Р	C
Semester	П	(21D31202)	3	0	0	3
Semester			5	U	U	5
Course Obi	ectives.					
1 Unders	stand the con	vective heat transfer				
2. Ability	to forced co	nvection heat transfer in laminar tube flow.				
3. To unc	lerstand boili	ng and condensation				
4. To und	lerstand mass	s transfer.				
5. To fam	niliarize Conv	vective mass transfer - governing equations.				
Course Out	tcomes (CO)	: Student will be able to				
1. Unders	stand the hy-	drodynamic, thermal boundary layer concept and	the	relat	ions	hip
betwee	en fluid friction	on and heat transfer.				
2. Unders	stand the con	cept and mechanism of forced and natural convection	on.			
3. Unders	stand the mas	ss transfer theories.				
4. Ability	to apply	the various empirical correlations used in diffe	rent	flui	d fl	OW
situatio	ons.					
5. Ability	to analyze a	nd solve complex heat transfer phenomenon.				
6. Ability	to design th	e heat exchangers for various industrial applications	-			
UNIT – I	CONVEC	TIVE HEAT TRANSFER:	Le	cture	$\frac{\text{Hrs}}{1}$:
Introduction	to convection	on, review of conservation equations - Forced conve	ctio	n in .	lami	nar
flow - Exa	ct and approved	oximate solutions of Boundary layer energy equ	atio	n fo	r pla	ane
isothermal p	late in longit	udinal flow - problems.	T .	- 4	TT	
UNII – II	a ation hast t	regeler in leaving type flow forward convection in	Le	cture	Hrs	:
Forced conv	ection neat t	ransier in faminar tube now - forced convection in	con	vooti	100	N -
transfer on a	ws-Colleland	e-external flows-correlations-problems	con	vecu	lve n	eat
		e-external nows-correlations-problems.	Le	eture	Hrs	
Boiling and	condensation	a: Analysis of film condensation on a vertical surface	P = 1	nool	hoil	ino
- forced con	vection boili	ng inside tubes - problems		poor	0011	mε
UNIT – IV	MASS TR	ANSFER:	Le	cture	Hrs	•
Definitions	of concentra	tion and velocities relevant to mass transfer. Fic	$\frac{1}{k's}$	aw.	spec	ies
conservation	n equation i	n different forms. Steady state diffusion in dilu	ite s	solut	ions	in
stationary m	edia, transie	nt diffusion in dilute solutions in stationary media,	one	dime	ensio	nal
non dilute d	iffusion in ga	ses with one component stationary.				
UNIT – V			Le	cture	e Hrs	:
Convective	mass transfer	r - governing equations-forced diffusion from flat p	late-	Din	nensi	ion
less correlat	ion's for ma	ss transfer. Simultaneous heat and mass transfer - a	inalc	ogy t	oetwe	een
heat, mass a	nd momentu	m transfer.				
Textbooks:						
1. Heat trans	sfer - J. P. Ho	olman.				
2. Heat and	Mass transfe	r- R.C. Sachdeva				
3. Convectiv	Ve Heat and N	Mass transfer-Kays.				
4. Heat and	Mass transfe	r - V.Gupta and I.Srinivasan - Tata Mc.Graw Hill				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Reference Books:

- 1. Heat transfer J. P. Holman.
- 2. Heat and Mass transfer- R.C. Sachdeva
- 3. Convective Heat and Mass transfer-Kays.
- 4. Heat and Mass transfer V.Gupta and I.Srinivasan Tata Mc.Graw Hill

Online Learning Resources:

• https://nptel.ac.in/courses/112/106/112106170/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u>

(HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course	21D31203	REFRIGERATION EQUIPMENT & CONTROL	L	Τ	P	С
Code		(21D31203)				
Semester	II	PE – III	3	0	0	3

Course Objectives:

- 1. To understand the principles of Compressors types equivalent shaft work .
- 2. To understand different Condensers.
- 3. To know Evaporator systems.
- 4. To gain knowledge about Expansion devices.
- 5. To know Performance of complete Vapour compression system.

Course Outcomes (CO): Student will be able to

- 1. To be able to state principles of Compressors types equivalent shaft work.
- 2. To be able to identify and describe Condensers, types, Water cooled Condensers-Air cooled, Evaporative types.
- 3. To be able to explain at a level understandable by a non-technical person how various Evaporators work.
- 4. To be able to apply the Expansion devices with in the system.
- 5. To be able to apply evaluation and dehydration testing for leakages, charging, adding oil.

UNIT – I	Lecture Hrs:				
Compressors - types - equivalent shaft work - Volumetric efficiency - factors	affecting total				
volumetric efficiency - compound compression with inters cooling - rotary	compressors -				
surging - screw compressors - lubricating oils.					
UNIT – II	Lecture Hrs:				
Condensers - types -Water cooled Condensers-Air cooled, Evaporative type	es - Economic				
water rate - Economic water velocity - over all heat transfer co-efficie	nt - design -				
temperature distribution and heat flow in a condenser - pressure drop - fouling	factor - LMTD				
correction factor (no problems).					
Cooling towers and spray ponds - classification - performance of cooling towe	rs - analysis of				
counter flow cooling towers - enthalpy - temperature diagram of air and water -	cooling ponds				
- types - cross flow cooling towers - procedure for calibration of outlet conditio	ns.				
UNIT – III	Lecture Hrs:				
Evaporators - types - Flooded and dry Evaporators, natural and forced convect	ion type - shell				
and tube - shell and coil, plate type - secondary Evaporators - temperature d	istribution and				
heat flow in evaporator - pressure drop - fouling correction factor (no problems).				
Defrosting - necessity - methods - manual, automatic, periodic defrosting, solid and liquid					
adsorbents, water defrosting, defrosting by reversing the cycle, automatic hot	gas defrosting,				
thermo balance defrosting, electric control defrosting. (no problems)					
UNIT – IV	Lecture Hrs:				

Expansion devices - Capillary tube, thermostatic expansion valve - float valves, externally equalized valves - automatic expansion valves - solenoid control valve - location of piping and pump design consideration.(no problems)

