COURSE STRUCTURE AND SYLLABI OF M. Tech. PROGRAMME

in

RELIABILITY ENGINEERING (An Interdisciplinary Course)

(From Academic Year 2015-16)

Board of Studies meeting during 25th & 26th April 2015

Department of Electrical Engineering JNTUA College of Engineering (Autonomous)

INFORMATION ON THE COURSE

1.0 Details about the Course.

1.1 Name of the Course (s)

E

Name of	Name of	Intake (Full/Part	Year of	Duration	Name of Degree &
Degree/	Specialization	time) to be started	Starting	(Total)	Branch eligible for
Diploma			_		admission
M. Tech.	Reliability	18 Regular +	2009	2 Years	Any Branch
	Engineering	07 Sponsored			B. Tech/B. E

1.2 Course Structure and scheme of evaluation (Semester-wise)

Name of the Subject	Hrs	s./We	ek	Evalu	ation (Ma	urks)
	L	Р	С	Internal	Extern	Total
					al	
I-SEMESTER						
1. 15D24101 System Reliability Concepts	4	-	4	40	60	100
2.15D24102 Life Testing & Reliability	4	-	4	40	60	100
Estimation	4	-	4	40	60	100
3. 15D24103 Statistical Quality Control	4	-	4	40	60	100
4. 15D24104 Stochastic Processes						
5.Elective-I	4	-	4	40	60	100
15D24105 Software Reliability	4	-	4	40	60	100
15D24106 Reliability in Engineering Design						
6. Elective-II	4	-	4	40	60	100
15D24107 Information Security	4	-	4	40	60	100
15D22102 Advanced Digital Signal Processing						
RE Any other Elective Subject offered by any						
other Engineering Department with prior						
permission from Chairman BoS, and CAC						
of the college	-	4	2	40	60	100
7. 15D24108 Reliability Tools Lab						
<u>II-SEMESTER</u>						
1. 15D24201 Six Sigma Concepts	4	-	4	40	60	100
2. 15D24202 Risk Assessment and Management	4	-	4	40	60	100
3. 15D24203 Maintenance Engg & Management	4	-	4	40	60	100
4. 15D24204 Reliable & Fault Tolerant Computing	4	-	4	40	60	100
5. Elective-I						
15D24205 Reliability Optimization	4	-	4	40	60	100
15D24206 Monte Carlo Simulation	4	-	4	40	60	100
6. Elective-II						
15D21201 Power System Reliability	4	-	4	40	60	100
15D22203 Intelligent Algorithms	4	-	4	40	60	100
RE Any other Elective Subject offered by any						
other Engineering Department with prior						
permission from Chairman BoS, and CAC						
of the college						
7. 15D54201 Research Methodology(Audit Course)						
8. 15D24207 Reliability Testing Lab	2	-	0			
	-	4	2	40	60	100
III SEMESTER	Т	P	C			
15D24301 Seminar - I	-	4	2			
IV SEMESTER	Т	P	C			
15D24401 Seminar - II	-	4	2			
III & IV SEMESTERS						
15D24302 Project Work	-	-	44			

15D24101 SYSTEM RELIABILITY CONCEPTS

UNIT-I: Basic Probability Theory

Basic concepts – Rules for combining Probabilities of events – Failure Density and Distribution functions – Bernoulli's trials – Binomial distribution – Expected value and standard deviation for binomial distribution – Examples.

UNIT-II: Network Modeling and Reliability Evaluation

Basic concepts – Evaluation of network Reliability / Unreliability – Series systems, Parallel systems, Series - Parallel systems, partially redundant systems – Types of redundancies - Evaluation of network Reliability / Unreliability using conditional probability method – Paths based and Cutset based approach – complete event tree and reduced event tree methods - Examples.

UNIT-III: Time Dependent Probability

Basic concepts – Reliability functions f(t), F(t), R(t), h(t) – Relationship between these functions – Baths tubs curve – Exponential failure density and distribution functions - Expected value and standard deviation of Exponential distribution – Measures of reliability – MTTF, MTTR, MTBF – Evaluation of network reliability / Unreliability of simple Series, Parallel, Series-Parallel systems - Partially redundant systems - Evaluation of reliability measure – MTTF for series and parallel systems – Examples.

UNIT-IV: Discrete Markov Chains & Continuous Markov Processes

Basic concepts – Stochastic transitional Probability matrix – time dependent probability evaluation – Limiting State Probability evaluation – Absorbing states – Markov Processes-Modelling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two component repairable models – Frequency and duration concepts – Frequency balance approach - Examples.

UNIT-V: Multi Component & Approximate System Reliability Evaluation

Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model - Series systems, Parallel systems, Basic reliability indices – Cutset approach – Examples.

Text Book:

1. System Reliability Concepts by V. Sankar, Himalaya Publishing House, 2015.

Reference Books:

- 1. Reliability Evaluation of Engineering Systems by Roy Billinton and Ronald N. Allan, Reprinted in India B. S. Publications, 2007.
- 2. Reliability Engineering by E. Balagurusamy, Tata McGraw Hill, 2003.
- 3. Reliability and Maintainability Engineering by Charles E. Ebeling, Tata McGraw Hill, 2000.
- 4. Probability concepts in Electric Power system G.J.Anders- 1st edition –1990 John wiley & sons.

15D24102 LIFE TESTING & RELIABILITY ESTIMATION

UNIT-I

Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution, Negative binomial distribution and Geometric distribution. Continuous distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution, Gamma distribution, Beta distribution, Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties.

UNIT-II

Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation -Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation -Examples.

UNIT-III Reliability Life Testing Methods

Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorov smirnov test for normal and lognormal distributions and tests for the power law process model.

UNIT-IV

Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit.

UNIT- V

Non-Parametric Methods - Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests.

Reference Books:

- 1. E Balagurusamy, Reliability Engineering, Tata McGraw-Hill.
- 2. S. K. Sinha, Reliability and Life Testing, Wiley Eastern Ltd., 1986.
- 3. Charles E. Ebeling, Reliability and Maintainability Engineering, Tata McGraw-Hill.
- 4. Ronald Deep, Probability and Statistics, Elsevier Publishers.

15D24103 STATISTICAL QUALITY CONTROL

UNIT-I: QUALITY CONTROL

Quality, quality control, factors affecting quality, methods of control, chance causes and assignable causes. Quality control and Quality assurance, Quality Costs, Organization for quality, Quality circles, and Statistical process control.

UNIT-II: CONTROL CHARTS

Statistical process control –Control charts for variables and attributes. Process and machine capabilities. 6 sigma concept.

UNIT-III: ACCEPTANCE SAMPLING:

Types of sampling, sampling inspection, inspection by Attributes and Variables, Role of acceptance sampling , Procedure for sampling inspection, single, double, multiple sequential sampling plans, O.C. Curves, quality indices for acceptance sampling plans , acceptance sampling by attributes, AQL, LTPD, AOQL – Sampling plans.

UNIT-IV: TOTAL QUALITY MANAGEMENT

Quality management system, Definition of TQM, Principles of TQM, Organizational structure of TQM, Total quality control, Total employee involvement, Bench marking –Principles and Procedures, ISO9000 and quality management system. ISO9000 series, quality audits.

UNIT-V: TOOLS AND TECHNIQUES FOR TQM

Ishikawa diagrams, Pareto diagrams, Histograms, Scatter diagrams, Process Flow Diagram, Check Sheet, Stratification, Quality Function Deployment- House of quality, procedure to carry out QFD, Failure Mode and Effects Analysis, Fault tree analysis, Poka-Yoke, Continuous Process Improvement – Kaizen, PDCA Cycle. House Keeping – 5S principles.

REFERENCE BOOKS

- 1. Jain K.C. & Chitale. A.K., Quality Assurance and TQM- Khanna Publisher, 1998.
- 2. Sharma S.C., Inspection, Quality control and Reliability- Khanna Publishers, 1998.
- 3. Srinath L.S., Reliability Engineering Affiliated East West Press, 1975.
- 4. Juran.J.M. & Frank.M.Gryna Quality Planning and Analysis TMH, 1995.
- 5. Egene L., Grant and Others, Statistical Quality Control McGraw Hill, 1988.

15D24104 STOCHASTIC PROCESSES

UNIT-I

Random Variables, Distribution Functions, Discrete Random Variables-Joint Probability Mass Functions, Continuous Random Variables-Joint Probability Density Functions, Conditional Distributions, Conditional Means and Conditional Variances, N-Variate Random Variables, Special Distributions-Examples, Functions of Random Variables, Expectation and Limit Theorems-Functions of One Random Variables-Functions of Two Random Variables-Functions of n Random Variables-Expectation-Moment Generating Functions-Characteristic Functions-The Laws of Large Number and the Central Limit Theorem-Examples.

UNIT-II

Stochastic Processes-Definitions-Expectations-Vector process-Gaussian process-Harmonic process-Stationary process-Scalar process, Vector process, Correlation length-Ergodic process-Statistical properties of time averages, Temporal density estimation-Poisson process-Compound Poisson process-Markov process-Examples.

UNIT-III

Stochastic Calculus-Modes of convergence-Stochastic differentiation-Statistical properties of derivative process, Spectral analysis of derivative processes. Stochastic integration-Statistical properties of stochastic integrals, Integration of weakly stationary processes, Riemann–Stieltjes integrals. Itô calculus-Brownian motion, Itô and Stratonovich integrals, Itô and Stratonovich differential equations, Itô's lemma, Moment equations-Examples.

UNIT-IV

FokkerPlanck–Kolmogorov Equation-Chapman–Kolmogorov equation Derivation of the FPK equation-Derivation using Itô's lemma-Solutions of FPK equations for linear systems-Short-time solution-Improvement of the short-time solution. Path integral solution-Markov chain representation of path integral. Exact stationary solutions- Examples. Kolmogorov Backward Equation-Derivation of the backward equation-Reliability formulation-First-passage time probability.

UNIT-V

Structural Reliability-Modes of failure-Level crossing-Single level crossing, Method of counting process, Higher order statistics of level crossing, Dual level crossing, Local minima and maxima, Envelope processes-Vector process-First-passage reliability based on level crossing-First-passage time probability – general approach-Example of SDOF linear oscillators, Common safe domains, Structural fatigue-S-N model, Rainflow counting, Linear damage model, Time-domain analysis of fatigue damage-Dirlik's formula for fatigue prediction, Case studies of fatigue prediction-Examples.

REFERENCE BOOKS:

- 1. Jian-Qiao Sun, Stochastic Dynamics and Control, Elsevies Publishers.
- 2. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill.
- 3. Hwei P. Hsu, Probability, Random Variables, and Random Processes, Schaum's Outline Series, McGraw-Hill.

15D24105 SOFTWARE RELIABILITY

UNIT-I: Introduction and Operational Profile

The Need for Reliable Software, Software Reliability Engineering Concepts, Basic definitions, Software practitioners biggest problem, software reliability engineering approach, software reliability engineering process, defining the product, Reliability concepts, software reliability and hardware reliability, developing operational profiles, applying operational profiles, learning operations and run concepts.

UNIT-II: Software Reliability Concepts

Defining failure for the product, common measure for all associated systems, setting system failure intensity objectives, determining develop software failure intensity objectives, software reliability strategies, failures, faults and errors, availability, system and component reliabilities and failure intensities, predicting basic failure intensity.

UNIT-III: Software Reliability Modeling Survey

Introduction, Historical Perspective and Implementation, Exponential Failure Time Class of Models, Weibull and Gamma Failure Time Class of Models, Infinite Failure Category Models, Bayesian Models, Model Relationship, Software Reliability Prediction in Early Phases of the Life Cycle, software reliability growth modeling.

UNIT-IV: Software Metrics for Reliability Assessment

Introduction, Static Program Complexity, Dynamic Program Complexity, Software Complexity and Software Quality, Software Reliability Modeling.

UNIT-V: Software Testing and Reliability

Introduction, Overview of Software Testing, Operational profiles, Time/Structure Based Software Reliability Estimation, Benefits and approaches of SRE, SRE during requirements phase, SRE during implementation phase, SRE during Maintenance phase.

Text Books

- 1. Handbook of Software Reliability Engineering Edited by Michael R. Lyu, published by IEEE Computer Society Press and McGraw-Hill Book Company.
- 2. Software Reliability Engineering John D. Musa, second edition Tata McGraw-Hill.

Reference Books

- 1. Practical Reliability Engineering, Patric D. T. O connor 4th Edition, John Wesley & Sons, 2003.
- 2. Fault tolerance principles and Practice, Anderson and PA Lee, PHI, 1981.
- 3. Fault tolerant computing-Theory and Techniques, Pradhan D K (Ed.): Vol 1 and Vol 2, Prentice hall, 1986.
- 4. Reliability Engineering E. Balagurusamy, Tata McGrawHill, 1994.

15D24106 RELIABILITY IN ENGINEERING DESIGN

UNIT-I: Failure Mode and Effect Analysis (FMEA)

Basic Principles and General Fundamentals of FMEA Methodology- FMEA according to VDA 86-Example of a Design FMEA according to VDA 86- FMEA according to VDA 4.2- Example of a System FMEA Product according to VDA 4.2- Example of a System FMEA Process according to VDA 4.2.

UNIT-II: Fault Tree Analysis (FTA)

General Procedure of the FTA- Qualitative Fault Tree Analysis- Quantitative Fault Tree Analysis-Reliability Graph- Examples.

UNIT-III: Design of Experiments

Analysis of Variance Technique-Strategy of Experimental Design-t test-one and two sample test-F test-one factor at a time-power of analysis of variance tests-Orthogonal design. Completely Randomized design-Randomized Block Design-Latin Square Design-Graeco Latin Squares-Two Factor analysis of variance-Factorial Experiments. Three Factor Experiments-Factorial Experiments in a Regression setting-Incomplete Blocks Design.

UNIT-IV: Product Liability and Planning

History-Product Safety Law-Product Liability Law-Defenses-proof and the Expert Witness-Financial Loss- The future of product Liability- Prevention- Degree of Novelty of a Product, Product Life Cycle, Company Goals and Their Effect. Solution Finding Methods- Conventional Methods, Intuitive Methods, Discursive Methods, Methods for Combining Solutions- Examples.

UNIT-V: Product Development Process

General Problem Solving Process- Flow of Work During the Process of Designing- Activity Planning, Timing and Scheduling, Planning Project and Product Costs, Effective Organization Structures- Interdisciplinary Cooperation, Leadership and Team Behaviour.

REFERENCE BOOKS:

- 1. G. Haribaskaran, Probability, Queuing Theory & Reliability Engineering, Laxmi publications, Second Edition.
- 2. D. H. Besterfield, Glen H. Besterfield and M. Besterfield-Sacre, Total Quality Management, Pearson Publications, Third Edition.
- 3. E. Walpole, H. Myers and L. Myers, Probability and Statistics for engineering and Scientists, Pearson Publications, Eighth Edition.
- 4. Brend Bretsche, Reliability in Automotive and Mechanical Engineering, Springer Publications.
- 5. G. Pahl, W. Bietz, J. Feldhusen and K. H. Grote, Engineering Design a Systematic approach, Springer Publications, Third Edition.

15D24107 INFORMATION SECURITY

UNIT-I

Security Attacks (Interruption, Interception, Modification and Fabrication), Security Services (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security, Internet Standards and RFCs, Buffer overflow & format string vulnerabilities, TCP session hijacking, ARP attacks, route table modification, UDP hijacking, and man-in-the-middle attacks.

UNIT-II

Conventional Encryption Principles, Conventional encryption algorithms, cipher block modes of operation, location of encryption devices, Key distribution Approaches of Message Authentication, Secure Hash Functions and HMAC.

UNIT-III

Public key cryptography principles, public key cryptography algorithms, digital signatures, digital Certificates, Certificate Authority and key management Kerberos, X.509 Directory Authentication Service. Email privacy: Pretty Good Privacy (PGP) and S/MIME.

