TWO YEAR COURSE STRUCTURE

FOR

M.TECH – DIGITAL ELECTRONICS AND COMMUNICATION SYSTEMS (DECS) w.e.f.

2013-2014 ADMITTED BATCH

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COLLEGE OF ENGINEERING (AUTONOMOUS) :: PULIVENDULA JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR PULIVENDULA – 516390, Y.S.R. (DIST), ANDHRA PRADESH, INDIA

S.NO	Course code	Subject Name	Theory/Tutorial	Drawing/Lab	Credits
1.	13D38101	Structural Digital System Design	4		4
2.	13D38102	Advanced Computer Networks.	4		4
3.	13D38104	Digital Communication Techniques	4		4
4.		Elective-I			4
	13D38105	a. Advanced operating Systems	4		
	13D38103	b. Mobile Networks			
	13D38106	c. Transform Techniques			
5.		Elective-II			4
	13D38110	a. Nano Electronics	4		
	13D38111	b. Secured Communications			
	13D38107	c. Adaptive Signal Processing			
6.	13D38108	Structural Digital System Design Lab		3	2
7.	13D38109	Networking Lab		3	2
		Contact periods/week	20	6	
			Total/week	26	
Total Credits (5 Theory + 2 Labs)24					

M.Tech II Semester

S.NO	Course code	Subject Name	Theory/Tutorial	Drawing/Lab	Credits
1.	13D38201	Image & Video Processing	4		4
2.	13D38202	Detection and Estimation Theory	4		4
3.	13D38203	Wireless Communications	4		4
4.		Elective-III			
	13D38204	a. Embedded System Design	4		4
		b. Fuzzy Systems and Neural Networks	·		•
		c. Wireless Sensor Networks			
5.		Elective-IV			
	13D38207	a. Speech Processing	4		4
		b. Software Define Radio			
		c. Multimedia Communications			
6.	13D38210	Advanced Communications Lab		3	2
7.	13D38211	Image & Video Processing Lab		3	2
		Contact periods/week	20	6	
	Total/week		26		
	Total Credits (5 Theory + 2 Lab)		24		

M.Tech III & IV SEMESTERS

Name of the Subject	No. of credits
SEMINAR	
PROJECT REVIEW SEMINAR	
PROJECT WORK	

DECS I-I SEMESTER

STRUCTURAL DIGITAL SYSTEM DESIGN

Course Objectives:

- To study about structural functionality of different Digital blocks (Both combinational and Sequential)
- To provide an exposure to ASM charts, their notations and their realizations.
- To provide an exposure to VHDL and different styles of modelling using VHDL.
- To introduce concept of micro programming and study issues related to micro programming

Learning Outcomes:

After Completion of this course students will be able to

- Understand structural functionality of different digital blocks
- Represent and Realize their designs in ASM charts
- Represent their designs in different modelling styles by using VHDL
- Understand concept of Micro program and issues related to micro programming

UNIT-I

COMBINATIONAL CIRCUIT BUILDING BLOCKS: Multiplexers, Demultiplexers, Encoders, Decoders, Comparators, Adders, ALU, Carry lookAhed adder.

SEQUENTIAL CIRCUIT BUILDING BLOCKS: Flipflops, registers, Memory elements, Shift Registers, Sequence Generators, Timing Generators.

UNIT-II

MODELLING WITH HDL:

Introduction to VHDL/Verilog, Modelling Styles in VHDL/Verilog (Data Flow, Behavioral, Structural and Mixed style modelling using HDL).

SYSTEM DESIGN METHODOLOGY:

Finite State Machine, RTL Design, Realization and implementation of Dice Game, Micro Programming, Linked State machines, RTL Implementation Options.

UNIT-III

DESIGN OF COMBINATIONAL LOGIC:

BCD to 7-Segment Display decoder, BCD Adder, Arithmetic and Logic Unit (ALU), State graphs for control circuits, score board and controller, Synchronization and debouncing, A Shift and Add Multiplier, Array Multiplier, Booth Multiplier.

UNIT-IV

DESIGN OF SEQUENTIAL LOGIC:

Design Procedure for sequential circuits, Design Example- code Converter, Design of Iterative circuits, Design of sequential circuits using ROMs and PLAs, sequential circuit design using CPLD, FPGAs, Reduction of state and Flow Tables, Race-Free State Assignment Hazards. Design Examples: UART, Traffic Light Controller

UNIT-V

HARDWARE TESTING AND DESIGN FOR TESTABILITY: Testing combinational Logic, Testing sequential Logic, Scan Testing, Boundary Scan, Built in Self Test.