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

UNIT – V Lecture Hrs:
Performance of complete Vapour compression system-Performance of condensing unit-
compressor -Evaporator-balancing of load in two stage compression. (no problems)
Installation of vapour compression refrigeration system - evaluation and dehydration testing
for leakages - charging - adding oil.(no problems)
Textbooks:
1. 'Refrigeration and Air Conditioning'- by Stoecker – TMGH– International Edition, 1982
2. 'Refrigeration and Air Conditioning' - by Domkundwar – DhanpatRai& Co., - 2000
3. 'Refrigeration and Air Conditioning' - by - C.P.Arora – TMGH - 2000
4. ASHRAE Guide and Data book applications.
Reference Books:
1. 'Refrigeration and Air Conditioning'- by Stoecker – TMGH– International Edition, 1982
2. 'Refrigeration and Air Conditioning' - by Domkundwar – DhanpatRai& Co., - 2000
3. 'Refrigeration and Air Conditioning' - by - C.P.Arora – TMGH - 2000
4. ASHRAE Guide and Data book applications.

Online Learning Resources:

• http://ecoursesonline.iasri.res.in/course/view.php?id=418

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course	21D31204	DESIGN OF HEAT TRANSFER EQUIPMENT	L	Т	Р	С
Code		(21D31204)				
Semester	II	$\mathbf{PE} - \mathbf{III}$	3	0	0	3

Course Objectives:

- 1. To understand the design of heat exchangers.
- 2. To understand design of evaporators and compressors.
- 3. To know design of cooling towers and spray ponds.
- 4. To gain knowledge about design of ducts and fans
- 5. To know piping system.

Course Outcomes (CO): Student will be able to

- 1. To be able to state the Exchangers-mean temperature differences for parallel and counter flow- effectiveness method.
- 2. To be able to identify Temperature distribution and heat flow in an evaporatorpressure drop- factor to be consider in the design of heat transfer equipment.
- 3. To be able to explain Classification-performance of cooling towers analysis of counter flow cooling towers- enthalpy-temperature diagram of air and water.
- 4. To be able to explain design of cooling towers and spray ponds
- 5. To be able to explain Requirements of a good piping system-pressure drop in pipesmoody chart-refrigerant piping

Lecture Hrs:

Lecture Hrs:

UNIT – I

DESIGN OF HEAT EXCHANGERS:

Exchangers-mean temperature differences for parallel and counter flow- effectiveness method(N.T.U)-keys and London charts.

DESIGN OF CONDENSERS:

Types overall heat transfer coefficients- temperature distribution and heat flow in a condenser-pressure drop in a condenser –extended fin surfaces-consideration of fouling factor-L.M.T.D. correction factor.

UNIT – II

DESIGN OF EVAPORATORS:

Temperature distribution and heat flow in an evaporator-pressure drop- factor to be consider in the design of heat transfer equipment-types of heat consideration of fouling factor – correction factor

DESIGN OF COMPRESSORS:

Types-equivalent shaft work-volumetric efficiency-factors affecting total volumetric efficiency –compound compression with inter cooling- rotary compressors-surging.

UNIT – III		Lecture Hrs:
DEGLONIOT		

DESIGN OF COOLING TOWERS AND SPRAY PONDS:

Classification-performance of cooling towers – analysis of counter flow cooling towersenthalpy-temperature diagram of air and water- cooling ponds- types of cooling ponds – cross flow cooling towers- procedure for calculation of outlet conditions.

UNIT – IV

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU Ananthapuramu – 515 002, Andhra Pradesh, India

Lecture Hrs:

DESIGN OF DUCTS:
Continuity equation-Bernoulli's equation-pressure losses-frictional charts- coefficient of
resistance for fillings- duct sizing methods.
DESIGN OF FANS:
Standard air-fan horsepower-fan efficiency-similarity laws-fan laws-performance
coefficients- theoretical expression for total pressure drop by a fan-centrifugal fan- axial
flow fan-system resistance.
UNIT – V Lecture Hrs:
PIPING SYSTEM:
Requirements of a good piping system-pressure drop in pipes-moody chart-refrigerant
piping-discharge line-liquid line-suction line-piping arrangement
Textbooks:
1. Heat and mass transfer by Arora&Domkundwar.
2. Refrigeration & Air-Conditioning by P.L.Ballaney
3. Refrigeration & Air-Conditioning by C.P.Arora.
4. Refrigeration & Air-Conditioning by Stoecker
Reference Books:
1. Heat and mass transfer by Arora&Domkundwar.
2. Refrigeration & Air-Conditioning by P.L.Ballaney
3. Refrigeration & Air-Conditioning by C.P.Arora.
4. Refrigeration & Air-Conditioning by Stoecker
Online Learning Resources:
• https://nptel.ac.in/courses/112/105/112105248/