UNIT-IV

IP Security Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management, Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Electronic Transaction (SET)

UNIT-V

Basic concepts of SNMP, SNMPv1 Community facility and SNMPv3, Intruders, Viruses and related threats, Firewall Design principles, Trusted Systems, Intrusion Detection Systems

TEXT BOOKS:

1. Network Security Essentials (Applications and Standards); William Stallings, PEA.

2. Hack Proofing your network; Ryan Russell, Dan Kaminsky, Rain Forest Puppy, Joe Grand, David Ahmad, Hal Flynn Ido Dubrawsky, Steve W.Manzuik and Ryan Permeh, wiley Dreamtech,

REFERENCES:

- 1. Fundamentals of Network Security; Eric Maiwald, Dreamtech.
- 2. Network Security Private Communication in a Public World; Charlie Kaufman,
- 3. Radia Perlman and Mike Speciner, PEA/PHI.
- 4. Cryptography and network Security, Stallings, 3e, PHI/PEA.
- 5. Principles of Information Security, Whitman, Thomson.
- 6. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH
- 7. Introduction to Cryptography, Buchmann, Springer.

15D22102 ADVANCED DIGITAL SIGNAL PROCESSING

UNIT-I:

Short introduction, Analog to digital and Digital to Analog conversion, sampled and Hold circuit, Continuous time Fourier Transforms. Discrete-time signals and systems, Discrete-time Fourier transform- its properties and applications, Fast Fourier Transform (in time-domain and Frequency domain), IDFT and its properties.

UNIT-II: z- Transforms

Definition and properties, Rational z-transforms, Region of convergence of a rational z- Transform, The inverse z- Transform, Z-Transform properties, Computation of the convolution sum of finitelength sequences, The transfer function.

Digital Filter Structures: Block Diagram representation, Equivalent structures, Basic FIR Digital Filter structures, Basic IIR Digital Filter structures, Realization of Basic structures using MATLAB, All pass filters, Computational complexity of Digital filter structures.

UNIT III: IIR Digital Filter Design:

Preliminary considerations, Bilinear transformation method of IIR Filter design, Design of low pass IIR Digital filters, Design of High pass, Band pass and band stop IIR digital filters, Spectral Transformations of IIR filter, IIR digital filter design using MATLAB, Computer aided design of IIR digital filters.

UNIT IV:FIR Digital Filter Design:

Preliminary considerations, FIR filter design based on windowed Fourier series, Computer aided design of Equiripple Linear phase FIR filters, Design of Minimum phase FIR filters, FIR digital filter design using MATLAB, Design of computationally efficient FIR digital filters.

UNIT V: Analysis of Finite word length effects:

The quantization process and errors, quantization of Fixed point numbers, Quantization of floating point numbers, Analysis of coefficient quantization effects, Analysis of arithmetic round off errors, Low sensitivity digital filters, Reduction of product round off errors using error feedback, Round off errors in FFT algorithms. The basic sample rate alteration devices, Multi rate structures for sampling rate conversion, Multistage design of decimator and interpolator, The Polyphase decomposition, Arbitrary-rate sampling rate converter, Nyquist Filters and some applications of digital signal processing.

Text Books:

- 1. S.K. Mitra, Digital Signal Processing-, Tata McGraw-Hill, Third Edition, 2006.
- 2. B.P. Lathi, **Principle of Signal Processing and Linear Systems-**, Oxford International Student Version, 2009
- 3. M. Mondal and A Asif, **Continuous and Discrete Time Signals and Systems**, Cambridge, 2007

References:

1. Li Tan, **Digital Signal Processing- Fundamentals and Applications**-, Indian reprint, Elsevier, 2008.

2. Alan V. Oppenheim, Ronald W. Schafer, and John R.Buck, **Discrete- Time Signal Processing-**, Pearson Edu, 2008.

15D24108 RELIABILITY TOOLS LAB

CYCLE-I: DEMO EXPERIMENTS

- 1. MATLAB Commands and Examples
- 2. Built-in functions

RELIABILITY SOFTWARE MODULES

- **3.** SPARE Software package
- 4. Failure Mode Software Package
- 5. FMEA-RPN Software package
- 6. SPC Software package

CYCLE-II: TESTING PROGRAMS

- 1. Characteristics of Binomial and Poisson distributions
- 2. Characteristics of Exponential and Weibull distributions
- 3. Characteristics of Normal and Log-Normal distributions
- 4. Determination of MTTF for series and parallel systems
- 5. Evaluation of Limiting State Probabilities (LSPs)
- 6. Evaluation of basic probability indices for series and parallel systems
- 7. Parametric Boot-Strap estimation and finding best parameters
- 8. Chi-Square Goodness of Fit
- 9. Determination of Covariance, Correlation and Cross-Correlation coefficients
- 10. Neural Network design to Block box models
- **11. Testing of sampling methods**
- 12. Characteristics of Histogram, Scatter diagram, Process Flow diagram and Pareto diagram

15D24201 SIX SIGMA CONCEPTS

UNIT-I:

Introduction to Six-Sigma-Probabilistic models-Six Sigma measures-Yield-DPMO-Quality level-Reliability function using Six-Sigma-MTTF using Six Sigma-Maintenance free operating period- Availability using Six-Sigma-Point availability-Achieved availability-Operational Availability-Examples.

UNIT-II:

The Elements of Six Sigma and their Determination-The Quality Measurement Techniques: SQC, Six Sigma, Cp and Cpk- The Statistical quality control (SQC) methods-The relationship of control charts and six sigma-The process capability index (Cp)-Six sigma approach-Six sigma and the 1.5 σ shift-The Cpk Approach Versus Six Sigma-Cpk and process average shift-Negative Cpk-Choosing six sigma or Cpk-Setting the process capability index-Examples.

UNIT-III:

Calculating Defects Using Normal Distribution-Relationship between z and Cpk-Example defect calculations and Cpk-Attribute processes and reject analysis for six sigma-Quick visual check for normality-Checking for normality using chi-square tests-Example of x^2 goodness of fit to normal distribution test-Transformation data into normal distributions-The use of statistical software for normality analysis-Examples.

UNIT-IV:

Basic QC and Six Sigma Tools-The 7 QC Tools-Process Flowchart and Process Mapping-Quality Function Deployment (QFD)- Six Sigma and Design of Experiments (DoE)-DoE Definitions and Expectations-DoE objectives and expectations- DoE Techniques-Steps in conducting a successful DoE-experiment - Types of DoE using orthogonal arrays-Two-level orthogonal arrays-Three-level orthogonal arrays- The Taguchi design-The DoE Analysis Tool Set - Orthogonal array L9 saturated design- Bonding process optimization- Examples.

UNIT-V:

Introduction - Product Life Cycle and the Six Sigma Design-Quality Issues-Changes in product design-Changing traditional design communications and supplier involvement-Design process communications needs-Examples.

REFERENCE BOOKS:

- 1. U Dinesh Kumar, Crocker, Chitra and Harithe Saranga, Reliability and Six Sigma, Springer Publishers.
- 2. Sung H. Park, Six Sigma for Quality and Productivity Promotion, Asian Productivity Organization
- 3. Sammy G. Shina, Six Sigma for Electronics Design and Manufacturing, McGraw-Hill.

15D24202 RISK ASSESSMENT AND MANAGEMENT

UNIT-I:

Basic concepts of Risk-Analysis-Process-planning and Assessment-Risk treatment-Risk analysis methods-Coarse Risk Analysis-Job Safety Analysis-FMEA-Hazard and Operability Studies-SWIFT-Bayesian networks.

UNIT-II:

Human Reliability-Human Errors-Characteristics-Modes of Error detection-Human and Technical reliability-Task Performance-Human Reliability Assessment techniques-Technique for Human error Rate Prediction (THERP)-Human performance data-Human Reliability Enhancement. Human error in maintenance-System Life Cycle-Reasons for maintenance error-Reducing human errors-Prediction techniques-Markov model-Fault Tree Analysis-Examples.

UNIT-III:

Terotechnology-Definitions-System-Process-Programmes-Total Productive maintenance-Strategies-Training Programmes-for project operation managers-maintenance supervisors.

UNIT-IV:

Risk management-Objectives-Definitions-Process-Risk Identification and Approaches-Risk Statement-Risk Prioritization-Borda Algorithm-Value function approach-Ranking-Risk events-Additive value model-Formulations-Incorporating uncertainty-models-Progress monitoring. Spare Parts Management-Inventory Control-Functional Classifications-Advantages-Features-Economic order quantity and its model-Inventory Control approaches-Multi item Inventory control-Classifications-Man power resource and Spares requirement planning-Flow chart-Examples.

UNIT-V:

Verification and Validation-Basic concepts-Management-Planning-Requirements-Systems approaches-Managing Plan-Effectiveness measures-Risk management-Flow Chart-Communication Structures-Internal and Independent information flows. Life Cycle Analysis-Traceability Analysis-Interface Analysis-Phase dependent analysis-Testing-Hierarchy of test documents.

REFERENCE BOOKS:

- 1. Terje Aven, Risk Analysis Assessing Uncertainties beyond Expected Values and Probabilities, John Wiley and Sons Publication.
- 2. Sue Cox and Robin Tait, Safety, Reliability and Risk Management: an integrated approach, Second edition, Butterworth-Heinemann Publications.
- 3. B. S. Dhillon, Engineering Maintenance A Modern Approach, CRC Press.
- 4. A. K. Gupta, Reliability, Maintenance and Safety Engineering, University Science Press.
- 5. Analytical Methods for Risk Management A Systems Engineering Perspective, Paul R. Garvey, CRC Press.
- 6. Marcus S. Fisher, Software Verification and Validation an Engineering and Scientific Approach, Springer Publishers.

15D24203 MAINTENANCE ENGINEERING AND MANAGEMENT

UNIT-I:

Maintenance engineering objectives-Basic principles and approaches-Types of maintenance-Specifications and functions-Systems approach-performance indices-planning and control-Strategy.

UNIT-II:

Maintenance management and control-functions and organization-critical maintenance-effective elements-project control methods-control indices - Maintainability-Concepts-tasks-modeling and allocation-prediction-FMECA-reliability and maintainability trade off-Design for maintainability-design methods.

UNIT-III:

Preventive maintenance-elements and principle-measures-mathematical models-Advantages and disadvantages - Corrective maintenance-types-measures-mathematical models-effective failure rate equations - Reliability Centered Maintenance-goals and principles-components-predictive testing and Inspection techniques-effective measurement indicators-Advantages.

UNIT-IV:

Quality in Maintenance-Processes-Control Charts-Post maintenance testing-Maintenance Safetymaintenance tasks-improving safety-personnel safety.

UNIT-V:

Maintenance costing-factors-budget type and approaches-labor cost estimation-material cost estimation-cost estimation model-cost related indices-economic analysis-Convex and Concave costs-profit and life cycle cost trade offs.

REFERENCS BOOKS:

- 1. A. K. Gupta, Reliability, Maintenance and Safety Engineering,
- 2. B. S. Dhillon, Engineering Maintenance A Modern Approach, CRC Press.
- 3. Charles E. Ebeling, Reliability and Maintainability Engineering, Tata McGraw Hill, 2000.

15D24204 RELIABLE & FAULT TOLERANT COMPUTING

UNIT-I:

Introduction - Definitions - Organization and Intended Use - Means to Achieve Dependable Software - Fault Avoidance or Prevention - Fault Removal - Fault/Failure Forecasting - Fault Tolerance - Types of Recovery - Backward Recovery - Forward Recovery - Software Fault Tolerance - Acceptance Tests - Single-Version Fault Tolerance - Wrappers - Software Rejuvenation - Data Diversity - Software Implemented Hardware Fault Tolerance (SIHFT) - *N*-Version Programming - Consistent Comparison Problem - Version -Independence - Recovery Block Approach - Basic Principles - Success Probability Calculation - Distributed Recovery Blocks - Preconditions, Post Conditions, and Assertions - Exception-Handling - Requirements from Exception-Handlers - Basics of Exceptions and Exception-Handling - Language Support.

UNIT-II:

Checkpointing - Checkpointing Nontrivial - Checkpoint Level - Optimal Checkpointing – An Analytical Model - Time Between Checkpoints - A First-Order Approximation – Optimal Checkpoint Placement - Time Between Checkpoints - A More Accurate Model – Reducing Overhead - Reducing Latency - Cache-Aided Rollback Error Recovery (CARER) - Checkpointing in Distributed Systems - The Domino Effect and Livelock - A Coordinated Checkpointing Algorithm - Time-Based Synchronization - Diskless Checkpointing - Message Logging - Checkpointing in Shared-Memory Systems - Other Uses of Checkpointing.

UNIT-III:

Fault Detection Methods – Fault Models – Basic Models – Process Models – Theoretical and Experimental Modeling – Static Process Models – Linear Dynamic Process Models – Signal Models - Harmonic Oscillations – Signal Oscillations – Superposition – Amplitude Modulation – Frequency and Phase Modulation – Beating (Libreation) – Characteristics – Stochastic Signals – Fault Detection with Limit Checking – Limit Checking of Absolute Values – Trend Checking –Examples.

UNIT-IV:

Fault Diagnosis with Classification Methods – Simple Pattern Classification Methods – Bayes Classification – Geometric Classifiers – Polynomial Classification – Decision Trees – Fault Tolerant Systems – Fault Tolerant Design – Basic Redundant Structures – Degradation Steps – Fault Tolerant Components and Control – Fault Tolerant Sensors – Fault Tolerant Actuators – Communication – Fault Tolerant Control Systems - Examples.

UNIT-V:

Hardware Fault Tolerance – Voters - Variations on *N*-Modular Redundancy - Duplex Systems - Fault-Tolerance Processor-Level Techniques - Watchdog Processor - Simultaneous Multithreading for Fault Tolerance - Byzantine Failures - Byzantine Agreement with Message Authentication – Examples.

REFERENCE BOOKS:

- 1. Laura L. Pullum, Software fault Tolerance Techniques and Implementation, Artech House Publishers.
- 2. Israel Koren and C. Mani Krishna, Fault Tolerant Systems, Morgan Kaufmann Publishers is an imprint of Elsevier.
- 3. Rolf Isermann, Fault-Diagnosis Systems An Introduction from Fault Detection to Fault Tolerance, Springer Publishers.

15D24205 RELIABILITY OPTIMIZATION

UNIT-1:

Partially redundant systems-Standby redundant systems-redundancy concepts-perfect switchingimperfect switching-standby redundancy calculations-Component versus unit redundancy-Weakest-Link Technique-Mixed Redundancy-Redundancy Optimization-Double Failures and Redundancy.

UNIT-II:

Systems Model-Statement of the various optimization problems- Heuristic Methods applied to optimal systems reliability-A heuristic method : Sharma And Venkateswran's Approach, Aggrawal's Approach, Mishra's Approach, Ushakov's Approach, Nakagawa and Nakashima's Approach.

UNIT-III:

Dynamic programming applied to optimal systems reliability-Basic dynamic programming approach-Dynamic programming approach using Lagrange multipliers-The discrete maximum principle applied to optimal systems reliability-Sequential unconstrained minimization technique(SUMT) applied to optimal systems reliability-Generalized reduced gradient method(GRG) applied to optimal Systems reliability.

UNIT-IV:

Method of Lagrange multipliers-single constraint problem-single linear constraint problem-two linear constraint problem-Generalized Lagrangian function method applied to optimal systems reliability-Generalized Lagrangian problem-computational procedures- KUHN-TUCKER conditions in optimal systems reliability and for the two linear constraint problem-The geometric programming applied to optimal systems reliability- Examples.

UNIT-V:

Integer programming applied to optimal systems reliability-Introduction-The partial Enumeration method-The Gomory Cutting plane method-The branch and bound method-The Geoffrion Implicit Enumeration method-Parametric method-Linear programming-Separable Programming Methods-Examples.

REFERENCE BOOKS:

1. F. A. Tillman, C. V. Hwang & W. Kuo, Optimization of Systems Reliability, Marcel Dekker Inc.

2. S. S Rao, Engineering Optimization Theory and Practice, New Age International Publications, Third edition.

3. E. Balagurusamy, Reliability Engineering, Tata McGraw-Hill Publishing Company Limited.

4. J. K. Sharma, Operations Research Theory and Appliactions, Macmillan Publications, 4th Edition.

15D24206 MONTE CARLO SIMULATION

UNIT-I:

Basic concepts-Features-Efficiency-Convergence Characteristics-Random number generation-Linear Congruential generators-Random variate generation-Inverse Transform method-Tabulating technique- Generating random numbers from discrete distributions- Binomial Distribution- Poisson Distribution-Geometric Distribution-Negative Binomial Distribution-Hypergeometric Distribution-Monte Carlo Integration-The Hit or Miss, The Sample-Mean Monte Carlo Methods-Efficiency of Monte Carlo Method-Comparison.