Text Books:

1. Charles H.Roth jr, Lizy Kurian John, "Digital System Design Using VHDL", CENGAGE Learning, 2013.

2. Ming-Bio Lin, "Digital System Design and Pratices using Verilog HDL and FPGAs", Willey India Edition, 2012.

References:

1. Charles H. Roth, Jr., "Fundamentals of Logic Design", 5th edition, CENGAGE Learning, 2012.

2. Z. Kohavi , "Switching & finite Automata Theory" ,TMH.

3. Michael D. Cilleti, "Advanced Digital Design with Verilog HDL", PHI, 2013.

4. William Fletcher, An Engineering Approach to Digital Design, 1st Edition, Prentice-Hall India, 1997.

5. William J Dally and John W Poulton, Digital Systems Engineering, Cambridge University Press, 2008.

DECS I-I SEMESTER

ADVANCED COMPUTER NETWORKS

Course Objectives:

- To study about different protocols related to advanced computer networks such as wireless Lans, Wimax and so on.
- To study about security features associated with different advanced computer networks.

Learning Outcomes:

After completion of this course students will be able to

- Know the functioning different protocols associated with modern computer network system
- Know the security features associated with modern computer network system.

UNIT-I

Review of data communication standards, topologies, OSI, TCP/IP models, Transmission media, circuit switched networks, packet switched networks, Point to Point Protocol (PPP), Asymmetric Digital Subscriber Line (ADSL)

UNIT-II

Fast Ethernet, Gigabit Ethernet, Wireless LANs, Bluetooth, WiMax, Virtual LANs,

UNIT-III

Advanced Network Architectures - SONET/SDH, Frame Relay and ATM architectures and services, VPN architectures, IP over ATM, MPLS, RSVP

UNIT-IV

IPv6 protocol, Socket interface, Domain Name System, Simple Mail Transfer Protocol, WWW and HTTP, Simple Network Management Protocol

UNIT-V

Voice Over IP, Cryptography, Network security, Digital Signatures, IPSec, Firewalls,

Text Books :

- 1. BEHROUZ A. FOROUZAN, "Data Communications and Networking", 4th Ed, Tata McGraw-Hill, New Delhi, 2006
- 2. LEON-GARCIA, INDRA WIDJAJA, "Communication Networks Fundamental concepts and Key architectures", TMH, 2000

- 1. Jim Kurose, Keith Ross, "Addison *Computer Networking: A Top Down Approach"*, 4th edition, Wesley, July 2007.
- 2. Andrew S. Tanenbaum "Computer Networks", 4th Edition, Pearson Education, 2008
- 3. William Stallings, "Data and Computer Communication", 9th edition, Prentice hall, 2010

DECS I-I SEMESTER DIGITAL COMMUNICATION TECHNIQUES

Course Objectives:

- To study about base band signal concepts and different equalizers.
- To study in detail about coherent detection schemes such as ASK, FSK, PSK
- To study in detail about M'ary signalling schemes like QPSK, QAM, MSK.

Learning Outcomes:

- Students will be aware of base band signal concepts and different equalizers.
- Students will be able to get complete knowledge regarding coherent detection schemes like ASK, FSK, PSK.
- Students will be able to design M'ary signalling schemes like QPSK, QAM, MSK

UNIT I

Review of Random Variables and Random Processes:

Random variable, Moment generating function, Markov's inequality, Chebyshev's inequality, Central limit theorem, Different distributions – Gaussian, Poisson, Chi square, Rayleigh, Rician; Correlation - Auto-correlation, Cross correlation, Correlation matrix; Stationary processes, Wide sense stationary processes, Gaussian & Ergodic processes, Problem solving.

UNIT II

Baseband Signal Concepts:

Baseband data transmission, Nyquist criterion for zero ISI, Correlative level coding, Data Detection, Optimum design of transmit and receive filters, Equalization - Linear, adaptive, fractionally spaced and decision feedback equalizers.

UNIT III

Digital Modulation Schemes:

Detection using matched filter – Optimum receivers for arbitrary binary signals and M'ary Orthogonal signals, Analysis of coherent detection schemes for ASK, PSK and DPSK, M'ary signalling schemes – QPSK, QAM, MSK, Performance of the data transmission schemes under AWGN. Trellis coded Modulation.

Synchronization:

Receiver synchronization, costas loop, symbol synchronization, synchronization with CPM – data aided and Non aided synchronization- synchronization methods based on properties of wide sense cyclo-stationary random process – Carrier recovery circuits – Symbol clock estimation schemes.