Course	21D31205	ADVANCED THERMAL STORAGE	L	Т	Р	C
Code		TECHNOLOGIES				
Semester	II	(21D31205)	3	0	0	3
		PE – III				
Course Ol	ojectives:					
1. To	Understand 7	The Necessity Of Thermal Storage – Types-Energy St	orag	e De	evice	es
2. To	Understand S	Sensible Heat Storage System.				
3. To	Know Parall	el Flow And Counter Flow Regenerators.				
4. To	Gain Knowle	edge About Specific Areas Of Application Of Energy	Stor	age.		
5. Lat	ent Heat Stor	age Systems.				
Course Ou	itcomes (CC): Student will be able to				
1. To	be able to st	ate the types-energy storage devices - comparison of	f ene	ergy	stora	age
tecl	nnologies.					
2. To	be able to ide	entify and describe Basic concepts and modeling of he	eat s	torag	ge ur	nits
- m	odeling of size	mple water and rock bed storage system.				
3. To	be able to	explain at a level understandable by a non-technic	cal j	perso	on h	OW
var	ious Parallel	flow and counter flow regenerators.				
4. To	be able to ca	lculate Modeling of phase change problems				
5. To	be able to e	xplain greenhouse heating – power plant application	ns –	dryi	ng a	and
hea	ting for proc	ess industries.				
UNIT – I			Le	cture	e Hrs	3:
INTRODU	UCTION					
Necessity of	of thermal sto	orage – types-energy storage devices – comparison of	f ene	ergy	stora	age
technologi	es - seasonal	thermal energy storage - storage materials.	1			
UNIT – II			Le	cture	e Hrs	3:
SENSIBL	E HEAT ST	ORAGE SYSTEM				
Basic conc	epts and mo	deling of heat storage units - modeling of simple wat	er a	nd ro	ock ł	oed
storage sy	stem – use	of TRNSYS – pressurized water storage system f	or p	owe	er pl	ant
application	s – packed b	eds.	1 -			
UNIT –III	[Le	cture	e Hrs	3:
REGENE	RATORS	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		_		
Parallel flo	w and count	er flow regenerators – finite conductivity model – nor	n - l	inea	r mo	del
– transient	performance	e – step changes in inlet gas temperature – step chan	iges	in g	as fl	OW
rate – para	meterization	of transient response – heat storage exchangers				
UNIT – IV	7		Le	cture	e Hrs	5:
LATENT	HEAT STO	RAGE SYSTEMS				
Modeling	of phase cha	nge problems – temperature based model - enthalpy	moc	lel -	por	ous
medium a	pproach - co	onduction dominated phase change – convection d	omii	natec	l ph	ase
change			-			
UNIT - V			Le	cture	e Hrs	5:
	TIONS					
Specific ar	eas of applic	ation of energy storage – food preservation – waste	heat	rec	over	у –
solar energ	y storage –	green house heating – power plant applications – dry	ing	and	heat	ıng
for process	industries.					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Textbooks:

1. Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons 2002.

Reference Books:

- 1. Schmidt.F.W and Willmott.A.J, Thermal Storage and Regeneration, Hemisphere Publishing Corporation, 1981.
- 2. Lunardini.V.J, Heat Transfer in Cold Climates, John Wiley and Sons 1981.

Online Learning Resources:

• http://iitk.ac.in/cce/courses/2019/TES/

Course Code	21D31206	ADVANCED FLUID MECHANICS	L	Т	Р	С
Semester	II	(21D31206)	3	0	0	3
		PE – IV			L	
Course Object	tives:					
1. Establis	sh an understa	anding of the fundamental concepts of fluid mech	anic	s.		
2. Underst	and and appl	y the potential flow equations to basic flows.				
3. Underst	and and app	bly the differential equations of fluid mechanic	s in	clud	ing	the
ability t	o applyand u	nderstand the impact of assumptions made in the	anal	ysis.		
4. Underst	and the boun	dary layer concepts with respect to fluid flow				
5. Underst	and and appl	y the compressible flow equations.				
Course Outcom	mes (CO): S	tudent will be able to				
1. Apply k	nowledge of	mathematics, science and engineering.				
2. Derive	the governing	g equations of fluid flow and applying them to sin	ıple	flow	7	
problem	ns.					
3. Emphas	sizing the ma	thematical formulation of various flow problems.				
4. Apply t	he boundary	layer concept to the fluid flow problems.				
UNIT – I			Le	cture	e Hrs	3:
Basic concepts	: Continuum	hypothesis - Eulerian and Lagrangian description	s. D	eriva	ation	of
general differen	ntial equation	ns – continuity momentum and energy of incom	pres	ssible	e flo	w-
Navier Stokes	equation for	or Viscous Fluids (Rectangular Co-Ordinate S	yste	ms)-	Eule	er's
equations for id	leal fluids-Be	ernoulli's equations (one dimensional) – application	ons			
UNIT – II			Le	cture	Hrs	3:
Laminar Flow	Viscous Inc	ompressible Fluids: Flow similarity – Reynolds	s nu	mbe	r, fl	ow
between paralle	el flat plates,	couette-flow, plane poiseuille flow, Hagen - pois	euill	e flo	w.	
Laminar boun	dary layer:	Boundary layer concept, Prandtl's approxima	tion	s, B	lass	ius
solution for a	flat plate wi	thout pressure gradient - momentum integral ed	quat	ion -	- Vo	on-
Kerman integr	ral relation	- Pohlhausen method of obtaining approxim	nate	so	lutio	ns.
Displacement	thickness,mo	omentum thickness and energy thickness. E	loun	dary	lag	yer
separation and	control.					
UNIT – III			Le	cture	e Hrs	3:
Turbulent Flow	v: Reynolds	experiment, Frictional Loss in pipe flow, Resist	ance	of	smo	oth
and rough pipe	s.					
Compressible	Flow: Mach	number, Propagation of pressure waves or	distı	ırbar	ices	in
compression flu	uid, Velocity	of sound or pressure wave in a fluid, Stagnation p	orop	ertie	s,	
UNIT – IV			Le	cture	e Hrs	3:
Gas Dynamics:	Compressib	le flow through ducts and nozzles - area velocity	rela	tion	s. Fl	ow
through conve	ergent and o	convergent divergent nozzles. Real nozzles f	low	at	desi	ign
conditions. Intr	oduction to r	normal compression shock - normal shock relation	ns. I	ntro	ducti	ion
to Fanno Raleig	gh equations.					
UNIT – V			Le	cture	Hrs	3:
Flow in ducts	with frictio	n: Fanno line, adiabatic constant area- Flow	of r	perfe	ct g	;as,
chocking due t	o friction in	constant area flow- Introduction to constant area	flo	w wi	th h	eat
transfer (Raleig	gh line)					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Textbooks:

- 1. Yuan S.W. "Foundations of Fluid Mechanics", Prentice Hall Eastern economy edition 1983
- 2. Zucrwo M.J. and Hoffman J.D. "Gas Dynamics", Vol-I &Vol-II, John Wiley and Sons Inc. 1977
- 3. Yahya S.M. "Fundamentals of Compressible Flow", Wiley Eastern
- 4. Young, Munsen and Okiisyi, " A Brief Introduction to Fluid Mechanics" 2nd Edition, John Wiley 2000.
- 5. Frank.M.White, "Fluid Mechanics 5th Edn McGraw Hill 2005.