UNIT-II:

Generating random functions from continuous distributions - Exponential Distribution - Gamma Distribution - Beta Distribution - Normal Distribution - Lognormal Distribution - Cauchy Distribution - Weibul Distribution - Chi-Square Distribution-Procedures and Algorithms.

UNIT-III:

Variance Reduction Techniques-Importance Sampling-Correlated Sampling-Control Variates-Stratified Sampling-Antithetic Variates-Partition of the Region-Reducing the Dimensionality-Conditional Monte Carlo-Random Quadrature Method-Biased Estimators-Weighted Monte Carlo Integration.

UNIT-IV:

Discrete event simulation-Poisson process-Time-dependent Poisson process-Poisson processes in the plane-Markov chains-Discrete-time Markov chains-Continuous-time Markov chains-Regenerative analysis- Markov chains-Bayesian statistics- The Metropolis–Hastings (MH) algorithm- Regenerative Simulation-Point Estimators and Confidence Intervals-Examples of Regenerative Processes-Variance Reduction Techniques- Examples.

UNIT-V:

Monte Carlo Optimization-Random search Algorithms-Efficiency of Random Search Algorithms-Local and Integral Properties of Optimum Trial Random search Algorithm- Global Optimization-A Closed form Solution -Examples.

REFERENCE BOOKS:

- 1. Roy Billinton and Wenyuan Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods, Plenum Press, New York.
- 2. Reuven Y. Rubinstein, Simulation and The Monte Carlo Method, John Wiley & Sons publishers.
- 3. J. S. Dagpunar, Simulation and Monte Carlo, John Wiley & Sons Publishers.

15D21201 POWER SYSTEM RELIABILITY

UNIT-I : Generating System Reliability Analysis – I

Generation system model – Capacity outage probability tables – Recursive relation for capacitive model building – Sequential addition method – Unit removal – Evaluation of loss of load and energy indices – Examples.

UNIT-II : Generating System Reliability Analysis – II

Frequency and Duration methods – Evaluation of equivalent transitional rates of identical and nonidentical units – Evaluation of cumulative probability and cumulative frequency of non-identical generating units – 2-level daily load representation - Merging generation and load models – Examples.

UNIT-III : Bulk Power System Reliability Evaluation

Basic configuration – Conditional probability approach – System and load point reliability indices – Weather effects on transmission lines – Weighted average rate and Markov model – Common mode failures.

UNIT-IV : Distribution System Reliability Analysis – I (Radial Configuration)

Basic Techniques – Radial networks – Evaluation of Basic reliability indices, performance indices – Load point and system reliability indices – Customer oriented, loss and energy oriented indices – Examples.

UNIT-V : Distribution System Reliability Analysis - II (Parallel Configuration)

Basic techniques – Inclusion of bus bar failures, scheduled maintenance – Temporary and transient failures – Weather effects – Common mode failures – Evaluation of various indices – Examples.

Text Books:

- 1. Roy Billinton and Ronald N. Allan, Reliability Evaluation of Power Systems, Plenum Press, New York and London, 2nd Edition, 1996.
- **2.** J. Endrenyi , Reliability Modeling in Electric Power Systems, John Wiley & Sons, 1st Edition, 1978.

15D22203 INTELLIGENT ALGORITHMS

UNIT I: Introduction and motivation. Approaches to intelligent control. Architecture for intelligent control. Symbolic reasoning system, rule - based systems, the AI approach. Knowledge representation. Expert systems. Data Pre - Processing: Scaling, Fourier transformation, principal - component analysis and wavelet transformations.

UNIT II

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch - Pitts neuron model, simple perceptron, Adaline and Madaline, Feed - forward Multilayer Perceptron. Learning and Training the neural network. Networks: Hopfield network, Self - organizing network and Recurrent network. Neural Network based controller, Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab / Neural Network toolbox.

UNIT III

Genetic Algorithm: Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters. Solution of typical control problems using genetic algorithm. Concept on some other than GA search techniques like tabu search and ant - colony search techniques for solving optimization problems.

UNIT IV

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning. Introduction to Fuzzy logic modeling and control of a system. Fuzzification, inference and defuzzification. Fuzzy knowledge and rule bases.

UNIT V

Fuzzy modeling and control schemes for nonlinear systems. Self - organizing fuzzy logic control. Implementation of fuzzy logic controller using Matlab fuzzy - logic toolbox. Stability analysis of fuzzy control systems. Intelligent Control for SISO/MIMO Nonlinear Systems. Model Based Multivariable Fuzzy Controller.

Text Books

- 1. Simon Haykins, Neural Networks: A comprehensive Foundation, Pearson Edition, 2003.
- 2. T.J.Ross, Fuzzy logic with Fuzzy Applications, Mc Graw Hill Inc, 1997.
- 3. David E Goldberg, Genetic Algorithms.

References

- 1. M.T.Hagan, H. B. Demuth and M. Beale, Neural Network Design, Indian reprint, 2008.
- 2. Fredric M.Ham and Ivica Kostanic, Principles of Neurocomputing for science and Engineering, McGraw Hill, 2001.
- 3. N.K. Bose and P.Liang, Neural Network Fundamentals with Graphs, Algorithms and Applications, Mc Graw Hill, Inc. 1996.
- 4. Yung C. Shin and Chengying Xu, Intelligent System Modeling, Optimization and Control, CRC Press, 2009.
- 5. N.K.Sinha and Madan M Gupta, Soft computing & Intelligent Systems Theory & Applications, Indian Edition, Elsevier, 2007.
- 6. John Yen and Reza Langari, Fuzzy logic Intelligence, Control, and Information, Pearson Education, Indian Edition, 2003.
- 7. Witold Pedrycz, Fuzzy Control and Fuzzy Systms, Overseas Press, Indian Edition, 2008.

15D54201 RESEARCH METHODOLOGY

(Audit Course)

<u>UNIT I</u>

Meaning of Research – Objectives of Research – Types of Research – Research Approaches – Guidelines for Selecting and Defining a Research Problem – research Design – Concepts related to Research Design – Basic Principles of Experimental Design.

<u>UNIT II</u>

Sampling Design – steps in Sampling Design –Characteristics of a Good Sample Design – Random Sampling Design.

Measurement and Scaling Techniques-Errors in Measurement – Tests of Sound Measurement – Scaling and Scale Construction Techniques – Time Series Analysis – Interpolation and Extrapolation.

Data Collection Methods – Primary Data – Secondary data – Questionnaire Survey and Interviews.

<u>UNIT III</u>

Correlation and Regression Analysis – Method of Least Squares – Regression vs Correlation – Correlation vs Determination – Types of Correlations and Their Applications

UNIT IV

Statistical Inference: Tests of Hypothesis – Parametric vs Non-parametric Tests – Hypothesis Testing Procedure – Sampling Theory – Sampling Distribution – Chi-square Test – Analysis of variance and Co-variance – Multi-variate Analysis.

<u>UNIT V</u>

Report Writing and Professional Ethics: Interpretation of Data – Report Writing – Layout of a Research Paper – Techniques of Interpretation- Making Scientific Presentations in Conferences and Seminars – Professional Ethics in Research.

Text books:

- 1. Research Methodology: Methods and Techniques C.R.Kothari, 2nd Edition, New Age International Publishers.
- 2. Research Methodology: A Step by Step Guide for Beginners- Ranjit Kumar, Sage Publications (Available as pdf on internet)
- **3.** Research Methodology and Statistical Tools P.Narayana Reddy and G.V.R.K.Acharyulu, 1st Edition, Excel Books, New Delhi.

REFERENCES:

- **1.** Scientists must Write Robert Barrass (Available as pdf on internet)
- 2. Crafting Your Research Future Charles X. Ling and Quiang Yang (Available as pdf on internet)

15D24207 RELIABILITY TESTING LAB

CYCLE-I: DEMO EXPERIMENTS

- 1. MATLAB Commands and Examples
- 2. Built-in functions

RELIABILITY SOFTWARE MODULES

- 3. Reliability Centered Maintenance
- 4. RELTEST Reliability Compliance and Determination Testing

CYCLE-II: TESTING PROGRAMS

- 1. Component and Unit Redundancy with Exponential Distribution
- 2. Chi-Square Goodness of Fit
- 3. Optimal Redundancy Calculations
- 4. Calculation of Correlation Co-efficient & Co-efficient of Co-variance
- 5. Control Charts for Variable to obtain the control limits and PCR
- 6. Method of Least Squares to fit the Regression Lines
- 7. ANOVA (Analysis of Variation)
- 8. MLE (Maximum Likely Hood Estimation) of Normal Distribution
- 9. Evaluation of Cumulative probability and Cumulative Frequency of Merged States
- 10. Analysis of Bi-Variant Method

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

RELIABILITY ENGINEERING

I SEMESTER

S.No.	Course Code	Subject Name	Cate		Hours I Week		Credits
	Code		Gory	L	Т	Ρ	
1	21D91101	System Reliability Concepts	PC	3	0	0	3
2	21D91102	Life Testing & Reliability Estimation	PC	3	0	0	3
3	Profession	al Elective – I					
	21D91103	Software Reliability					
	21D91104	Reliable & Fault Tolerant Computing	PE	3	0	0	3
	21D91105	Information Security					
4	Profession	al Elective – II					
	21D91106	Six Sigma Concepts					
	21D91107	Reliability in Engineering Design	PE	3	0	0	3
	21D91108	Monte Carlo Simulation					
5	21D11109	Research Methodology and IPR	MC	2	0	0	2
6	21D11110	English for Research Paper Writing					
	21D11111	Value Education	AC	2	0	0	0
	21D11112	Pedagogy Studies	_				
7	21D91109	Probabilistic Distribution Simulation Lab	PC	0	0	4	2
8	21D91110	Reliability Life Testing Simulation Lab	PC	0	0	4	2
	1	Total		16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

RELIABILITY ENGINEERING

II SEMESTER

S.No.	Course Code	Subject Name	Cate	-	Hours Per Week		Credits
	Code		Gory	L	Т	Ρ	
1	21D91201	R - Programming	PC	3	0	0	3
2	21D91202	Stochastic Process	PC	3	0	0	3
3	Profession	al Elective – III					
	21D91203	Risk Assessment and Management					
	21D91204	Maintenance Engineering &					
		Management	PE	3	0	0	3
	21D91205	Reliability Optimization					
4	Profession	al Elective – IV					
	21D91206	Statistical Quality Control					
	21D91207	Power System Reliability	PE	3	0	0	3
	21D91208	Intelligent Algorithms					
5	21D11209	Technical Seminar	PR	0	0	4	2
6	21D11210	Disaster Management					
	21D11211	Constitution of India	AC	2	0	0	0
	21D11212	Stress Management by Yoga					
7	21D91209	Network Reliability Simulation Lab	PC	0	0	4	2
8	21D91210	R – Programming Lab	PC	0	0	4	2
		Total		16	00	08	18

Course Structure of R21 Academic Regulations for <u>M.Tech</u> (Regular) Programs with effect from AY 2021-2022 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

RELIABILITY ENGINEERING

III SEMESTER

S.No.	Course	Subject Name	Cate	-	urs I Weel	-	Credits
	Code		Gory	L	Т	Р	
1	Profession	al Elective – V					
	21D91301	Python Programming					
	21D91302	Statistical Techniques in Big Data					
		Analysis	PE	3	0	0	3
	21D91303	Statistical Techniques in Machine					
		Learning					
2	Open Elect	ive					
	21D20301	Waste to Energy	OE	3	0	0	3
3	21D91304	Dissertation Phase – I	PR	0	0	20	10
4	21D00301	Co-Curricular Activities	PR				2
		Total		06	00	20	18

IV SEMESTER

S.No.	Course Code	Subject Name	Cate		ours I Weel		Credits
	Code		Gory	L	Т	Ρ	
1	21D91401	Dissertation Phase – II	PR	0	0	32	16
	Total					32	16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

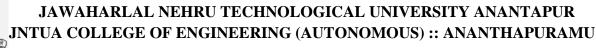
R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (RELIABILITY ENGINEERING)

Code	21D91101	SYSTEM RELIABILITY CONCEPTS	LT	' P	C					
Semester	Ι	(21D91101)	3 0	0	3					
	-		e v	v						
Course Objec	tives:To ma	ke the student								
• Understan	• Understand the basic concepts of probability, network reduction, reliability functions,									
-		eliability indices.	0.1	1	• ,					
•	-	of distributions, path based and cutset based approact nodels and recursive relations.	h, failt	ire de	ensity					
• Apply the indices.										
• Develop t	he technique	es to evaluate the reliability of the system.								
	*	Student will be able to								
CO 1: Unders functio	CO 1: Understand the concepts of failure density functions, types of redundancies, reliability functions, repairable models and basic probability indices.									
	-	ance of reliability in various fields.	1							
		lity methods to evaluate the system reliability	and c	comp	onent					
reliabil	•	a mothoda for reliability avaluation of the newer syst								
$\frac{\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{I}\mathbf{I}}{\mathbf{U}\mathbf{N}\mathbf{I}\mathbf{T}-\mathbf{I}}$	-	s methods for reliability evaluation of the power syst	Lectu	iro U	Q					
		combining Probabilities of events – Failure Density								
-		als – Binomial distribution – Expected value and sta								
		-	muaru	devi	ation					
for binomial di		*	Last							
		odelling and Reliability Evaluation	Lectu							
1		on of network Reliability / Unreliability – Series s								
		systems, partially redundant systems – Types of								
		liability / Unreliability using conditional probability								
	iset based a	approach – complete event tree and reduced event	tree	netno	ous -					
Examples.	T:	- J 4 D h - h - h - h - h - h - h - h - h -	Tarte		10					
		ndent Probability	Lectu							
		ility functions $f(t)$, $F(t)$, $R(t)$, $h(t)$ – Relationship								
		e – Exponential failure density and distribution funct		-						
		ion of Exponential distribution – Measures of relia	•							
		Evaluation of network reliability / Unreliability o	-							
		ystems - Partially redundant systems - Evaluation	on of	rena	onity					
		s and parallel systems – Examples.	Last		rs:14					
		arkov Chains & Continuous Markov Processes								
		stic transitional Probability matrix – time dependent								
		te Probability evaluation – Absorbing states – Ma								
Modelling concepts – State space diagrams – time dependent reliability evaluation of single component repairable model – Evaluation of Limiting State Probabilities of one, two										
-	-	•								
component repairable models – Frequency and duration concepts – Frequency balance										
approach – Examples, First Order and Second Order Markov Modelling, Hidden Markov Model.										
	Multi Con	nponent & Approximate System Reliability	Lectu	ıre H	rs:10					
	Evaluation									

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Recursive relation for evaluation of equivalent transitional rates, cumulative probability and cumulative frequency and 'n' component repairable model - Series systems, Parallel systems, Basic reliability indices – Cutset approach – Examples.

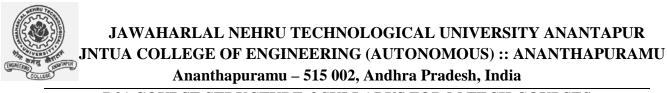
Textbooks:


- 1. V. Sankar "System Reliability Concepts", Himalaya Publishing House, 1st Edition, 2015.
- 2. Roy Billinton and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Plenum Publishing Corporation, 2nd Edition, 1992.

Reference Books:

- 1. E. Balagurusamy, "Reliability Engineering", McGraw Hill Education, 1st Edition, 2017.
- 2. Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", Waveland Press, Inc., 3rd Edition, 2019.
- 3. George J. Anders, "Probability Concepts in Electric Power system", Wiley-Interscience, 1st Edition, 1990.