UNIT V

Spread Spectrum Systems:

PN sequences, Generation of PN sequences, DS spread spectrum systems, FH spread spectrum systems and performance of DSSS & FHSS in AWGN – Synchronization – Jamming considerations – Commercial Applications, Cellular subsystems.

Text Books:

1. J.G.Proakis, Digital Communication (4/e), McGraw-Hill, 2001 2. Bernard Sklar, "Digital Communications – Fundamentals & Applications," Prentice Hall, 2001.

Reference Books:

 S.Haykin, Communication Systems (4/e), Wiley,2001.
R.E.Zimer & R.L.Peterson : Introduction to Digital Communication, PHI, 2001.
G. R. Cooper & C. D. Mc Gillem, "Modern Communications & Spread Spectrum," McGraw Hill, 1986.
L.Hanzo etal, Turbo Coding, Turbo Equalization & Space-Time Coding Wiley,2002.

DECS I-I SEMESTER

ADVANCED OPERATING SYSTEMS (ELECTIVE I)

Course Objectives:

- To Study in detail about kernel structures associated with various Operating systems
- To Study in detail about various systems calls, statements and their arguments associated with Unix .
- To Study in detail about various systems calls, statements and their arguments associated with Linux .

Learning Outcomes:

After completion of the course students will be able to

- Get complete knowledge regarding different types of operating systems and their Kernel structures.
- To work effectively on Unix Platform
- To work effectively on Linux Platform

UNIT I INTRODUCTION

General Overview of the System : History – System structure – User perspective – Operating system services – Assumptions about hardware. Introduction to the Kernel : Architecture of the UNIX operating system – Introduction to system concepts. The Buffer Cache: Buffer headers – Structure of the buffer pool – Scenarios for retrieval of a buffer – Reading and writing disk blocks – Advantages and disadvantages of the buffer cache.

UNIT II

UNIX I: Overview of UNIX system, Structure, files systems, type of file, ordinary & Special files, file permissions, Introduction to shell.UNIX basic commands & command arguments, Standard input / output Input / output redirection, filters and editors, System calls related file structures, input / output process creation & termination.

UNIT III

INTERPROCESS COMMUNICATION IN UNIX: Introduction, file and record locking, Client – Server example, pipes, FIFOs, Streams & Messages, Name Speces, Systems V IPC, Message queues, Semaphores, Shared Memory, Sockets & TLI.

UNIT IV

INTRODUCTION TO NETWORKS AND NETWORK PROGRAMMING IN UNIX: Network Primer, TCP/IP, Internet Protocols, Socket Programming, Introduction & overview, UNIX domain protocols, Socket Addresses, Elementary Socket system calls, Simple examples. **LINUX:** Introduction to LINUX System, Editors and Utilities, Type of Shells, Shell Operations, File structure, File Management, Operations. Memory Management Policies: Swapping – Demand paging. The I/O Subsystem: Driver Interface – Disk Drivers – Terminal Drivers– Streams – Inter process communication.

TEXT BOOKS:

- 1. Maurice J.Bach, "The design of the UNIX Operating Systems", PHI
- 2. Kernighan & Pike, "The UNIX Programming Environment", PHI

REFERENCES:

- 1. W.Richard Stevens, "UNIX Network Programming", PHI, 1998.
- 2. Richard Peterson, "The Complete reference LINUX", TMH
- 3. Ritchie & Yates, "UNIX User Guide".

DECS I-I SEMESTER

MOBILE NETWORKS (ELECTIVE I)

Course Objectives:

- To study different wireless communication systems
- To study in detail about different multiples accessing schemes
- To study about different architectures in mobile networks such as wireless LAN, Hyper LAN and so on
- To study about dynamic routing and different routing protocols employed in mobile networks

Learning Outcomes:

After completion of the course the student will be able to

- Gain complete knowledge regarding different wireless communication systems.
- Gain complete knowledge regarding different multiples accessing schemes.
- Know the architectures of different mobile networks such as wireless LAN, Hyper LAN and so on
- Know about different routing mechanisms by employing different routing protocols.

UNIT-I

Wireless communication standards, Cellular communications, GSM protocol architecture, 3G mobile wireless systems, Beyond 3G

UNIT - II

Multiple Access Techniques - GDMA, TDMA, CDMA, Mobile Data Networks - CDPD, GPRS

UNIT-III

Wireless LAN architecture, physical & MAC layers, Wireless ATM architecture, HIPERLAN, Wireless Personal Area (WPAN) networks - Home RF, Bluetooth.