Reference Books:

- 1. Yuan S.W. "Foundations of Fluid Mechanics", Prentice Hall Eastern economy edition 1983
- 2. Zucrwo M.J. and Hoffman J.D. "Gas Dynamics", Vol-I &Vol-II, John Wiley and Sons Inc. 1977
- 3. Yahya S.M. "Fundamentals of Compressible Flow", Wiley Eastern
- 4. Young, Munsen and Okiisyi, "A Brief Introduction to Fluid Mechanics" 2nd Edition, John Wiley 2000.
- 5. Frank.M.White, "Fluid Mechanics 5th Edn McGraw Hill 2005.

Online Learning Resources:

• https://nptel.ac.in/courses/112/105/112105218/

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31207	DESIGN OF HVAC SYSTEM DESIGN	L	Τ	Р	С
Semester	II	(21D31207)	3	0	0	3
		PE - IV				

Course Objectives:

- 1. To understand the principles of Applied Psychrometry, Psychrometric processes using chart Load Estimation.
- 2. To understand Air Distribution.
- 3. To know Ventilation and Infiltration.
- 4. To gain knowledge about Direct and Indirect Evaporative Cooling.
- 5. To impart knowledge on Air conditioning systems.

Course Outcomes (CO): Student will be able to

- 1. To be able to state the Applied Psychrometry, Psychrometric processes using chart Load Estimation.
- 2. To be able to identify and describe Fundamentals of air flow in ducts, pressure drop calculations, design ducts by velocity reduction method.
- 3. To be able to explain at a level understandable by a non-technical person how Requirement of ventilation air, various sources of infiltration air, ventilation and infiltration as a part of cooling load.
- 4. To be able to apply the Basic psychometric of evaporative cooling, types of evaporative coolers, design calculations.
- 5. To be able to apply Classification, design of central and unitary systems, typical air conditioning systems such as automobile, air plane, ships.

UNIT – I Lecture Hrs: Applied Psychrometry, Psychrometric processes using chart Load Estimation: solar heat gain, study of various sources of the internal and external heat gains, heat losses, etc. Methods of heat load calculations: Equivalent temperature Difference Method, Cooling Load Temperature Difference, and Radiance Method, RSHF, GSHF, ESHF, etc. Inside and outside design conditions.

UNIT – II

Air Distribution: Fundamentals of air flow in ducts, pressure drop calculations, design ducts by velocity reduction method, equal friction method and static regain method, duct materials and properties, insulating materials, types of grills, diffusers, wall registers.

UNIT – III Lecture Hrs: Ventilation and Infiltration: Requirement of ventilation air, various sources of infiltration air, ventilation and infiltration as a part of cooling load. Fans and Blowers: Types, performance characteristics, series and parallel arrangement, selection procedure. Lecture Hrs:

UNIT – IV

Ventilation and Infiltration: Requirement of ventilation air, various sources of infiltration air, ventilation and infiltration as a part of cooling load. Fans and Blowers: Types, performance characteristics, series and parallel arrangement, selection procedure.

UNIT - V

Lecture Hrs:

Lecture Hrs:

Air conditioning systems: Classification, design of central and unitary systems, typical air conditioning systems such as automobile, air plane, ships, railway coach air-conditioning,

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

warm air system, hot water systems, heat pump, clean rooms (descriptive treatments only). Standards and Codes: ASHRAE/ARI, BIS standards study and interpretation, ECBC, NBC codes

Textbooks:

- 1. ASHRAE Handbooks
 - 2. ISHRAE Handbook.
 - 3. Handbook of Air Conditioning System Design, Carrier Incorporation, McGraw Hill Book Co., USA.
 - 4. Trane air conditioning manual,
 - 5. Refrigeration and Air conditioning, ARI Prentice Hall, New Delhi.
 - 6. Norman C. Harris, Modern air conditioning
 - 7. Jones W. P., Air conditioning Engineering, Edward Arnold Publishers Ltd, London, 1984.
 - 8. Jones W. P., Air conditioning Engineering Applications, Edward Arnold Publishers Ltd, London, 1984
 - 9. Hainer R. W., Control System for Heating, Ventilation and Air conditioning, Van Nastrand Reinhold Co., New York, 1984.
 - 10. Refrigeration and Air conditioning- C P Arora, Tata McGraw Hill Publication, New Delhi.
 - 11. McQuiston, Faye; Parker, Jerald; Spitler, Jeffrey 2000, Heating, Ventilating and Air Conditioning-Analysis and Design, 5th ed. John Wiley & Sons.

Reference Books:

- 1. ASHRAE Handbooks
- 2. ISHRAE Handbook.
- 3. Handbook of Air Conditioning System Design, Carrier Incorporation, McGraw Hill Book Co., USA.
- 4. Trane air conditioning manual,
- 5. Refrigeration and Air conditioning, ARI Prentice Hall, New Delhi.
- 6. Norman C. Harris, Modern air conditioning
- 7. Jones W. P., Air conditioning Engineering, Edward Arnold Publishers Ltd, London, 1984.
- 8. Jones W. P., Air conditioning Engineering Applications, Edward Arnold Publishers Ltd, London, 1984
- 9. Hainer R. W., Control System for Heating, Ventilation and Air conditioning, Van Nastrand Reinhold Co., New York, 1984.
- 10. Refrigeration and Air conditioning- C P Arora, Tata McGraw Hill Publication, New Delhi.
- 11. McQuiston, Faye; Parker, Jerald; Spitler, Jeffrey 2000, Heating, Ventilating and Air Conditioning-Analysis and Design, 5th ed. John Wiley & Sons.

Online Learning Resources:

• http://www.mecciengineer.com/hvac-design.aspx

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31208	ENERGY CONSERVATION AND MANAGEMENT	L	Τ	Р	C
Semester	II	(21D31208) PE – IV	3	0	0	3

Course Objectives:

- 1. To understand the principles of energy conservation.
- 2. To understand thermal insulation & refractors.
- 3. To know waste heat recovery systems.
- 4. To gain knowledge about engineering economics.
- 5. To impart knowledge Energy management programs.