Online Learning Resources:


1. <u>https://www.google.co.in/books/edition/Reliability_Engineering/hEBD615hkzwC?hl=en&gbpv=1&dq=SYSTEM+RELIABILITY+CONCEPTS&printsec=frontcover</u>

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank	Course Code	21D91102	LIFE TESTING & RELIABILITY	L	Т	Р	C	
Course Objectives: To make the student Course Outcomes (CO): Student will be able to UNIT - I Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution - Rexponential distribution and Geometric distribution, Weibull distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution - Sampling distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter setimation - Unbiased estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Ife testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. <td colspan<="" th=""><th>Semester</th><th>Ι</th><th>ESTIMATION</th><th>3</th><th>0</th><th>0</th><th>3</th></td>	<th>Semester</th> <th>Ι</th> <th>ESTIMATION</th> <th>3</th> <th>0</th> <th>0</th> <th>3</th>	Semester	Ι	ESTIMATION	3	0	0	3
Course Outcomes (CO): Student will be able to UNIT - I Lecture Hrs: Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution, Negative binomial distribution and Geometric distribution, Weibull distribution, Gamma distribution, Beta distribution, Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution - Correlation – Ne concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - II Reliability Life Testing Methods Lecture Hrs:			(21D91102)					
Course Outcomes (CO): Student will be able to UNIT - I Lecture Hrs: Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution, Negative binomial distribution and Geometric distribution, Weibull distribution, Gamma distribution, Beta distribution, Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution - Correlation – Ne concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - II Reliability Life Testing Methods Lecture Hrs:		·						
UNIT - I Lecture Hrs: Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution . Negative binomial distribution and Geometric distribution, Continuous distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution - Gamma distribution, Beta distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum Ikelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - II Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmimov test for normal and lognormal distributions and tests for the power law process model. Lecture Hrs: UNIT - IV Lecture Hrs: Baye's testing and Testing Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, wheneys tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness	Course Object	t ives: To mak	the student					
UNIT - I Lecture Hrs: Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution . Negative binomial distribution and Geometric distribution, Continuous distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution - Gamma distribution, Beta distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum Ikelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - II Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmimov test for normal and lognormal distributions and tests for the power law process model. Lecture Hrs: UNIT - IV Lecture Hrs: Baye's testing and Testing Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, wheneys tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness								
Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution, Negative binomial distribution and Geometric distribution. Continuous distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution - Garma distribution - Sampling distribution. Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution. Correlation - The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimation - Parameter Externervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter Estimation - Parameter NIT - II Reliability Life Testing Methods Lecture Hrs: UNIT - II Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing on the exponential distribution, Mann's test for the weibull distribution, Kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. Lecture Hrs: UNIT - IV Lecture Hrs: Raylothesis Tests: Proportions, Hypothesis Tests of Tipference Settimes Owners - Small Samples - Known, Hypothesis Tests of Difference Settime Constrap Estimation, Mann's test for Difference Settimes Lecture Hrs: Baye's testing nad Testing Hypothesis Tests for Independ	Course Outco	mes (CO): Si	tudent will be able to					
Probability Distribution Functions - Discrete distributions - Uniform distribution, Marginal Distribution, Negative binomial distribution and Geometric distribution. Continuous distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution - Garma distribution - Sampling distribution. Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution. Correlation - The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimation - Parameter Externervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter Estimation - Parameter NIT - II Reliability Life Testing Methods Lecture Hrs: UNIT - II Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing on the exponential distribution, Mann's test for the weibull distribution, Kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. Lecture Hrs: UNIT - IV Lecture Hrs: Raylothesis Tests: Proportions, Hypothesis Tests of Tipference Settimes Owners - Small Samples - Known, Hypothesis Tests of Difference Settime Constrap Estimation, Mann's test for Difference Settimes Lecture Hrs: Baye's testing nad Testing Hypothesis Tests for Independ		r						
Distribution, Negative binomial distribution and Geometric distribution. Continuous distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution, Gamma distribution, Beta distribution - Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, Generation, Hypothesis, Tests for Aano, Hypothesis, Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests, Iceture Hrs: I tectwoks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.				-		-		
distribution - Exponential distribution, double exponential, Rayleigh distribution, Weibull distribution, Gamma distribution, Beta distribution, Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing of Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Ra	•					-		
distribution, Gamma distribution, Beta distribution, Pareto distribution, Normal distribution and lognormal distribution - Sampling distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing of the calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypothesis Tests: Proportions, Hypothesis Tests of Hypotheses, Hypothesis Tests: Waans, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
and lognormal distribution - Sampling distribution - Correlation – The concept of Correlation, measuring correlation - Auto and cross correlation functions – Properties. UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Waans, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	distribution -	Exponential	distribution, double exponential, Rayleigh distribution	outic	n, '	Weił	oull	
measuring correlation - Auto and cross correlation functions – Properties. Lecture Hrs: UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, thypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparame	distribution, G	amma distrib	oution, Beta distribution, Pareto distribution, Norr	nal	dist	ribut	ion	
UNIT - II Lecture Hrs: Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimators - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing on Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon - Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonpa	and lognormal	distribution -	- Sampling distribution - Correlation - The concept	of (Corr	elati	on,	
Interval Estimation - Unbiased Estimators, Interval Estimates (Confidence Intervals), Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing or Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Corr	measuring corr	elation - Auto	o and cross correlation functions – Properties.					
Prediction Intervals, Central Limit Theorem, Parametric Bootstrap Estimation - Parameter estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing on Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	UNIT - II			Le	ctur	e Hr	s:	
estimation - Unbiased estimators - Point estimators - Properties of point estimators - Maximum likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Weans, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1 1 Eatlagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	Interval Estim	nation - Un	biased Estimators, Interval Estimates (Confide	nce	Int	erva	ls),	
likelyhood estimation - Bayes estimation - Mean Square estimation - Linear mean square estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	Prediction Inte	rvals, Centra	al Limit Theorem, Parametric Bootstrap Estimation	on -	Pa	rame	eter	
estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	estimation - Ur	biased estim	ators - Point estimators - Properties of point estimat	ors	· Ma	axim	um	
estimation - Examples. UNIT - III Reliability Life Testing Methods Lecture Hrs: Reliability Life Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	likelyhood esti	mation - Ba	yes estimation - Mean Square estimation - Linea	ar m	ean	squ	are	
Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.						-		
Reliability Life Testing - Test time calculations, Burn-in testing, Acceptance testing, accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	UNIT - III	Reliability	Life Testing Methods	Le	ctur	e Hr	s:	
accelerated life testing and Experimental Design - Reliability Growth Testing - Growth process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	Reliability Lif	e Testing -	Test time calculations, Burn-in testing, Acce	ptan	ce	testi	ng,	
process, Idealized growth curve and other growth modals. Goodness of Fit tests - Chi-square goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	accelerated life	e testing and	d Experimental Design - Reliability Growth Tes	sting	-	Grov	vth	
goodness of fit test, Bartlett's test for the exponential distribution, Mann's test for the weibull distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
distribution, kolmogorovsmirnov test for normal and lognormal distributions and tests for the power law process model. UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
power law process model. Lecture Hrs: UNIT - IV Lecture Hrs: Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
UNIT - IVLecture Hrs:Baye's testing and Testing Hypotheses - Terminology in Statistical Tests of Hypotheses, Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit.UNIT - VLecture Hrs:Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon - Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.			C					
Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	UNIT - IV			Le	ctur	e Hr	s:	
Hypothesis Tests: Means, Hypothesis Tests: Proportions, Hypothesis Tests for Difference between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	Baye's testing	and Testing	Hypotheses - Terminology in Statistical Tests	of I	Type	othes	ses,	
between Two Means: Small Samples - Known, Hypothesis Test with Paired Samples, Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
Hypothesis Tests: Variances, Hypothesis Tests for Independence, Homogenity, and Goodness of Fit. UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
of Fit. Lecture Hrs: UNIT - V Lecture Hrs: Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.						-		
UNIT - VLecture Hrs:Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests.Textbooks:1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	of Fit.							
 Non-Parametric Methods -Introduction, The Sign Test, Nonparametric Bootstrap Estimation, The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1st Edition, 2010. 				Le	ctur	e Hr	s:	
 The Sign Test for Paired Data, The Wilcoxon Signed - Rank Test, Wilcoxon – Mann -Whitney (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1st Edition, 2010. 		c Methods -I	ntroduction. The Sign Test, Nonparametric Bootst					
 (WMW) Rank Test for Two Samples, Spearman Rank Order Correlation Coefficient, Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1st Edition, 2010. 			• •	-				
 Kendall's Rank Correlation Coefficient (t), Nonparametric Tests for Regression, Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1st Edition, 2010. 	-						•	
Nonparametric Tests for ANOVA, Runs Test and Randomization Tests. Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.								
Textbooks: 1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.			· · · · · · · · · · · · · · · · · · ·		-0		- ,	
1. E Balagurusamy, "Reliability Engineering", Tata McGraw-Hill, 1 st Edition, 2010.	Textbooks:							
		usamy, "Relia	ability Engineering", Tata McGraw-Hill, 1 st Edition	, 201	0.			

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Reference Books:

- 1. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw-Hill, 3rd Edition, 2019.
- 2. Ronald Deep, "Probability and Statistics", Elsevier Publishers, 1st Edition, 1969.

Online Learning Resources:

1. https://nptel.ac.in/courses/105/108/105108128/

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (RELIABILITY ENGINEERING)

Course Code	21D91103	SOFTWARE RELIABILITY	L	Т	Р	C
Semester	Ι	(21D91103)	3	0	0	3
		$(\mathbf{PE} - \mathbf{I})$				
	•					
Course Objecti	ves:					
 To discu 	ss the problem	ns of reliability specification and measure	ment.			
 To intro 	duce reliabili	ty metrics and to discuss their use in reliab	oility s	specifi	catior	1.
• To show	how reliabili	ty predications may be made from statistic	cal tes	t resul	lts.	
Course Outcon	nes (CO): Stu	ident will be able to				
CO 1: Understa	and the softw	are reliability engineering concepts, failure	es, fau	lts an	d erro	rs.
CO 2: Apply th	ne concept of	operational profiles, neural networks for s	oftwa	re reli	ability	/.
CO 3: Analyze	the concept of	of software reliability modeling.				
CO 4: Develop	the concept	of operational profiles.				
UNIT - I	Fundamen	tal to Software Reliability	Lect	ure H	rs:	
The Need for	Reliable S	oftware, Software Reliability Engineer	ing C	Concep	ots, E	Basic
definitions, So	ftware pract	itioners biggest problem, software re	liabili	ity ei	nginee	ering
approach, softw	are reliability	engineering process, defining the product	•			
		eliability concepts, software reliability and				
developing oper	rational profi	les, applying operational profiles, learning	ig ope	ration	is and	run
concepts.						
UNIT - II	Software R	eliability Concepts	Lect	ure H	rs:	
Defining failure	for the prod	act, common measure for all associated sy	stems	s, setti	ng sys	stem
failure intensity	y objectives,	determining develop software failure	inten	sity o	objecti	ives,
	• •	, failures, faults and errors, availability, sy	ystem	and c	ompo	nent
		ities, predicting basic failure intensity.	T			
UNIT - III		eliability Modeling Survey		ure H		
		pective and Implementation, Exponential				
		na Failure Time Class of Models, Infir				
•		Model Relationship, Software Reliability	y Prec	lictior	in E	Early
Phases of the Li	· · ·		•			
UNIT - IV		Ietrics for Reliability Assessment		ure H		
Introduction, S	static Progra	m Complexity, Dynamic Program C	omple	exity,	Soft	ware
	-	ality, Software Reliability Modeling.				
	•	bility: Introduction, Overview of Software	e Test	ing, O	perati	onal
profiles, Time/S	r	d Software Reliability Estimation.	T			
UNIT - V		ice of SRE & Neural Networks for	Lect	ure H	lrs:	
	Software R	<u> </u>				
		efits and approaches of SRE, SRE during	g requ	ireme	nts pł	iase,
0 1		bhase, SRE during Maintenance phase.				
		tware Reliability: Introduction, Neura		twork	s, Ne	eural
Networks for so	ftware reliabi	lity, software reliability growth modeling.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Textbooks:

- 1. Michael R. Lyu, "Handbook of Software Reliability Engineering", IEEE Computer Society Press and McGraw-Hill, 1st Edition, 1996.
- 2. John D. Musa, "Software Reliability Engineering: More Reliable Software- Faster and Cheaper", Tata McGraw-Hill, 2nd Edition, 2005.

Reference Books:

- 1. Patric D. T. O connor "Practical Reliability Engineering", John Wesley & Sons, 4th Edition, 2003.
- 2. Anderson and PA Lee, "Fault Tolerance Principles and Practice", PHI, 1981.
- 3. Pradhan D K, "Fault tolerant computing-Theory and Techniques", Prentice hall, Vol. 1 and Vol. 2, Prentice hall, 1986.

Online Learning Resources:

- 1. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.5727...pdf
- 2. e-archivo.uc3m.es/bitstream/10016/161/1/ws012014.pdf

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (RELIABILITY ENGINEERING)

Course	21D91104	RELIABLE & FAULT TOLERANT	L	Т	Р	С		
Code		COMPUTING						
Semester	Ι	(21D91104)	3	0	0	3		
		(PE – I)						
Course Ob	ojectives:To r	make the student						
fault n	nodels, fault t	acept of fault forecasting, exception handling, check olerant concepts, hardware fault tolerance techniques.	-		-			
• Analyze the procedure for identifying fault, basic of exceptions, optimal check point, processes models and fault diagnosis.								
loggin	g, trend checl	to find out success probability calculation, error recking and fault tolerance.		•		sage		
		ques for fault detection and fault diagnosis for complex	k sy	ster	ns.			
): Student will be able to						
		concept of fault tolerance, recovery system, optimal	che	ck]	point	ting,		
		ault classification methods, N-modular redundancy.	. •		1	c 1.		
	•	s on fault tolerance, effects on check pointing, stochas	tic s	sign	als, i	ault		
		and actuators.	far	-14		4		
-		ods to evaluate fault tolerance check pointing levels	Tai	lit (letec	tion		
	l fault diagnos		ator	na				
UNIT - I	-	ware models for finding fault tolerance for practical sy re Fault Tolerance			Hrs:	12		
		ns - Organization and Intended Use - Means to Achie						
		nce or Prevention - Fault Removal - Fault/Failure For		-				
		ecovery - Backward Recovery - Forward Recovery -			-			
	• •	e Tests - Single-Version Fault Tolerance – Wrapp						
		versity - Software Implemented Hardware Fault Toler						
		g - Consistent Comparison Problem – Version - I						
		ich - Basic Principles - Success Probability Calculation		-				
•		conditions, Post Conditions, and Assertions - Except						
		ception-Handlers - Basics of Exceptions and Except						
Language S						U		
UNIT - II	Check I	Pointing L	.ect	ure	Hrs:	10		
Check-poin	nting Nontriv	ial - Checkpoint Level - Optimal Checkpointing -	An	A	nalyt	ical		
Model - Ti	ime Between	Checkpoints - A First-Order Approximation - Optim	nal	Che	eckp	oint		
Placement	- Time Betw	een Checkpoints - A More Accurate Model - Reduc	ing	Ov	erhe	ad -		
Reducing l	Latency - Cae	che-Aided Rollback Error Recovery (CARER) - Ch	eck	-poi	nting	g in		
	•	The Domino Effect and Livelock - A Coordinated			-	-		
0		d Synchronization - Diskless Checkpointing - Mess	age	L	oggir	ıg -		
Checkpointing in Shared-Memory Systems - Other Uses of Checkpointing.								
UNIT - II					Hrs:			
		Models – Theoretical and Experimental Modelling -						
Models – Linear Dynamic Process Models – Signal Models - Harmonic Oscillations – Signal								
Oscillations – Superposition – Amplitude Modulation – Frequency and Phase Modulation –								
-		Characteristics – Stochastic Signals – Fault Detect		wit	th Li	mıt		
Checking -	 Limit Check 	ting of Absolute Values – Trend Checking – Examples	•					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