Course Outcomes (CO): Student will be able to

- 1. Ability to understand the basic concept of energy conservation and its role in energy management.
- 2. Learn the purpose and detailed methodology of energy audit.
- 3. Ability to analyze the energy conservation opportunities in the energy intensive industries.
- 4. Ability to analyze the quantum of electrical energy that can be saved by the use of energy efficient lighting systems.
- 5. Learn the concept of cogeneration, tri generation and waste heat recovery in detail.

UNIT - IENERGY CONSERVATION:Lecture Hrs:Rules for efficient energy conservation – technologies for energy conservation – outline of
waste heat and material reclamation, load management, alternate energy sources, and energy
storage.

UNIT – II	THERMAL INSULATION & REFRACTORS:	Lecture Hrs:					
Heat loss through un-insulated surfaces, effects of insulation on current carrying wires -							
economic thick	ness of insulation - critical radius of insulation - proper	ties of thermal					
insulators - class	sification of insulation materials - classification of refractors	- properties of					
refractors - crit	teria for good refractory material - applications of insulating	ig & refractory					
materials.							

UNIT – III

Lecture Hrs:

WASTE HEAT RECOVERY SYSTEMS:

Guideline to identify waste heat – feasibility study of waste heat – shell and tube heat exchanger – thermal wheel – heat pipe heat exchanger – heat pump – waste heat boilers – incinerators.

HEAT RECOVERY SYSTEMS & HEAT EXCHANGER NETWORKS:

Liquid to liquid heat exchangers – gas to liquid heat recovery systems, regenerators, recuperators, rotating regenerators – miscellaneous heat recovery methods – selection of materials for heat exchangers – combined radiation and convective heat exchanger, U-tube heat exchanger, tube heat exchanger, fluidized bed heat exchanger – economizer.

UNIT – IV

Lecture Hrs:

ENGINEERING ECONOMICS:

Managerial objectives, steps in planning – efficiency of organization- capital budgeting – classification of costs – interest – types – nominal and effective interest rates – discrete and

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

continuous compounding – discounting - time value of money – cash flow diagrams – present worth factor, capital recovery factor, equal annual payments – equivalent between cash flows.

ENERGY AUDITING:

A definition – objectives – level of responsibility – control of energy – uses of energy – check lists – energy conservation schemes – energy index – cost index – pie charts –

sankey diagrams – load profiles – types of energy audits – questionnaire – energy audit of industries – general energy audit – detailed energy audit – energy saving potential.

UNIT – V

Lecture Hrs:

PROJECT MANAGEMENT:

Method of investment appraisal – rate of return method, pay back method, net present value method (NPV) – adoption of the methods in energy conservation campaign – types of projects — propose of project management – classification – role and qualities of project manager – types of budgets - budget committee – budgeting.

ENERGY MANAGEMENT PROGRAMS:

Necessary steps of energy management programme – concepts of energy management – general principles of energy management – energy management in manufacturing and process industries – qualities and functions of energy managers – duties of energy manager – language of energy manager – checklist for top management.

Textbooks:

- 1. Waste heat recovery systems -D.A. Reay/Pergmon Press
- 2. Hand book of energy audits -Albert Thumann
- 3. Energy Management -W.R. Murphy &G.Mickay, Butterworths
- 4. Energy Conservation -P.W.O' Callaghan, Pargamon Press 1981
- 5. Engineering Heat Audits -C.P. Gupta & Rajendra Prakash, Nechand& Bros.
- 6. Hand book of energy audits -Albert Thumann, The F.Airmont Press Inc., Atlanta Georgia, 1979.
- 7. Energy Management Principles -Craig B. Smithm, Pergarmon Press
- 8. The rols of Energy Manger -EEO., U.K.
- 9. Industrial Engineering & Management -Dr. O.P.Khanna, DhanapatRai& Sons, 1992
- 10. 'PERT CPM' -L.S. Srinath

Reference Books:

- 1. Waste heat recovery systems -D.A. Reay/Pergmon Press
- 2. Hand book of energy audits -Albert Thumann
- 3. Energy Management -W.R. Murphy &G.Mickay, Butterworths
- 4. Energy Conservation -P.W.O' Callaghan, Pargamon Press 1981
- 5. Engineering Heat Audits -C.P. Gupta & Rajendra Prakash, Nechand& Bros.
- 6. Hand book of energy audits -Albert Thumann, The F.Airmont Press Inc., Atlanta Georgia, 1979.
- 7. Energy Management Principles -Craig B. Smithm, Pergarmon Press
- 8. The rols of Energy Manger -EEO., U.K.
- 9. Industrial Engineering & Management -Dr. O.P.Khanna, DhanapatRai& Sons, 1992
- 10. 'PERT CPM' -L.S. Srinath

Online Learning Resources:

https://nptel.ac.in/courses/112/105/112105221/

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course	21D31209	AIR-CONDITIONING LABORATORY	L	Т	Р	C			
Code Semester	II	(21D31209)		0	4	2			
Course O	Course Objectives:								
1. To understand Humidification and Dehumidification process.									
2. To	2. To understand Gas charging unit.								
$\begin{array}{c} 3. & 10 \\ 4 & T_{0} \end{array}$	know various	s process and by-pass factor by using Air condition	ning t tionin	est K	.1g. stom	and			
	ntral Air cond	litioning system	lioiiiii	g sy	stem	anu			
5. To	understand o	ver-all efficiency of cooling Tower.							
Course O	utcomes (CO)):							
1. At	oility to appl	y the theoretical knowledge to solve problem	as in	Hea	at Po	ower			
En	gineering.								
2. Ha	nds on experi	ence through actual experimentation or simulation	1.						
4 4	vility to prep	are mathematical/geometrical model and solve i	t usir	ισ ar	nron	riate			
SO	tware.	ne munemuteu/geometricui moder une sorve i	t usin	is up	prop	Thate			
5. At	oility to analy	ze data obtained through experimentation/simu	lation	and	drav	wing			
su	table technica	al conclusion				_			
6. At	oility to prepar	re technical report for the given case study.							
List of Ex	periments:								
1. St	1. Study the Humidification and Dehumidification process.								
2. Fi	Find out the Efficiency of the Air-washer test rig.								
3. St	idy on Gas ch	arging unit							
4. Fi	nd our over-al	l efficiency of cooling Tower.							
5. Fi	nd out the cap	acity and by-pass factor of the window air condition	oning						
6. St	dy the variou	s process and by-pass factor by using Air condition	ning	test F	Rig.				
7. St	idy on Heat p	ump							
8. St	ıdy on Air-co	ndition system. Split – Air conditioning system an	d Cne	etral	Air				
со	nditioning sys	tem							
Reference	es:								

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code	21D31210	ADVANCED FLUID MECHANICS LAB	L	Т	Р	С
Semester	II	(21D31210)	0	0	4	2

Course Objectives:

The object of the course to make the students understand the fluid flow concepts and get familiarity with flow measuring devices.

Course Outcomes (CO):

Able to understand course to make the students understand the fluid flow concepts and get familiarity with flow measuring devices.

List of Experiments:

- 1. Calibration of Venturimeter
- 2. Calibration of Orifice meter
- 3. Determination of Coefficient of discharge for a small orifice by a constant head method.
- 4. Determination of Coefficient of discharge for an external mouth piece by variable head method.
- 5. Calibration of contracted Rectangular Notch and /or Triangular Notch.
- 6. Determination of Coefficient of loss of head in a sudden contraction and friction factor.
- 7. Verification of Bernoulli's equation.
- 8. Impact of jet on vanes.
- 9. Study of Hydraulic jump.
- 10. Performance test on Pelton wheel turbine.
- 11. Performance test on Francis turbine.
- 12. Efficiency test on centrifugal pump.

References:

Online learning resources/Virtual labs:

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u>

(HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code			Program Elective Course – V	L	Т	Р	С	
Semester	III	a.	DESIGN OF AIR HANDLING SYSTEMS	3	0	0	3	
Course Objecti	ves:							
1.To understand	1.To understand basis concepts air-handling units							
2. To understand	l cons	stant ar	nd variable volume systems.					
3. To know air s	ysten	n: comj	ponents.					
4. To gain know	ledge	about	ventilation for control of work environment.					
5. To acquire kn	owlee	lge on	Air controls.					
Course Outcom	nes (C	CO): St	tudent will be able to					
1. To be able to	duct of	lesigns	static Regain-equal friction-T method.					
2. To be able to	identi	fy and	describe Energy conservation and system retrof	it.				
3. To be able to	expla	in at a	level understandable by a non-technical person h	low	vario	ous		
Indoor Air Qual	ity an	d Outs	ide Air Requirements.					
4. To be able to	justif	y Cond	lensate control and Freeze-up protection					
5. To be able to	apply	variou	as Demand control ventilations.					
UNIT – I				Le	cture	e Hrs	:	
BASIS CONCE	PTS							
Psychrometric,	Class	ificatio	ons of Air-Handling Units, Main components, S	Selec	tion	of A	Air-	
Handling units	, ecc	onomiz	er cycle, single zone system, multi zone	sys	stem	-Des	ign	
Consideration, d	uct d	esignst	atic Regain-equal friction-T method.					
				-				
UNIT – II				Le	cture	Hrs	:	
CONSTANT A	ND V	ARIA	BLE VOLUME SYSTEMS					
Terminals rehea	t sys	tem, D	Pouble-Duct systems, Sub zone heating, Draw-1	hrou	igh c		ng,	
Triple-Duct sys	tem,	Fan C	Coll Unit, Induction system. Various System (Cont	igura	ation	S -	
Hydronic heat p	ump,	Heat	recovery and Economizer, Indirect evaporative	cool	ing,	Ener	rgy	
conservation and	i syst	em reti	ront.	т		11		
UNIT – III	001			Le	cture	e Hrs	:	
AIR SYSTEM:	CON	APON		1 4				
Fan-types, Cons	tructi	on, Ari	rangement, and Selection, Coll Characteristics ar	nd A	ccess	sorie	s,	
Condensate cont	rol ai	nd Free	eze-up protection	т		11		
				Le	cture	e Hrs	:	
VENTILATIO	N FO	R CO	NIROL OF WORK ENVIRONMENT		л /'		1	
Ventilation, Me	easur	ements	control and exhaust, Air cleaning device	es,	Katii	ng a	and	
Assessments, Te	est me	ethod I	or air filters, and replacement-Air system, evalua	ation	and	con	rol	
of the thermal E	nviro	nment,	indoor Air Quanty and Outside Air Requiremen		- 4	TT		
$\frac{\text{UNII} - \text{V}}{\text{AD CONTROL}}$				Le	cture	e Hrs		
AIK CONTRO	L)	1.4	Thermostete Democrat democratic	4.0	- 1 -	W -1		
Demand control ventilations, Inermostats, Damper and damper motor, Automatic Valves,								
Direct digital of	contro	oi, Ap	plication of fuzzy logic & neural network-l	Jem	and	cont	rol	
venulation.								
1 extbooks:								

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

 Ysen - Yao Sun, Air handling system design, McGraw–Hill, Inc., NY – 1994
William A. Burges, Michael j. Ellen Becker, Robert D. Treitman, Ventilation for control of the work environment, A Wiley - Interscience Publication NY - 1989.
John I. Levenhagen, Donald H. Spethmann, HVAC controls and systems, McGraw – Hill international Edition. NY - 1992. Allan T. Kirkpatrick & James S. Elleson, cold air distribution system design guide, ASHEAC - 1996 USA.
Shan K.Wang, Handbook of Air-conditioning and Refrigeration, McGraw -Hill, 2001.
SMACNA, HVAC System Duct Design, SMACNA Virginia - 1990.
Reference Books:
Ysen - Yao Sun, Air handling system design, McGraw–Hill, Inc., NY – 1994

2. William A. Burges, Michael j. Ellen Becker, Robert D. Treitman, Ventilation for control of the work environment, A Wiley - Interscience Publication NY - 1989.