UNIT - IV	Fault Diagnosis	Lecture Hrs: 10
Simple Patter	n Classification Methods - Bayes Classification - Geomet	ric Classifiers –
Polynomial C	lassification - Decision Trees - Fault Tolerant Systems -	- Fault Tolerant
Design – Basi	c Redundant Structures – Degradation Steps – Fault Tolerant	Components and
Control – Fau	ılt Tolerant Sensors – Fault Tolerant Actuators – Commu	nication – Fault
Tolerant Contr	ol Systems - Examples.	
UNIT - V	Hardware Fault Tolerance	Lecture Hrs: 8
Voters - Var	iations on N-Modular Redundancy - Duplex Systems -	Fault Tolerance
Processor-Lev	el Techniques - Watchdog Processor - Simultaneous Multith	reading for Fault
Tolerance - E	Byzantine Failures - Byzantine Agreement with Message	Authentication –
Examples.		
Textbooks:		
1. Laura L. F	Pullum, "Software Fault Tolerance Techniques and Impleme	entation", Artech
House Pub	lishers, 1 st Edition, 2001.	
2. Israel Kor	en and C. Mani Krishna, "Fault-Tolerant Systems", Mo	organ Kaufmann
Publishers	is an imprint of Elsevier, 1 st Edition, 2007.	
Reference Bo	oks:	
1. Rolf Iserma	ann, "Fault-Diagnosis Systems - An Introduction from Fault D	Detection to Fault
Tolerance"	, Springer Publishers, 1 st Edition, 2006.	
Online Learn	ing Resources:	
1. <u>https://ww</u>	vw.google.co.in/books/edition/Design_And_Analysis_Of_Rel	iable_And_Faul/
<u>3GS7Cg</u> A	AQBAJ?hl=en&gbpv=1&dq=RELIABLE+%26+FAULT+T0	OLERANT+CO

MPUTING&printsec=frontcover

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Course Code	21D91105	INFORMATION	SECURITY	L	Т	P	С
Semester	Ι	(21D911))5)	3	0	0	3
		(PE – I)				
Course Objecti	ves:						
		concepts of cryptograph	•				
		acks on information sys	tems with secure	algor	ithms.		
		dent will be able to					
		nding of information					
		ributed systems, netwo				ations.	
	•	prevalent network and d	•				
	•	st System attacks, and for		0			n.
-		standing of cryptograph			-		
		ding of security polici		otoco	Is to	imple	nent
1		m of message exchange		~~ ~*	ratama	data	haaa
		e mechanisms for prot	lecting informati	on sy	stems	, uata	Dase
UNIT - I		and its applications.		Loot	ure H	r a •	
		onfidentiality, Integrity	e Availabilit				tion
		tion – Introduction to F					
	-	e Key, Hashing, Digital	-	Техі	, LIICI	yption	anu
UNIT - II	Symmetric	Encryption&	Asymmetric	Lect	ure H	rs•	
	Encryption	Liferyptiona	115ymmetrie	Leet	uite III		
Block cipher, S		- Data Encryption Star	ndard (DES) - C	ipher	Block	Chai	ning
		n DES - International					
· · · ·		dard (AES), Asymm	• 1	0			,
		encryption methods -					
Homomorphic e	ncryption		_				-
UNIT - III				Lect	ure H	rs:	
Digital signature	e standards - S	ecure One-time Signatu	ures - Application	n of D	igital	Signa	tures
– Diffie Hellman	n Key Exchan	ge - Elliptic Curve Digi	tal Signature algo	orithm			
UNIT - IV				Lect	ure H	rs	
	Hash Functio	ns- Applications- Sim	nle hash function				for
		tions based on Cipher B					
(SHA) - Messag		-				801	
UNIT - V	6			Lect	ure H	rs:	
	Systems – F	assword and Address	– Security Han				ks -
		Kerberos- PKI Trust M					
		AC based on Hash Fun					
· ,	•	rithms - Smart cards				-	
		A/DDA/CDA Bank Car	-		•		
		rrencies - Bitcoin					

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Textbooks:

- 1. D. R. Stinson, Cryptography: Theory and Practice, 3rd Ed. Boca Raton, FL: Chapman & Hall/CRC, 2005.
- 2. W. Stallings, Cryptography and Network Security: Principles and Practice, 7th Ed. Pearson Publishers, 2017.

Reference Books:

- 1. J. H. Silverman, A Friendly Introduction to Number Theory, 4th Ed. Boston: Pearson, 2012.
- 2. C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private Communication in a Public World, 2nd Ed. United States: Prentice Hall PTR, 2002.

Online Learning Resources:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Course Code	21D91106	SIX SIGMA CONCEPTS (21D91106)	L	Т	Р	C						
Semester	Ι	$(\mathbf{PE} - \mathbf{II})$	3	0	0	3						
Course Objectives: To make the student												
Course Outcomes (CO): Student will be able to												
UNIT – I				ure H								
		na-Probabilistic models-Six Sigma measur										
	•	n using Six-Sigma-MTTF using Six S	0									
		ability using Six-Sigma-Point availability	y-Acn	ieved	avana	ibility-						
UNIT - II	Availability-]	Examples.	Lect	ure H	ra •							
-	te of Six Sig	ma and their Determination-The Quality M				iques.						
		and Cpk- The Statistical quality control										
	relationship of control charts and six sigma-The process capability index (Cp)-Six sigma approach-Six sigma and the 1.5 σ shift-The Cpk Approach Versus Six Sigma-Cpk and											
		legative Cpk-Choosing six sigma or C										
	dex-Example		1	U	1							
UNIT - III			Lect	ure H	rs:							
Calculating	Defects Usir	ng Normal Distribution-Relationship betwee	een z	and C	Cpk-Ex	ample						
		Cpk-Attribute processes and reject analys			U	-						
		ity-Checking for normality using chi-squa			-							
	fit to normal	distribution test-Transformation data into ne	1			5.						
UNIT - IV	1.0.0.			ure H		•						
-	0	a Tools-The 7 QC Tools-Process Flowchar										
	Quality Function Deployment (QFD)- Six Sigma and Design of Experiments (DoE)-DoE											
	Definitions and Expectations-DoE objectives and expectations- DoE Techniques-Steps in											
conducting a successful DoE-experiment - Types of DoE using orthogonal arrays-Two-level orthogonal arrays-Three-level orthogonal arrays- The Taguchi design.												
UNIT - V		ever of mogonal arrays The Tagaein design		ure H	rs:							
	- Product I	Life Cycle and the Six Sigma Design-Qu				ges in						
		g traditional design communications and										
-		cations needs-Examples.	11	L								
Textbooks:		•										
1. U Dine	esh Kumar, (Crocker, Chitra and HaritheSaranga, Reli	iabilit	y and	Six S	Sigma,						
1 0	r Publishers.											
-		Sigma for Quality and Productivity Promo	tion,	Asian	Produ	ctivity						
Organiz												
Reference B					<u> </u>							
1. Sammy G. Shina, Six Sigma for Electronics Design and Manufacturing, McGraw-Hill.												
Online Learning Resources:												
L												

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) :: ANANTHAPURAMU

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Course	21D91107	RELIABILITY IN ENGINEERING DESIGN		N L	Т	Р	С			
Code Semester	Ι			1 D91107) PE – II)		3	0	0	3	
Semester			(.	L = H)		5	U	U	5	
Course Ol	ojectives: To 1	make the stude	ent							
	stand the con			ffects, fault t	ree analysis,	regress	ion	setti	ng,	
	ty methods and	-			,	U			U,	
• Analy	se the concept	ts of design of	FEMA, r	eliability grap	h, variance	techniqu	les, j	orod	uct	
	and project pla					-	-			
• Apply	the technique	es to find the	variance	, product liab	oility and pr	oject pl	anni	ng a	ind	
costs.										
• Design	n methods to e	estimate the cr	itical anal	ysis, planning	and process	of relia	ble s	yste	m.	
	utcomes (CO)									
	derstand the	-				alysis, s	strate	egy	of	
	experiment design and problem timing and scheduling. CO 2: Analyse the examples of FMEA, reliability graph, analysis of variance techniques.									
				ility graph, a	nalysis of v	ariance	tech	niqu	les,	
-	duct laws and		-	C •1	C · · 1			1		
-	ply the metho			failure tree,	factorial ex	perimen	its, 1	prod	uct	
	oility and proje	1 0		alvaia analva	ic of vorion	a meadu	at m	0.000	:	
	sign models to l development			arysis, anarys	is of variance	e produ	ct p	ann	mg	
UNIT - I	-	Mode Effect		Criticality	Analysis	Lecture	- Hr	s· 10)	
0111 - 1	(FMECA)	Mout Ener	us anu	Criticality	Anarysis	Lecture	- 111	5. 10	,	
Basic Prine	, ,	neral Fundam	entals of	FMEA Metho	odology - F	MEA ac	cord	ling	to	
Basic Principles and General Fundamentals of FMEA Methodology - FMEA according to VDA 86 - Example of a Design FMEA according to VDA 86 - FMEA according to VDA 4.2										
- Example	of a System F	MEA Product	accordin	g to VDA 4.2	- Example of	of a Syst	em 1	FME	ΞA	
Process acc	cording to VD	A 4.2.								
UNIT - II	Fault Tree	e Analysis (F1	ľA)			Lecture	e Hr	s: 8		
General Procedure of the FTA - Qualitative Fault Tree Analysis- Quantitative Fault Tree									ee	
Analysis -	Reliability Gra	aph- Example	5.							
UNIT - III	Design of l	Experiments				Lecture	e Hr	s: 12	2	
Analysis o	f Variance Te	echnique - Str	ategy of	Experimental	Design - t	test - or	ne ar	nd ty	NO	
-	t - F test - one		-	•				-		
-	ompletely Ran				-	-		-		
	tin Squares -		•			-				
	periments - Fa	actorial Expe	iments in	a Regression	n setting -	Incompl	ete	Bloc	ks	
Design.						T ·	17	10		
UNIT - IV		iability and P	0		<u> </u>	Lecture				
	Product Safety			•				-		
	nancial Loss -		-	•		-				
	Product Life (• •	•				-			
	onal Methods	, munive Me	cilious, D	scursive met	nous, metho	Jus for	COI	UIII	ng	
Solutions -	Examples.									

UNIT - V Product Development Process	Lecture Hrs:10
General Problem Solving Process - Flow of Work During the Process of De	esigning - Activity
Planning, Timing and Scheduling, Planning Project and Product	Costs, Effective
Organization Structures - Interdisciplinary Cooperation, Leadership and	Team Behaviour,
System Process Administrative Control.	
Textbooks:	
1. G. Haribaskaran, "Probability, Queuing Theory & Reliability Eng	ineering", Laxmi
publications, 2 nd Edition, 2006.	
2. Dale H. Besterfield, Carol Besterfield - Michna and Glen H. Besterfield	ld, "Total Quality
Management", Pearson Publications, Revised Third Edition, 2012.	
Reference Books:	
1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers and Keying E	
and Statistics for Engineering and Scientists", 9 th Edition, Pearson Public	cations, 2010.
2. BrendBertsche, "Reliability in Automotive and Mechanical Engine	eering", Springer
Publications, 1 st Edition, 2011.	
3. G. Pahl, W. Beitz, J. Feldhusen and K. H. Grote, "Engineering Desi	ign A Systematic
Approach", Springer Publications, 3 rd Edition, 2007.	
Online Learning Resources:	
1. https://www.google.co.in/books/edition/Engineering_Design_Reliability	/_Handbook/gdH
KBQAAQBAJ?hl=en&gbpv=1&dq=RELIABILITY+IN+ENGINEERI	NG+DESIGN&pri
<u>ntsec=frontcover</u>	

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D91108	MONTE CARLO SIMULATION	L	Τ	P	С
Semester	Ι	(21D91108)	3	0	0	3
		$(\mathbf{PE} - \mathbf{II})$				
Course Ohio	4.	- the start and				
Course Object				C		
		ts of convergence characteristics, generating ran ad Monte-Carlo optimization.	dom	tui	nctio	ons,
• Analyse th	ne concepts of	various distribution functions, time dependent proc	ess a	and 1	rand	lom
search alg	orithms.					
• Apply the	techniques to	evaluate the efficiency of Monte-Carlo method.				
• Develop t	the algorithms	s and procedures for discrete event simulation an	id M	Iont	e-Ca	arlo
optimizati						
		udent will be able to				
	tand basic co search algori	ncepts of generating random numbers, reduction thms.	tech	niqu	ies	and
	U	process of determining random functions, mark	OV (chai	ns	and
•	ative process.					
U	1	es to improve the efficiency of Monte-Carlo me	thod	, sa	mpl	ing
techniq	ues to reduce	the variance.			-	-
CO 4: Develo	p the various	methods to generate random functions, for reducing	ig va	ariar	nce	and
find the	e optimum Mo	nte-Carlo method.				
UNIT – I I	Introduction	to Monte-Carlo Method Lea	cture	Hrs	: 10	
Basic concept	s – Features	- Efficiency - Convergence Characteristics-Ra	ndor	n r	num	ber
generation Lin	ear Congruen	tial generators - Random variate generation - Inv	erse	Tra	nsfo	rm
method-Tabula	ting techniqu	e -Generating random numbers from discrete	distr	ibut	ions	5 -
Binomial Dist	ribution – Po	isson Distribution - Geometric Distribution - Neg	ative	Bi	nom	nial
		ric Distribution - Monte Carlo Integration - The H				The
Sample - Mean	Monte Carlo	Methods - Efficiency of Monte Carlo Method - Con	paris	son.		
		<i>.</i>	ure I			
		s from continuous distributions - Exponential Distrib				
		ation - Normal Distribution - Lognormal Distribution				chy
	Weibul Distrib	ution - Chi-Square Distribution - Procedures and Al				
UNIT - III	Reduction T	echniques Lect	ure I	Irs:	10	
		ques - Importance Sampling - Correlated Samp				
Variates Strati	fied Sampling	g - Antithetic Variates - Partition of the Region	Re	duci	ng	the
Dimensionality	Conditional	Monte Carlo - Random Quadrature Method - Bias	ed E	stim	ator	·s -
Weighted Mon						
			ure I			
		Poisson process - Time dependent Poisson pro				
-	-	arkov chains – Discrete time Markov chains – C				
	-	e analysis -Markov chains - Bayesian statistics - '			-	
- · ·	-	egenerative Simulation - Point Estimators and Confi		e In	terv	als
- Examples of I	Regenerative l	Processes - Variance Reduction Techniques - Examp	les.			

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

UNIT - VMonte Carlo Optimization AlgorithmsLecture Hrs: 10Monte Carlo Optimization-Random search Algorithms - Efficiency of Random Search
Algorithms Local and Integral Properties of Optimum Trial Random searchAlgorithm - Global
Optimization - A Closed form Solution - Examples.Lecture Hrs: 10

Textbooks:

1. Roy Billinton and Wenyuan Li, "Reliability Assessment of Electric Power Systems Using Monte Carlo Methods", Plenum Publications (Springer), 1st Edition, 1994.

Reference Books:

1. Reuven Y. Rubinstein and Dirk P. Kroese, "Simulation and the Monte Carlo Method, John Wiley & Sons publishers, 3rd Edition, 2016.

2. J. S. Dagpunar, "Simulation and Monte Carlo", Wiley & Sons Publishers, 1st Edition, 2007. **Online Learning Resources:**

1. <u>https://www.google.co.in/books/edition/Monte_Carlo_Simulation_Based_Statistical/xKMND</u> gAAQBAJ?hl=en&gbpv=1&dq=MONTE+CARLO+SIMULATION&printsec=frontcover

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (<u>RELIABILITY ENGINEERING</u>)

Course	21D91109	PROBABILISTIC DISTRIBUTIONS	L	Т	Р	C
Code		SIMULATION LAB				
Semester	Ι	(21D91109)	0	0	4	2

Course Objectives: To make the student

- Understand the concepts of basic distributions.
- Analyze the procedure for evaluating probability using various distributions.
- Apply the probability distribution concepts in practical problems.
- Develop the program for distributions to find out the optimum probability.

Course Outcomes (CO):Student will be able to

CO 1: Understand the various probability distribution functions.

- **CO 2:** Analyze the steps for evaluating expected value, variance and standard deviations for different distributions.
- **CO 3:** Apply the techniques to improve the probability of the practical system.
- **CO 4:** Develop the programs for probability distribution function for real world problems.

List of Experiments:

Plot the characteristics of pdf and PDF for

- 1. Binomial Distribution
- 2. Poission's Distribution
- 3. Normal Distribution
- 4. Negative binomial Distribution
- 5. Log-normal Distribution

Plot the characteristics of pdf, PDF and Reliability for

- 6. Exponential Distribution
- 7. Weibull Distribution
- 8. Raleigh Distribution
- 9. Uniform Distribution
- 10. Geometric Distribution
- 11. Double Exponential Distribution
- 12. Negative Exponential Distribution

*All the above experiments will be carried out in MATLAB software.