3. John I. Levenhagen, Donald H. Spethmann, HVAC controls and systems, McGraw – Hill international Edition. NY - 1992. Allan T. Kirkpatrick & James S. Elleson, cold air distribution system design guide, ASHEAC - 1996 USA.

4. Shan K.Wang, Handbook of Air-conditioning and Refrigeration, McGraw -Hill, 2001.5. SMACNA, HVAC System Duct Design, SMACNA Virginia - 1990.

Online Learning Resources:

- https://www.tpctraining.com/products/air-handling-systems
- https://www.trox.de/ (design manual)

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code Program Elective Course – V Т С L Р III **INDOOR AIR OUALITY CONTROL** 3 Semester b. 0 0 3 **Course Objectives:** 1. To impart knowledge on the principles and design of control of indoor/particulate/gaseous air pollutant and its emerging trends. 2. To understand air filtration. 3. To know air pollution-indoor, outdoor; statistics in india. 4. To gain knowledge about design of cleanrooms. 5. IAQ measurements & control. Course Outcomes (CO): Student will be able to 1. Apply sampling techniques 2. Apply modeling techniques 3. Suggest suitable air pollution prevention equipments and techniques for various gaseous and particulate pollutants to Industries. Discuss the emission standards UNIT - ILecture Hrs: **AIR QUALITY** Air Pollution-Indoor, Outdoor; statistics in India-Contaminants-sources-effects of air quality on health and productivity-IAQ-ASHRAE standards. UNIT – II Lecture Hrs: **AIR QUALITY & SICK BUILDING SYNDROME** Effect of temperature, Velocity, Pressure, Humidity on IAQ-Noise-Source-damping methods-Air distribution-diffuser design-location-air charge calculations-age of air-SBS- psycho social effects-Parameters causing SBS-Bio contaminants-diagonising Building problems-NIOSH standards. UNIT – III Lecture Hrs: **AIR FILTRATION** Principles of air filtration-impingement filters, HEPA & ULPA filters, Electronic air cleaners, filters-Filter Standards-filter efficiency-filter testing methods-NAFA certification. UNIT - IVLecture Hrs: **DESIGN OF CLEANROOMS** History of clean rooms-classification-clean room standards-different contaminants-ISO classification-interiors-Recommended practices-Design of clean rooms for Hospitals, Pharmaceutical, micro electronic, Bio technology food industries and manufacture industries-International standards UNIT - VLecture Hrs: **IAQ MEASUREMENTS & CONTROL** Contaminants measurement-sampling sampling methods-Quality assurancecalibrationdata interpretation-instruments-specifications-source control-prevention-Dilution Ventilation- demand control volume method. **Textbooks:** 1. Whyte W. Clean Room Design II Edition, John Wiley & Sons (NY)-1999

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Reference Books:

1. American Institutes of Architects (AIA), Guidelines for Design & Construction of Hospital & Health care facilities, AIA, Washington–2001.

2. Thad Godish, Sick Buildings, Lecois Publishers, Ann Arbor, 1994.

3. National Air Filtration Association, NAFA guide to Air Filtration-III edition-

NAFA Washington DC-2001.

5. ASHRAE Hand Book, HVAC Systems and Equipment, I-P Edition 1996.

Online Learning Resources:

- https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality
- https://www.wfinstitute.com/post/air-filtration-training-course

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course	21D31303	COGENERATION AND WASTE HEAT	L	Т	Р	С		
Code	TTT	RECOVERY SYSTEMS	2	0	Δ	2		
Semester	111	$(\mathbf{PE} - \mathbf{V})$	3	U	U	3		
Course Ol	viootivos.To	import knowledge on						
1 Th	Lourse Objectives: 10 impart knowledge on							
1.116	1. The basic energy generation cycles							
2.110	2. The concept of cogeneration, its types and probable areas of applications							
Course Ou	inficance of	Waste field recovery systems and carryout its economic .	anai	y 515				
	Lourse Outcomes (CO): Student will be able to							
1. All	the economi	c analysis of waste heat recovery systems						
LINIT I		c analysis of waste near recovery systems	Ιo	otuu	•0 H	rc.		
Introducti	on _ princir	les of thermodynamics – cycles – topping – bottomi	ια_			ned		
cycle – or	on – princip	e cycles – performance indices of cogeneration system	1g –	was	te h	eat		
recovery -	sources and	types - concept of tri generation	IS —	was		Cat		
UNIT – II	sources and	types concept of all generation.	Le	etur	'nΗ	rs		
CONGEN	ERATION '	TECHNOLOGIES	LU	ctui	U II	15.		
Configurat	ion and ther	modynamic performance – steam turbine cogeneration	svs	tem	s – •	gas		
turbine co	peneration sy	v_{stems} – reciprocating IC engines cogeneration system	ns –	· CO1	nhir	ned		
cycles cog	eneration sys	tems – advanced cogeneration systems: fuel cell. Sterli	ng ei	ngin	es e	tc		
UNIT – II	I		Le	ctur	e H	rs:		
ISSUES A	ND APPLIC	CATIONS OF COGENERATION TECHNOLOGIE	S	ceui	• 11	100		
Cogenerati	on plants e	electrical interconnection issues – utility and coge	nera	ntior	ı pl	ant		
interconne	ction issues	- applications of cogeneration in utility sector - indu	ıstri	al s	ecto	r –		
building s	ector – rura	al sector – impacts of cogeneration plants – fuel,	elec	trici	ty a	and		
environme	nt.				2			
UNIT – IV	7		Le	ctur	e H	rs:		
WASTE H	IEAT RECO	OVERY SYSTEMS						
Selection	criteria for	waste heat recovery technologies - recuperators - H	Rege	enera	ators	s –		
economize	rs – plate I	heat exchangers - thermic fluid heaters - Waste	heat	bo	ilers	. –		
classificati	on, location	, service conditions, design Considerations - fluid	ized	be	d h	eat		
exchangers	s – heat pipe	exchangers – heat pumps – sorption systems.						
UNIT – V			Le	ctur	e H	rs:		
ECONOM	IIC ANALY	TSIS						
Investment	$t \cos t - e \cos \theta$	omic concepts - measures of economic performance - p	roce	edur	e foi	r		
economic a	analysis – ex	amples - procedure for optimized system selection and	l de	sign	– lo	oad		
curves - sensitivity analysis - regulatory and financial frame work for cogeneration and								
waste heat	recovery sys	items.						
Textbooks	5:							
1. Char	les H. Butler	, Cogeneration, McGraw Hill Book Co., 1984.11						
2. EDU	COGEN – T	he European Educational tool for cogeneration, Second	Edi	tion	, 20	01		
Reference	Books:							
1. Horle	ock JH, Co	generation - Heat and Power, Thermodynamics ar	ıd H	Ecor	iomi	ics,		
Oxfo	rd,1987.							