Ananthapuramu – 515 002, Andhra Pradesh, India

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (RELIABILITY ENGINEERING)

Course	21D91110	RELIABILITY LIFE TESTING	L	Т	Р	С
Code		SIMULATION LAB				
Semester	Ι	(21D91110)	0	0	4	2

Course Objectives: To make the student

- Understand the basic concepts of regression lines, correlation coefficients and variance.
- Analyze the concepts of advanced distributions for evaluating system probability.
- Apply the techniques to determine the measures of maintenance and Bivariate variables.
- Develop the programs for life testing of Reliability.

Course Outcomes (CO): Student will be able to

- **CO 1:** Understand the concepts of basic distributions, control variables, correlation coefficients.
- **CO 2:** Analyze the techniques to evaluate the probability using advanced distributions.
- **CO 3:** Apply the methods to estimate the maximum likelihood value, analysis of variance and maintenance measures.
- **CO 4:** Develop the programs in MATLAB on distributions, control variables, regression lines for real world problems.

List of Experiments:

- 1. Chi-Square test for finding the goodness of fit
- 2. Least Square to fit the regression lines
- 3. Maximum Likelyhood Estimation (MLE) for normal Distribution
- 4. X-R chart to obtain control limits and Process control ratio
- 5. Correlation Coefficient for random variables
- 6. Determine the variation of data and to test null hypothesis (ANOVA)
- 7. Evaluating Bivariant variable probability distribution
- 8. Evaluation of measure of Preventive Maintenance
- 9. Evaluation of measure of Corrective Maintenance
- 10. Plot the characteristics of pdf and PDF for Beta Distribution
- 11. Plot the characteristics of pdf and PDF for Gamma Distribution
- 12. Plot the characteristics of pdf and PDF for Pareto Distribution
- 13. Determination of Auto-Correlation Coefficient for random variables
- 14. Evaluation of Kandall's Rank Correlation Coefficient Distribution

*All the above experiments will be carried out in MATLAB software.

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D91201	R PROGRAMMING	L	Т	P	С
Semester	II	(21D91201)	3	0	0	3
		· · · · · ·				_
Course Objecti	ves:					
		ntals of statistical analysis in R environment.				
		pose of exploration using Descriptive and Infer	enti	al St	atisti	cs.
•		nd Sampling Distributions and learn the creati				
		tivariate context for predictive purpose.]	- F		
		dent will be able to				
		in R programming in terms of constructs, co	ntro	stat	eme	nts.
string fu						,
Ŭ		R for Big Data analytics.				
		gramming for Text processing.				
	11 0 1 0	a variety of Hypothesis Tests to aid Decision N	Maki	ng.		
		ented principles using R Programming.		8.		
		Interpret Correlation and Regression to analys	e the	e uno	derly	ing
	•	different variables.			5	0
UNIT - I	Introductio		Le	cture	e Hrs	;:
		Structures – Help functions in R – Vect	ors	– So	calar	s –
		common Vector operations – Using all and a				
		values – Filtering – Vectorised if-then else – V				
Vector Element		6		1	L	5
UNIT - II		rrays and Lists	Le	cture	e Hrs	:
Creating matrice		perations – Applying Functions to Matrix Row	s and	l Co	lumr	ıs –
		d columns – Vector/Matrix Distinction – Avo				
Reduction – Hig	gher Dimensi	onal arrays – lists – Creating lists – General	list	oper	ation	as –
		d values – applying functions to lists – recursiv				
UNIT - III	Data Frame	25	Le	cture	e Hrs	
Creating Data	Frames – M	atrix-like operations in frames - Merging	Data	a Fr	ame	s –
		frames – Factors and Tables – factors and le				
		Working with tables - Other factors and table				
- Control statem	nents – Arith	metic and Boolean operators and values - D	efaul	lt va	lues	for
arguments - Re	turning Boole	ean values - functions are objects - Environ	men	t and	d Sc	ope
issues - Writin	g Upstairs -	Recursion - Replacement functions - Tools	for	cor	npos	ing
function code –	Math and Sim	nulations in R.				
UNIT - IV	Object Orie	ented Programming	Le	cture	e Hrs	
S3 Classes – S4	Classes – Ma	anaging your objects - Input/Output - accessi	ng k	eybc	oard a	and
monitor - readin	ig and writing	files - accessing the internet - String Manipul	atio	n – C	Graph	nics
- Creating Gra	phs – Custo	mizing Graphs - Saving graphs to files -	Cre	ating	g thi	ee-
dimensional plot	ts.					
UNIT - V	Interfacing		Le	cture	e Hrs	5:
Interfacing R to	other languag	ges – Parallel R – Basic Statistics – Linear Mod	lel –	Gen	erali	zed
Linear models –	Non-linear m	odels - Time Series and Auto-correlation - Cl	uster	ring		

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Textbooks:

- 1. Norman Matloff , "The Art of R Programming: A Tour of Statistical Software Design", No Starch Press, 2011
- 2. Jared P. Lander, "R for Everyone: Advanced Analytics and Graphics", Addison-Wesley Data & Analytics Series, 2013.

Reference Books:

- 1. Mark Gardener, "Beginning R The Statistical Programming Language", Wiley, 2013
- 2. Robert Knell, "Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R", Amazon Digital South Asia Services Inc, 2013.

Course Code	21D91202	STOCHASTIC PROCESSES	L	Т	Р	C
Semester	II	(21D91202)	3	0	0	3
Course Objectives	• To make the s	student				
	• TO make the s	student				
Course Outcomes	(CO): Student	will be able to				
UNIT – I			Lectu	ire Hr	s:	
Random Variables	, Distribution	Functions, Discrete Random Vari	ables-J	oint l	Probat	oility
Mass Functions,	Continuous R	andom Variables-Joint Probabilit	y Den	sity	Funct	ions,
Conditional Distrib	utions, Conditi	onal Means and Conditional Variand	ces, N-	Variat	e Ran	dom
		xamples, Functions of Random Var				
-		Random Variables-Functions of T		-		
Functions of n Rar	ndom Variables	-Expectation-Moment Generating F	unction	ıs-Cha	aracter	ristic
		nber and the Central Limit Theorem-				
UNIT - II				ire Hr	s:	
Stochastic Process	es-Definitions-	Expectations-Vector process-Gauss	ian pr	ocess	-Harm	onic
		r process, Vector process, Corre				
		ne averages, Temporal density estim				
		ov process-Examples.			1	
UNIT - III	-		Lectu	ire Hr	s:	
Stochastic Calculus	s-Modes of con	vergence-Stochastic differentiation-	Statisti	cal pr	operti	es of
		is of derivative processes. Stochasti				
properties of stock	hastic integrals	, Integration of weakly stationary	proce	sses,	Riem	ann–
Stieltjes integrals.	_		-			
UNIT - IV			Lectu	ıre Hr	s:	
FokkerPlanck-Kol	mogorov Equa	tion-Chapman-Kolmogorov equati	on De	rivati	on of	the
FPK equation-Deri	vation using Ite	ô's lemma-Solutions of FPK equati	ons for	· linea	r syst	ems-
Short-time solution	n-Improvement	of the short-time solution. Path in	tegral s	solutio	on-Ma	rkov
-	-	gral. Exact stationary solutions- E	xample	es. Ko	olmog	orov
Backward Equation	n-Derivation of	the backward equation-Reliability.	_			
UNIT - V				ire Hr		
Structural Reliabil	ity-Modes of	failure-Level crossing-Single level	cross	ing, N	Aetho	d of
counting process, H	Higher order sta	tistics of level crossing, Dual level of	crossin	g, Loc	al mi	nima
		s-Vector process-First-passage reli	•			
U	0 1	oability – general approach-Exam	-			
	on safe domains	s, Structural fatigue-S-N model, Rai	nflow	counti	ng, Li	inear
damage model.						
Textbooks:						
-		Dynamics and Control, Elsevies Pub				
*	robability, Rand	dom Variables, and Stochastic Proce	sses, N	IcGra	w-Hill	l.
Reference Books:						
	•	, Random Variables, and Random	Proce	esses,	Schar	um's
	ies, McGraw-H	ill.				
Online Learning I	Resources:					

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D91203	RISK ASSESSMENT AND MANAG (21D91203)	EMENT	L	Τ	P	C
Semester	II	$(\mathbf{PE} - \mathbf{III})$		3	0	0	3
					_ ~	-	
Course O	v v						
	-	conduct various risk assessment analysis					c
	•	human reliability techniques, various			-		
		k management, spare parts management	and use of	t veri	ficat	10n a	and
	-	vcle analysis.					
): Student will be able to	<u> </u>				
		of risk/safety management systems, Con	duct variou	s risk	c asse	essm	ent
	•	ry out risk assessment.					
		reliability and associated elements, Hu	man Reliat	oility	Asse	essm	ent
	hniques.						
		d implement Terotechnology concepts.					
		oritization techniques and spare parts m	lanagement	philo	osop	hies	for
	ective risk m						
	amine Verifi	cation and validation in life cycle analysi	s of a produ				
UNIT – I					ture]		
		sk-Analysis-Process-planning and Asse					
		e Risk Analysis-Job Safety Analysis-FM	IEA-Hazar	d and	Ope	erabi	lity
	VIFT-Bayesi	an networks.					
UNIT – II				Lec	ture]	Hrs:	9
Human R	eliability-Hu	man Errors-Characteristics-Modes of l	Error detec	tion-	Hum	an a	and
Technical	reliability-7	Fask Performance-Human Reliability	Assessm	ent	tech	iniqu	les-
Technique	for Human	error Rate Prediction (THERP)-Huma	n performa	nce	data-	Hun	nan
Reliability	Enhanceme	nt. Human error in maintenance-Syste	em Life C	ycle-l	Reas	ons	for
maintenan	ce error-Red	ucing human errors-Prediction technique	es-Markov	mode	l-Fa	ult T	ree
Analysis-E	xamples.						
UNIT – II	I			Lec	ture]	Hrs:	9
Terotechno	ology-Definit	ions-System-Process-Programmes-Total	Productiv	ve n	naint	enan	ce-
Strategies-	Training Pro	grammes-for project operation managers	-maintenan	ce sup	bervi	sors	
UNIT – IV	7			Lec	ture]	Hrs:	9
Risk mana	gement-Obje	ectives-Definitions-Process-Risk Identified	cation and	Appr	oach	es-R	lisk
Statement-	Risk Priorit	tization-Borda Algorithm-Value function	ion approa	ich-R	anki	ng-R	lisk
events-Add		-					
monitoring	. Spare P	arts Management-Inventory Control-	-			-	
		conomic order quantity and its model-In					
-		control-Classifications-Man power resou	-				
	low chart-Ex	-	1				
UNIT – V		•		Lec	ture	Hrs:	9
		lation-Basic concepts-Management-Plar	ning-Reau				
	s-Managing	Plan-Effectiveness measures-Risk	manageme			-	art-
. .	00	tures-Internal and Independent inform	-				
		Analysis-Interface Analysis-Phase d				•	
			• ·	. ,			\mathcal{O}

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Textbooks:

- 1. TerjeAven, Risk Analysis Assessing Uncertainties beyond Expected Values and Probabilities, John Wiley and Sons Publication.
- 2. Sue Cox and Robin Tait, Safety, Reliability and Risk Management: an integrated approach, Second edition, Butterworth-Heinemann Publications.
- 3. B. S. Dhillon, Engineering Maintenance a Modern Approach, CRC Press.

Reference Books:

- 1. K. Gupta, Reliability, Maintenance and Safety Engineering, University Science Press.
- 2. Analytical Methods for Risk Management A Systems Engineering Perspective, Paul R. Garvey, RC Press.
- 3. Marcus S. Fisher, Software Verification and Validation an Engineering and Scientific Approach, Springer Publishers.

R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

<u>MENT OF ELECTRICAL AND ELECTRONICS ENGINEE</u> (RELIABILITY ENGINEERING)

Course	21D91204	MAINTENANCE ENGINEERING AND	L	Т	P	C
Code		MANAGEMENT				
Semester	II	(21D91204)	3	0	0	3
		(PE – III)				
Course Ob						
		d to introduce basic concepts of maintenance and n				
,		various methods of reliability analysis with real time	-			
constraints	and to mal	ke understanding the applications of Reliability and	nd I	Main	tena	nce
analysis in	different typ	es of systems.				
Course Ou	itcomes (CO): Student will be able to				
CO 1: The	e students wi	ll be able to use statistical tools to characterize the	relia	abilit	y of	an
iten	n and deter	mine the reliability of a system, and will also	unc	lersta	and	the
app	lication of m	aintenance strategies in a manufacturing environment	t;			
CO 2: The	e students w	ill be able to establish maintenance strategies acco	rdin	g to	syst	em
cha	racteristics a	nd design transition programs to implement these stra	tegi	es.		
CO 3: The	e students wi	Il develop ability in formulating suitable maintenar	nce	strate	egies	to to
		reliability of a manufacturing system				
CO 4: Stu	dent will be	able to apply concepts of TPM, RCM, & FMECA is	in m	anag	ging	the
mai	nufacturing o	rganization with highest possible levels of reliability/	' ava	ilabi	lity.	
UNIT – I			Le	cture	Hrs	:9
Maintenan	ce engineerin	g objectives-Basic principles and approaches-Types	of n	naint	enan	ce-
Specification	ons and fund	ctions-Systems approach-performance indices-planni	ng a	and	conti	rol-
Strategy.						
UNIT – II			Le	cture	Hrs	:9
Maintenan	ce managem	ent and control-functions and organization-critica	ıl n	naint	enan	.ce-
effective el	lements-proje	ect control methods-control indices - Maintainability-	Con	cept	s-tas	ks-
modeling a	nd allocation	n-prediction-FMECA-reliability and maintainability t	rade	e off	-Des	ign
for maintai	nability-desi	gn methods.				
UNIT – II	I		Le	cture	Hrs	:9
Preventive	maintenance	e-elements and principle-measures-mathematical mod	dels-	Adv	anta	ges
	U	rrective maintenance-types-measures-mathematical 1				
failure rate	equations -	Reliability Centered Maintenance-goals and princip	les-c	omp	oner	nts-
predictive	testing and Ir	spection techniques-effective measurement indicator	s-Ac	lvan	tages	5.
UNIT – IV	7		Le	cture	Hrs	:9
Quality in	Maintenanc	e-Processes-Control Charts-Post maintenance testi	ng-N	Main	tena	nce
Safety-mai	ntenance tasl	ks-improving safety-personnel safety.				
UNIT – V			Le	cture	Hrs	:9
Maintenan	ce costing-fa	ctors-budget type and approaches-labor cost estimati	on-r	nate	rial c	ost
		tion model-cost related indices-economic anal				
Concave co	osts-profit an	d life cycle cost tradeoffs.				
Textbooks	•					
1. A. K. G	upta, Reliabi	lity, Maintenance and Safety Engineering,				
2. B. S. D	hillon, Engin	eering Maintenance a Modern Approach, CRC Press.				

R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

Reference Books:

1. Charles E. Ebeling, Reliability and Maintainability Engineering, Tata McGraw Hill, 2000.

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D91205	RELIABILITY OPTIMIZATION	L	Т	P	С				
Code		(21D91205)								
Semester	II	(PE – III)	3	0	0	3				
~~~~~										
0	Course Objectives: To make the student									
	• Understand the concepts of redundant systems, optimization models for reliability									
optimizat										
•	-	of heuristic methods, different optimization technique	ies, r	eliat	oility	for				
	ed problem.									
		improve the reliability of the complex system.								
		s for redundant systems and estimate the reliability of	of the	syst	em.					
	. ,	Student will be able to								
		dundancy concepts, heuristic approaches for reliab	ility,	con	strai	ned				
-		ming methods.								
	•	epts of optimization techniques, dynamic programm	ing 1	neth	ods	and				
	er programm									
		ues to evaluate the reliability of the redundant system								
	_	methods to optimize the reliability of the dynamic s	-							
	-	n Techniques for System Reliability with	Lect	ure I	Hrs:	10				
	Redundancy				_					
		ms - Standby redundant systems - Hot, Cold and								
		perfect switching imperfect switching - stand								
		nt versus unit redundancy - Weakest Link Tech								
-		cy Optimization - Double Failures and Redundancy	- Coi	mpai	risor	to f				
	undant Syster		T			10				
		n of System Reliability	Lect							
		nt of the various optimization problems - Heuristic								
-	•	ility - A heuristic method: Sharma and Venkatesw		-	-					
		Mishra's Approach, Ushakov's Approach,	мака	ıgaw	a a	and				
Nakashima's		Due encoursing Armilia 1 4 Orthurs 1 Surface	T /	T	T	10				
	Reliability	Programming Applied to Optimal System								
		pplied to optimal systems reliability - Basic dynam								
11	• 1	ogramming approach using Lagrange multipliers								
		lied to optimal systems reliability - Sequential								
		(SUMT) applied to optimal systems reliability	7 - (	Gene	erali	zed				
Reduced Gra		l (GRG) applied to optimal Systems reliability.								
UNIT - IV		Lagrangian Multipliers and KHUN-TUCKER	Lect	ure	Hrs:	12				
		n Optimal System Reliability								
		ltipliers-single constraint problem-single linear con								
		blem-Generalized Lagrangian function method ap								
		ralized Lagrangian problem-computational proce								
		ptimal systems reliability and for the two linear cor	istrai	nt pi	roble	em-				
The geometr	ric programm	ing applied to optimal systems reliability-Examples.								

<b>UNIT - V</b> Integer Programming and Other methods applied Lecture Hrs: 10	
to the System Reliability Optimization Problems	
Integer programming applied to optimal systems reliability - Introduction-The parti	al
Enumeration method-The Gomory Cutting plane method-The branch and bound method-Tl	ne
Geoffrion Implicit Enumeration method-Parametric method-Linear programming-Separab	le
Programming Methods- Examples.	
Textbooks:	
1. F.A. Tillman, C. L. Hwang & W. Kuo, "Optimisation of systems Reliability", Marcel	
Dekker Inc., 1 st Edition, 1980.	
2. Singiresu S. Rao, "Engineering Optimization Theory and Practice", John Wiley & Son	ns,
4 th Edition, 2009.	
Reference Books:	
1. E. Balagurusamy, "Reliability Engineering", McGraw Hill Education, 1 st Edition, 2017	1.
2. J. K. Sharma, "Operations Research Theory and Applications", Macmillan Publication	ns,
4th Edition, 2006.	
Online Learning Resources:	
1. https://www.google.co.in/books/edition/Stochastic_Reliability_Modeling_Optimiza/_9	h
1UN5R-	
M0C?hl=en&gbpv=1&dq=RELIABILITY+OPTIMIZATION&printsec=frontcover	

## **R21 COURSE STRUCTURE & SYLLABUS FOR M.TECH COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING** (RELIABILITY ENGINEERING)

Course	21D91206	STATISTICAL QUALITY CONTROL	L	Τ	P	С
Code	II	(21D91206) (PE – IV)	3	0	0	3
Semester		$(\mathbf{I} \mathbf{E} - \mathbf{I} \mathbf{V})$	3	U	U	3
Course Ob	0					
		nderstand the concepts underlying statistical q		-		
-	•	y to apply those concepts to the design and ma	anag	eme	nt of	quality
	processes in			c		
•	-	de history and overview of the state of the a		-	•	
		s for descriptive and predictive statistical analy		-	·	
		arts for quality control, process characteriz ge capability studies, design of experiments,				
-	s, Kak gaug		acce	ptan		unping
	-	be on ensuring that the students gain both a	hros	d na	rana	ctive of
	-	vell as the technical skills necessary to implem		-	-	
	lustrial setting	• 1		Juan		nuor m
		): Student will be able to				
		philosophy and basic concepts of quality impro	vem	ent.		
		MAIC process (define, measure, analyze, impro			ontro	ol).
		e ability to use the methods of statistical process				
		e ability to design, use, and interpret control cha				les.
		e ability to design, use, and interpret control cha				
		s of process capability and measurement system				
CO 7: De	sign, use, ar	nd interpret exponentially weighted moving	aver	age	and	moving
ave	erage control	charts.				
UNIT – I	Quality C				e Hrs	
		l, factors affecting quality, methods of contro				
U	-	lity control and Quality assurance, Quality Co	sts,	Orga	aniza	tion for
		and Statistical process control.	-			
	Control C				Hrs	
		rol –Control charts for variables and attributes.	Proc	cess	and r	nachine
-	s. 6 sigma co	*	т			0
-		ce Sampling			Hrs	
• -		npling inspection, inspection by Attributes an				
-		, Procedure for sampling inspection, single				-
-		ans, O.C. Curves, quality indices for acceptar attributes, AQL, LTPD, AOQL – Sampling p		-	Jing	plans,
		allity Management	1		Hrs	·0
-	Ŧ	system, Definition of TQM, Principles of T				
	-	al quality control, Total employee involvement	-		-	
		ares, ISO9000 and quality management system				
quality aud		ares, is cover and quarty management syst	01111	100	2000	501105,
		Techniques for TQM	Le	cture	Hrs	:9
-		eto diagrams, Histograms, Scatter diagrams, Pr				
	0	tion, Quality Function Deployment- House of				0
		re Mode and Effects Analysis, Fault tree a	-	• • •		
Continuous	s Process Imp	provement – Kaizen, PDCA Cycle. House Keep	oing	<u>– 5</u> S	prin	ciples.

## R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

#### **Textbooks:**

- 1. Jain K.C. & Chitale. A.K., Quality Assurance and TQM- Khanna Publisher, 1998.
- 2. Sharma S.C., Inspection, Quality control and Reliability- Khanna Publishers, 1998.
- 3. Srinath L.S., Reliability Engineering Affiliated East West Press, 1975.

#### **Reference Books:**

- 1. Juran.J.M. & Frank.M.Gryna Quality Planning and Analysis TMH, 1995.
- 2. Gene L., Grant and Others, Statistical Quality Control McGraw Hill, 1988.
- 3. Douglas C Montgomery, Introduction to Statistical Quality Control, John Wiley, Seventh Edition, 2012.

- 1. https://onlinecourses.nptel.ac.in/noc20_mg18/preview
- 2. https://nptel.ac.in/courses/110/105/110105088/
- 3. https://nptel.ac.in/courses/116/102/116102019/
- 4. https://nptel.ac.in/courses/116/102/116102019/

### Ananthapuramu – 515 002, Andhra Pradesh, India

## R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (RELIABILITY ENGINEERING)

Course	21D91207	POWER SYSTEM RELIABILITY	L	Т	Р	С				
Code		(21D91207)				_				
Semester	II	( <b>PE</b> – <b>IV</b> )	3	0	0	3				
Course Objectives: To make the student										
• Under	• Understand the impact of maintaining reliability of the Power System components.									
Analys	se the different	models of system components in reliability stu	dies.							
• Apply	the probabil	istic and other methods for evaluating th	ie reli	abil	ity	of				
genera	tion, transmiss	ion and distribution system.								
• Design	n the technique	s to estimate the reliability of various other cor	nponer	nts s	uch	as				
sub-sta	ation, breakers	etc.,								
Course Ou	tcomes (CO):	Student will be able to								
CO 1: Uno	derstand the ba	asic probability methods to evaluate the reliabi	lity of	the	pov	ver				
•	tem.									
	<b>v</b> 1	ency and duration methods for reliability evaluation	ation.							
		ues for reliability evaluation of power system.								
		hologies to determine the reliability of the	enhanc	ed	pov	ver				
	tem.									
		System Reliability Analysis – I	Lectu							
		– Capacity outage probability tables – Recur								
-	-	g – Sequential addition method – Unit removal	– Eval	luat	ion	of				
		dices – Examples.	<b>.</b>							
UNIT - II	0	<i>č č č</i>	Lectur							
		methods – Evaluation of equivalent trans								
		al units – Evaluation of cumulative probability								
		l generating units – 2-level daily load represent	tation -	· Me	ergii	ng				
-		ls – Examples.	Lectu		Inci	0				
		er System Reliability Evaluation								
		Conditional probability approach – System her effects on transmission lines – Weighted a								
•		n mode failures.	iverage	5 I a	ie a	nu				
	-	n System Reliability Analysis – I	Lectu	ro L	Irci	10				
01111-11		nfiguration)	Lectu		115.	10				
Basic Tec		adial networks – Evaluation of Basic reli	iability	in	dice	es.				
	-	ad point and system reliability indices – Custom								
1		es – Examples.			., 10	55				
01	1	System Reliability Analysis - II	Lectur	re H	Irs:	10				
	(Parallel Con									
Basic tech		sion of bus bar failures, scheduled maintenan	ce – T	emp	oora	ry				
		eather effects - Common mode failures - Evalu								
indices – E	xamples.									
Textbooks	:									
		Ronald N. Allan, "Reliability Evaluation of P	ower S	Syst	ems	\$",				
		ger), 2 nd Edition, 1992.								
		lity Modeling in Electric Power Systems", John	ı Wiley	y &	Sor	ıs,				
1 st Edi	tion 1978									

1st Edition, 1978.



## R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

#### **Reference Books:**

- 1. Chanan Singh, PanidaJirutijaroen and JoydeepMitra, "Electric Power Grid Reliability Evaluation", IEEE Press Wiley, 1st Edition, 2018.
- 2. Ali A. Chowdhury and Don O. Koval, "Power Distribution System Reliability Practical Methods and Applications", A John Wiley & Son, Inc. Publications, 1st Edition, 2008.

#### **Online Learning Resources:**

1. https://www.google.co.in/books/edition/Advances_in_System_Reliability_Engineeri /pKh7DwAAQBAJ?hl=en&gbpv=1&dq=POWER+SYSTEM+RELIABILITY&prin tsec=frontcover

Ananthapuramu – 515 002, Andhra Pradesh, India

Course	21D91208	INTELLIGENT ALGORITHMS	L	Τ	Р	C
Code		(21D91208)				
Semester	II	$(\mathbf{PE} - \mathbf{IV})$	3	0	0	3
	•					
Course Ob	jectives:To n	nake the student				
• Under	stand and us	e the concepts of Artificial Intelligence i.e Fuzz	y Lo	ogic,	Neu	Iral
		c Algorithms to the system.	•	0		
Analyz	ze the Fuzzy l	Logic Controller, Neural Network based Controller.				
		tion techniques using Genetic Algorithm for real tin		age.		
Develo	op the simulat	ion for all the techniques using MATLAB.		U		
Course Ou	itcomes (CO)	: Student will be able to				
		e control system is the decision making system	ı (br	ain)	of a	any
	nysical system		,			2
-	• •	omputational intelligence to the controllers so the	at the	e cor	ntroll	ers
	•	al, robust and self-learning.				
CO 3: A	pply the artif	icial intelligence which includes the Neural netwo	rks, I	Fuzz	y Lo	gic
an	d Genetic Al	gorithms and having vide applications in the field o	f con	trol s	syste	m.
CO 4: D	evelop MATI	AB programs and simulation models for all the tec	hniqı	ies.		
UNIT - I	<b>Basics of In</b>	telligent control and Data Pre-processing	Le	cture	Hrs	: 8
Elementary	concepts an	d motivation, Approaches to intelligent control.	Arch	itect	ure f	or
intelligent	control, Syn	abolic reasoning system, rule-based systems, the	e Al	[ apj	proac	ch,
Knowledge	e representat	ion, Expert systems, Data Pre-Processing: S	calin	<b>g</b> , 1	Four	ier
transformat	ion, principal	- component analysis and wavelet transformations				
UNIT - II		Neural Networks	Lect			
-		ural Networks and its basic mathematical model, N				
	-	perceptron, Adaline and Madaline, Feed - for			-	
- ·	•	d Training the neural network, Networks: Hopfield				
		Recurrent network, Neural Network based control				
		l of linear and nonlinear dynamic systems using M	ATL	AB /	Neu	ral
Network to	1					
	Genetic A		Lect			
		etic algorithm and detail algorithmic steps, adj				
-		typical control problems using genetic algorithm, C		-		
		echniques like tabu search and ant-colony search	n tec	hniq	ues f	or
	imization pro			_		
	Fuzzy Log		Lect			
		s, basic fuzzy set operation and approximate reason				
-	-	ng and control of a system, Fuzzification, inf	erend	ce a	nd c	le-
-	-	wledge and rule bases.		_		
		is to nonlinear systems	Lect			
•	U	ontrol schemes for nonlinear systems, Self-organi	0			
	-	of fuzzy logic controller using MATLAB fuzzy	-	-		
•	•	zy control systems. Intelligent Control for SISO/N	1IMC	) No	nline	ear
Systems. M	lodel Based N	Iultivariable Fuzzy Controller.				



## R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

#### **Textbooks:**

- 1. Simon Haykin, "Neural Networks: A Comprehensive Foundation", Pearson Education, 2nd Edition, 2003.
- 2. TimothyJ.Ross, "Fuzzy logic with Engineering Applications", Wiley Publications, 2nd Edition, 2004.
- 3. David E Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson Education, 1st Edition, 2007.

#### **Reference Books:**

- 1. M.T.Hagan, H. B. Demuth, M. Beale and De Jesus"Neural Network Design", Indian reprint, 2nd Edition, 2014.
- Fredric M.Ham and IvicaKostanic, "Principles of Neurocomputing for Science and Engineering", McGraw Hill, 1st Edition, 2001.
   N.K. Bose and P.Liang, "Neural Network Fundamentals with Graphs, Algorithms and Applications", Mc - Graw Hill, 1st Edition, 1996.

#### **Online Learning Resources:**

1. https://nptel.ac.in/courses/106/106/106106126/

### Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D91209	NETWROK RELIABILITY SIMULATION	L	Т	Р	С
Semester	II		0	0	4	2
	<b>V</b>	make the student				
		sic concepts of series and parallel systems.				
•	-	dure to find MTTR, MTTF for the system.	1	1 • 1• .		
		s to determine limiting state probabilities, basic probabilities, basic probairable models.	oba	bilit	y inc	lices
		ams to enhance the network reliability using different	tec	hnia	1165	
		): Student will be able to		uniq	ues.	
		ut series, parallel, series-parallel system and parallel s	yste	em.		
		determine the MTTF, MTTR and component and uni	t re	dun	danc	y for
	erent networ					c
	•	ods to evaluate limiting state probability, basic probaburation of the network.	b1l1	ty in	idice	s for
	0	ograms in MATLAB to enhance the network reliability	litv	for	prac	tical
	tem.		ney	101	prac	lieui
List of Ex						
1. Det	ermination o	of MTTR Series System				
2. Det	ermination o	of MTTF Parallel System				
3. Eva	aluation of Li	imiting State Probability				
4. Eva	aluation of Ba	asic Probability Indices for Series System				
5. Eva	aluation of Ba	asic Probability Indices for Parallel System				
6. Coi	mponent and	Unit Redundancy using Deterministic method				