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

- 2. Institute of Fuel, London, Waste Heat Recovery, Chapman & Hall Publishers, London, 1963.
- 3. Seagate Subrata, Lee SS EDS, Waste Heat Utilization and Management, Hemisphere, Washington, 1983.
- 4. De Nevers, Noel., Air Pollution Control Engineering, McGrawHill, New York, 1995

Online Learning Resources:

- 1. https://nptel.ac.in/courses/112/105/112105221/
- 2. https://www.udemy.com/course/waste-heat-recovery/

R21 COURSE STRUCTURE &SYLLABUS FOR M.TECH COURSES DEPARTMENT OF MECHANICAL ENGINEERING

(HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Course Code		Open Elective	L	Т	Р	С	
Semester	III	Mechatronics	3	0	0	3	
Course Objectives:							
To impart know	ledge	on					
To impart knowledge on about the elements and techniques involved in Mechatronics							
systems which are very much essential to understand the emerging field of automation.							
Course Outcomes (CO): Student will be able to							
1.Students can a	ble to	understand the concepts, need and importance of mecha	atroi	nics.			
2. They can able	e to ki	now the concepts of 8085 microprocessor, 8051 microco	ontro	oller			
3. They can able	e to ui	derstand the Programmable peripheral Interface					
4. Students can	able t	o know the structure, programming and selection of PLC	2				
5. They can a	ble t	o know the working principle and design concept	s o	f ac	tuato	ors,	
mechatronic sys	tem.						
UNIT – I			Le	cture	Hrs	:	
Introduction to	Mech	atronics – Systems – Concepts of Mechatronics appro	bach	– N	leed	for	
Mechatronics -	Eme	ging areas of Mechatronics – Classification of Mecha	tron	ics.	Sens	ors	
and Transducer	s: Sta	tic and dynamic Characteristics of Sensor, Potentiome	eters	– L	.VD	Γ –	
Capacitance se	nsors	- Strain gauges - Eddy current sensor - Hall e	effe	ct se	ensor	: _	
Temperature ser	isors	– Light sensors.					
UNIT – II		-	Le	cture	Hrs	:	
8085 MICROPH	ROCE	SSOR AND 8051 MICROCONTROLLER					
Introduction – A	Archit	ecture of 8085– Pin Configuration – Addressing Modes	-In	struc	tion		
set, Timing diag	gram o	of 8085 – Concepts of 8051 microcontroller – Block dia	grar	n,.			
UNIT – III		•	Le	cture	Hrs	:	
PROGRAMMA	BLE	PERIPHERAL INTERFACE					
Introduction – A	Archit	ecture of 8255, Keyboard interfacing, LED display -ir	ıterf	acin	g, Al	DC	
and DAC inter	face,	Temperature Control – Stepper Motor Control –	Trat	ffic	Con	trol	
interface.							
UNIT – IV			Le	cture	Hrs	:	
PROGRAMMA	BLE	LOGIC CONTROLLER					
Introduction – E	Basic :	structure – Input and output processing – Programming	-N	Inem	ionic	:s –	
Timers, counter	s and	internal relays – Data handling – Selection of PLC.					
UNIT – V			Lecture Hrs:				
ACTUATORS	AND	MECHATRONIC SYSTEM DESIGN					
Types of Steppe	er and	Servo motors – Construction – Working Principle –	Adv	anta	ges a	and	
Disadvantages.	Disadvantages. Design process-stages of design process – Traditional and Mechatronics						
design concepts	– Ca	se studies of Mechatronics systems – Pick and place	Rob	ot –	Eng	ine	
Management sy	stem -	- Automatic car park barrier.			U		
Textbooks:	Textbooks:						
1.Bolton, "Mec	hatro	nics", Printice Hall, 2008 2. Ramesh S Gaonkar, "	Mic	cropr	oces	sor	
Architecture, Pr	rogran	nming, and Applications with the 8085", 5th Edition	, Pr	entic	e H	all,	
2008.	U					,	

Γ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF MECHANICAL ENGINEERING</u> (HEAT POWER REFRIGERATION AND AIR-CONDITIONING)

Reference B	ooks:
1.	Michael B.Histand and Davis G.Alciatore, "Introduction to
	Mechatronics and Measurement systems", McGraw Hill International
edition,2007.	
2.	Bradley D.A, Dawson D, Buru N.C and Loader A.J, "Mechatronics",
Chapman and	1 Hall, 1993.
3.	Smaili.A and Mrad.F, "Mechatronics Integrated Technologies for Intelligent
Machines", C	Oxford University Press,2007.
4.	DevadasShetty and Richard A. Kolk, "Mechatronics Systems Design", PWS
publishing co	ompany,2007.
5.	Krishna Kant, "Microprocessors & Microcontrollers", Prentice Hall of
India,2007.	
6. Clare	nce W, de Silva, "Mechatronics" CRC Press, First Indian Re-print,2013
Online Lear	ning Resources:
https://nptel.a	ac.in > courses > noc21 > SEM1 > noc21-me27