7. Co	mponent and	Unit Redundancy using Exponential Distribution				
8. Cal	culate Basic	Probability Indices using Cutset approach				
9. Bas	sic Probabilit	y indices using Series - Parallel System				
10. Bas	sic Probabilit	y indices using Parallel - Series System				
11. Eva	aluation of in	dividual probabilities and frequencies of Multi Comp	one	ent r	epair	able
mo	del					
*All the ab	ove experim	ents will be carried out in MATLAB software.				

#### Ananthapuramu – 515 002, Andhra Pradesh, India

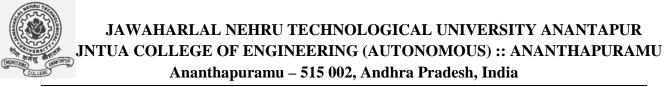
Course Code	21D91210	<b>R PROGRAMMIN</b>	G LAB	L	Т	Р	С
Semester	II	(21D91210)		0	0	4	2
Course Objecti	ivos.						
· · · · · ·		roduction to the R programm	ing language				
-	-	conment, including importing		man	ipula	ting	data
		nning summary statistics and			1	U	
<b>Course Outcon</b>							
		mple programming tasks.					
		y of R by using add-on packa	0	moni		tion (	aalaa
on them		and other sources and perform	III various data	mam	pula		asks
<b>CO 4:</b> Code sta		ns in R.					
		Tables to visualize results of	f various statist	ical	opera	ation	s on
data.							
	-	of R gained to data Analytics	for real life app	licati	ions.		
List of Experin		<b>.</b>	· · · · · · · · · · · · · · · · · · ·	•	1		•
		R-Programming environment	t and install day	sic pa	асказ	ges u	Ising
install pa	ackages() com	nand in R.					
2. Learn al	l the basics of	R-Programming (Data types,	Variables, Ope	rator	s etc	,.)	
3. Write a	program to fin	l list of even numbers from 1	to n using R-L	oops	•		
4. Create a	function to pr	nt squares of numbers in seq	uence.				
5. Write a	program to jo	n columns and rows in a dat	a frame using c	bind	() an	d rbi	ind()
in R.							
6. Impleme	ent different St	ring Manipulation functions i	in R.				
7. Impleme	ent different da	ta structures in R (Vectors, L	ists, Data Fram	es).			
8. Write a	program to rea	d a csv file and analyze the d	ata in the file in	R.			
9. Create p	ie chart and ba	r chart using R.					
10. Create a	data set and d	o statistical analysis on the da	ata using R.				
11. Write pr	ograms for sir	ple regression and correlatio	n, multiple regr	essic	on.		
References:							
	ming For Dun	mies by JorisMeysAndrie de	Vries, Wiley P	ublic	atior	ıs	
U	U	with R by Grolemund, O Rei	· · ·				
Online learning	g resources/V	rtual labs:					
	0	loc/manuals/r-release/R-intro	.pdf ( Online R	esou	rces)	)	

Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code	21D91301	PYTHON PROGRAMMING	L	Т	Р	С		
Semester	III	$(\mathbf{PE} - \mathbf{V})$	3	0	0	3		
Course Ob	Course Objectives:							
1. To ur	derstand the	basics of Scripting Language.						
2. To ge	et exposure of	n problems solving approaches of computer scien	ce.					
3. To us	3. To use various packages in solving problems.							
4. To develop the skill of designing Graphical user Interfaces in Python.								
5. To de	velop the ab	ility to write database applications in Python.						
Course Ou	itcomes (CC	): Student will be able to						
		nentals of Python programming and its application						
CO 2: Imp	olement Pyth	on programs using data types, Operators and Con	trol st	ateme	ents.			
CO 3: Det	ermine Pytho	on data structures and its operations for accessing	data.					
CO 4: Car	ry out modul	ar programming using functions and packages.						
CO 5: Imp	plement the C	OOPs concepts in Python Programming.						
CO 6: Rep	present the St	andard Libraries for Interfaces, graphics and fund	lamer	itals o	f testi	ing.		
UNIT - I	Basics of	Python	Lect	ture H	rs:			
History of	f Python, N	Need of Python Programming, Applications	Basic	es of	Pyt	hon		
		ne REPL(Shell), Running Python Scripts, Vari						
Keywords,	Input-Outpu	t, Indentation.						
Types, O	perators an	d Expressions: Types - Integers, Strings, Bo	oolear	ns; O	perat	ors-		
Arithmetic	Operators,	Comparison (Relational) Operators, Assignment	Oper	rators	, Log	ical		
Operators,	Bitwise Ope	erators, Membership Operators, Identity Operato	rs, Ez	xpress	sions	and		
order of ev	aluations Co	ntrol Flow- if, if-elif-else, for, while, break, contin	nue, p	ass.				
UNIT - II	Data	Structures & Functions	Lect	ture H	rs:			
Data Stru	ictures - L	ists - Operations, Slicing, Methods; Tuples,	Sets	s, Dio	ctiona	ries,		
Sequences.	Comprehen	sions.						
Functions	- Defining	g Functions, Calling Functions, Passing An	rgume	ents,	Keyv	vord		
Arguments	, Default Ar	guments, Variable-length arguments, Anonymou	s Fur	oction	s, Fru	itful		
Functions(	Function Ret	turning Values), Scope of the Variables in a Fu	inctio	n - G	lobal	and		
Local Vari	ables.							
UNIT - III	Modules,	Python Packages & Brief Tour of the Stand	ard	Lectu	re Hi	s:		
	Library							
	0	lules, import statement, from import statement, na	-		-			
• •	0	oduction to PIP, Installing Packages via PIP, Usin	<b>·</b>			0		
	-	Difference between an error and Exception, Hand	dling	Exce	ption,	try		
-		xceptions, User Defined Exceptions						
Brief Tour of the Standard Library - Operating System Interface - String Pattern								
U .	Matching, Mathematics, Internet Access, Dates and Times, Data Compression,							
	Multithreading.							
UNIT - IV	, v	and their Use, Object Oriented Programming						
•		se: Software objects, Turtle graphics - Creating	0		~ 1			
		urtle, Fundamental turtle attributes and behavious	or, A	dditic	nal t	urtle		
	Creating mul							
Object Or	iented Prog	camming: Encapsulation, Inheritance, and Polym	orphi	sm.				



# R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)


UN	IT - V	GUI Programming, Testing	Lecture Hrs:				
GU	<b>I Progra</b>	amming - Tkinter Overview - tkinter pragmatics, Document	tation, Extensions,				
stru	icture; tk	inter coding alternatives, adding buttons and callbacks-lamb	da, bound method,				
call	callable class object, Binding events; adding multiple widgets, Reusable GUI Components						
wit	with classes, Dialogs, Entry, check buttons and Radio buttons, Scales, Menus.						
Tes	Testing: Why testing is required? Basic concepts of testing, Unit testing in Python,						
Wr	iting Test	cases, Running Tests.					
Tex	xtbooks:						
1.	Mark L	utz, Learning Python, Orielly Publications, 5 th edition, 2013.					
2.	Charles	Dierbach, Introduction to Computer Science using Pytho	n: A Computational				
	Problen	n-Solving Focus, Wiley India Edition, 2016.					
Ref	ference <b>E</b>	Books:					
1.	Vamsik	Lurama, Python Programming: A Modern Approach, Pearson	, 2017.				
2.	Allen D	owney, Think Python, Green Tea Press, 2012.					
3.	Kennetl	h Lambert and Juneja B.L., Fundamentals of Python Ce	ngage Learning, 3 rd				
	<b>Edition</b>	2012.					

### Ananthapuramu – 515 002, Andhra Pradesh, India

## R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (RELIABILITY ENGINEERING)

Course		STATISTICAL TECHNIQUES	L	Т	P	C
Code		IN BIG DATA ANALYTICS				<u> </u>
Semester	III	( <b>PEC</b> – <b>V</b> )	3	0	0	3
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
Course Obj						
	ne different ways of dat	ta analysis.				
	liar with data streams.					
	ne mining and clusterin	0				
	liar with the visualization					
	comes (CO): Student v					
		chniques using Data Analytic tools.				
	1	arning models for data analysis.				
		nalytics platform applications on strea	ams.			
		rithms on high dimensional data.				
		ality of various frameworks.				
	strate visualization tech	hniques.	T			
UNIT - I	<b>Basic Statistics</b>		1	ure H		
1 V		ares of location, measures of spread				
1 '	1 /	nd simple linear regression, partial co		· 1		•
		fitting probability distributions, en	npiric	al dis	tributi	ions
	odness of fit through pl		T			
UNIT - II	Introduction to Big			ure H		
	_	Challenges of conventional systems				
-	scalability, analytic pr	ocesses and tools, Modern data ana	lytic 1	tools,	Statis	tica
concepts.						
UNIT - III	Data Analysis			ure H		<u> </u>
		e analysis, Bayesian modeling, Inf				
		nel methods, Analysis of time seri				
-	•	titive learning, principal component	•		•	ogic
-		fuzzy decision trees, and Stochastic s				
UNIT - IV	Mining Data Stream			ure H		<u></u>
	-	Stream data model and architecture			-	-
		ering streams, counting distinct ele				
-		ness in a window, Decaying window		l-ume	Anar	ytics
		timent analysis, stock market predicti				
UNIT - V	0,	orks and Visualization		ure H		•
-	-	al, K- Means, Clustering high dimens				-
		IapReduce, Hadoop, Hive, MapR		_		-
	ss, nauoop Distribu	ted file systems, Visualizations,	v isual	i uata	i ana	19818
techniques.						
Textbooks:	tion David Freed	Dohom Dison ? P. Door Dr	7 <b>11</b> 7 NT	antar 0		1.1
		n, PobertPisani& Roger Purves, W	W.INC	ortenð	z C0.	4tř
	on 2007.	Hand Intelligent Date Analysis Sam	incor	2007		
		Hand, Intelligent Data Analysis, Spri				id-
3. Anan	lukajaraman and jeffre	ey David Ullman, Mining of Massive	Data	sets, C	aindr	lug

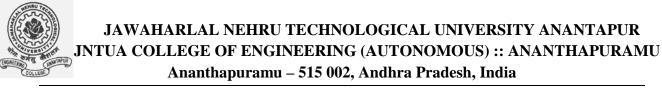
University Press, 2012.



# R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (RELIABILITY ENGINEERING)

#### **Reference Books:**

- 1. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with advanced analystics, John Wiley & sons, 2012.
- 2. Glenn J. Myatt, Making Sense of Data, John Wiley & Sons, 2007 Pete Warden, Big Data Glossary, O" Reilly, 2011.
- 3. Jiawei Han, MichelineKamber "Data Mining Concepts and Techniques", Second Edition, Elsevier, Reprinted 2008.


Course Code		STATISTIC	AL TECHNIQU	JES IN	L	Т	P	С	
Semester	III	MACHINE	LEARNING (PE	EC – V)	3	0	0	3	
<b>Course Objecti</b>	Course Objectives:								
Know desc	criptive statis	stics and data	visualizations to	o quickly	and	more	e de	eply	
understand	the shape and	l relationships in	data.						
• Use inferen	ntial statistica	al tests to quicl	kly and effective	ely quanti	fy the	e rela	tions	hips	
between san	mples, such a	s the results of e	xperiments with	different p	oredict	tive al	gorit	hms	
or differing	configuration	ns.							
• Use estimat	tion statistics	to quickly and e	effectively quanti	fy the con	fiden	ce in e	estim	ated	
model skill	and model pr	redictions.							
<b>Course Outcon</b>	nes (CO): Stu	dent will be able	e to						
CO 1: Use stati	istical method	ls in machine lea	rning.						
CO 2: Calculat	e and interpre	et common sum	mary statistics a	nd how to	o pres	ent da	ata u	sing	
standard	data visualiza	ation techniques	•						
CO 3: Evaluate	e and interpre	et the relationship	p between varia	bles and t	the in	depen	denc	e of	
variables	s.								
CO 4: Calculat	e and interpre	et parametric sta	atistical hypothes	sis tests fo	or con	nparin	g tw	o or	
more dat	ta samples.								
CO 5: Use stati	istical resamp	oling to make go	od economic use	e of availa	able d	ata in	orde	er to	
	predictive mo								
CO 6: Calculate	e and interpre	et nonparametric	statistical hypot	hesis test	s for c	compa	ring	two	
or more	data samples	that do not confe	orm to the expect	ations of p	oaram	etric to	ests.		



UNIT - I	Introduction	Lecture Hrs:
Introduction to S	Statistics, Statistics vs Machine Learning, Examples of	Statistics in Machine
Learning, Found	lation: Gaussian and Summary Stats, Simple Data Vi	isualization, Random
Numbers, Law o	of Large Numbers, Central Limit Theorem	
UNIT - II	Hypothesis Testing	Lecture Hrs:
• 1	othesis Testing, Statistical Distributions, Critical Val nificance Tests, Effect Size, Statistical Power	ues, Covariance and
UNIT - III	Resampling Methods	Lecture Hrs:
Introduction to F	Resampling, Estimation with Bootstrap, Estimation with	Cross-Validation,
UNIT - IV	Estimation Statistics	Lecture Hrs:
Introduction to	Estimation Statistics, Tolerance Intervals Confidence	Intervals, Prediction
Intervals		
UNIT - V	Nonparametric Methods	Lecture Hrs:
Rank Data, Nor	mality Tests, Make Data Normal, 5-Number Summar	y, Rank Correlation,
Rank Significan	ce Tests, Independence Test	
<b>Textbooks:</b>		
1. Jason Brow	nlee, "Statistical Methods for Machine Learning", 2019	).
2. GianlucaBo Edition, 202	ontempi, "Handbook Statistical foundations of mac 20.	hine learning", 2nd
<b>Reference Book</b>	IS:	
1. PratapDang	eti, "Statistical for Machine Learning", 2017.	
<b>Online Learnin</b>	g Resources:	
L		

### Ananthapuramu – 515 002, Andhra Pradesh, India

Course Code		WASTE TO ENERGY (OE)	L	Т	Р	С
Semester	III		3	0	0	3
			•	•		
<b>Course Objectives</b>	s: To	make the student				
• To understand	the co	oncept of waste to energy.				
• To analyze tec	hnica	l and management principles for production of	energy	y from	waste	e.
• To apply the b	est av	ailable technologies for waste to energy.				
• To develop the	ne pr	ocess for thermal conversion, bio-chemical	and v	vaste	to en	ergy
conversion.	-					
<b>Course Outcomes</b>	(CO)	Student will be able to				
CO 1: Understand	the c	oncept of waste to energy.				
		l and management principles for production of	energ	y from	n wast	e.
		vailable technologies for waste to energy.				
		ocess for thermal conversion, bio-chemical	and v	vaste	to en	ergy
conversion.	r		-			
UNIT – I		oduction to Energy from Waste		ire Hr		
		as fuel – Agro based – Forest residue – In	dustria	lwaste	- MS	SW-
Conversiondevices	-Incir	nerators – Gasifiers – Digestors.				
UNIT - II	Bior	nass Pyrolysis	Lectu	ire Hr	s: 9	
		Slow fast – Manufacture of charcoal –	Meth	ods -	- Yie	elds
		cture ofpyrolyticoilsand gases – Yieldsand app				
UNIT - III		nass Gasification		ire Hr	s: 10	
		ystem – Downdraft and updraft gasifiers – Flu				rs –
		nd operation – Gasifier burner arrangement				
		ment and electrical power – Equilibrium and				
in gasifieroperatio						
UNIT - IV	Bior	nass Combustion	Lectu	are Hr	s: 10	
		mproved challahs – Types, Some exoti				
		es - Inclined grate combustors - Fluidize				·s –
	iction	andoperation- Operation of all the above bioma				
UNIT - V	Intr	oduction to Biogas	Lectu	are Hr	s: 10	
Properties of biog	gas (C	Calorific value and composition) – Biogas	plant 1	techno	logy	and
		stem – Design and constructional features –				
		n – Biomassconversionprocesses– Thermo				
Directcombustion		•	olysisa	-		
Biochemicalconve		0 11 0				
_		biomass– Biodieselproduction– Urbanwaste	toener	gycon	vers10	n –
Biomassenergypro	ogram	imeinindia.				
Textbooks:	1T	namery Dessi Ashal- V Wilson (1.1.1 st D	J.4: -	1000		
		nergy,Desai,Ashok V.,WileyEasternLtd., 1 st E	uition,	1990.		
•		APracticalHandBook- dMahdi,S.S.,Vol.I&II,TataMcGrawHillPublish	ina	ſ	o.Ltd	1 st
Edition, 1983.	.C.all	מושיומותו, S.S., י סוגוענון, דמנמויוכסדמא הוווד UDIISE	ung	Ľ	J.LIU	.,1
Reference Books:						
MULTERCE DUURS.						



### R21 COURSE STRUCTURE &SYLLABUS FOR <u>M.TECH</u> COURSES <u>DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING</u> (<u>RELIABILITY ENGINEERING</u>)

- 1.Food,FeedandFuelfromBiomass,Challal,D.S.,IBHPublishingCo.Pvt.Ltd.,1stEdition,1991.
- 2. BiomassConversionandTechnology,C.Y.WereKo-BrobbyandE.B.Hagan,JohnWiley&Sons,1st Edition ,1996.

- 1. https://www.digimat.in/nptel/courses/video/103107125/L01.html
- 2. <u>https://nptel.ac.in/courses/103/107/103107125/</u>