UNIT-IV

Mobility management in Wireless Networks, Handoff management, Location management, Mobile IP, TCP Wireless Application Protocol

R-13

Mobile Adhoc Networks, Dynamic routing, Route discovery, Routing protocols, Mobile Multimedia Adhoc Networks, MPLS

Text Books:

- 1. JW Mark, W Zhuang, "Wireless communications & Networking", PHI, 2005
- 2. Kaveh Pahlavan, Prashant Krishnamurthy, "Principles of Wireless Networks", PHI, 2010
- 3. George Aggelou, "Mobile Adhoc Networks", TMH, 2009.

References:

1. William Stallings, "Wireless Communications and Networks", Prentice Hall, 2004.

2. Siva Ram Murthy C. and Manoj B. S., "Ad Hoc Wireless Networks: Architectures and Protocols", 2nd Edn. Pearson Education 2005.

3. Toh C. K., "Ad Hoc Mobile Wireless Networks Protocols and Systems", Prentice Hall, PTR, 2001.

4. Yi-Bing and Imrich Chlamtac, "Wireless and Mobile Networks Architectures", John Wiley & Sons, 2001.

DECS I-I SEMESTER

TRANSFORM TECHNIQUES (ELECTIVE I)

Course Objectives:

- Study of different types of transforms which can be applicable for different types of signals.
- To study the application of wavelets for different types of signals.
- To study the applications of Multi rate systems and filter banks.

Learning Outcomes:

After completion of the course the student will be able to

- Use different 1-d and 2-d transforms for different signals.
- Apply wavelet transforms for different signals and will be able to appreciate its differences with other transformations.
- Use different advanced transforms such as DCT, DWT and KLT for different applications like signal de noisy, sub band coding of speech and music and signal compression.

UNIT I:

REVIEW OF TRANSFORMS: Signal spaces, concept of convergence, Hilbert spaces for energy signals, Orthogonality, Ortho normality, Fourier basis, FT-failure of FT-need for time-frequency analysis, spectrogram plot-phase space plot in time-frequency plane, Continuous FT, DTFT, Discrete Fourier Series and Transforms, Z-Transform.

ADVANCE TRANSFORMS

Relation between CFT-DTFT, DTFT-DFS, DFS-DFT, DCT (1D&2D), Walsh, Hadamard, Haar, Slant, KLT, Hilbert Transforms – definition, properties and applications.

UNIT II:

CWT & MRA: Time-frequency limitations, tiling of time-frequency plane for STFT, Heisenberg uncertainty principle, Short time Fourier Transform (STFT) analysis, short comings of STFT.

NEED FOR WAVELETS: Wavelet Basis- Concept of Scale and its relation with frequency, Continuous time wavelet Transform Equation- Series Expansion using Wavelets- CWT.

UNIT III:

NEED FOR SCALING FUNCTION: Multi resolution analysis, Tiling of time scale plane for CWT. Important Wavelets: Haar, Mexican Hat Meyer, Shannon, Daubechies.

SPECIAL TOPICS: Wavelet Packet Transform, Bi-orthogonal basis- B-splines, Lifting Scheme of Wavelet Generation-implementation.

12

UNIT IV:

MULTIRATE SYSTEMS, FILTER BANKS AND DWT: Basics of Decimation and Interpolation in time & frequency domains, Two-channel Filter bank, Perfect Reconstruction Condition, Relationship between Filter Banks and Wavelet basis, DWT Filter Banks for Daubechies Wavelet Function.

UNIT V:

APPLICATIONS OF TRANSFORMS: Signal De-noising, Sub-band Coding of Speech and Music, Signal Compression - Use of DCT, DWT, KLT.

TEXT BOOKS:

- 1. Jaideva C Goswami, Andrew K Chan, "Fundamentals of Wavelets- Theory, Algorithms and Applications", John Wiley & Sons, Inc, Singapore, 1999.
- 2. Raghuveer M.Rao and Ajit S. Bopardikar, "Wavelet Transforms-Introduction theory and applications" Pearson edu, Asia, New Delhi, 2003.
- 3. Soman.K.P, Ramachandran K.I, "Insight into Wavelets from Theory to practice", Printice Hall India, First Edition, 2004.

REFERENCES:

- 1. Vetterli M. Kovacevic, "Wavelets and sub-band coding", PJI, 1995.
- 2. C. Sydney Burrus, "Introduction to Wavelets and Wavelet Transforms", PHI, First Edition, 1997.
- 3. Stephen G. Mallat, "A Wavelet Tour of Signal Processing", Academic Press, Second Edition,
- 4. Jayaraman, "Digital Image Processing", TMH,2009
- 5. S.Jayaraman, S.Esakkirajan, T.Veera Kumar, "Digital Image Processing", TMH, 2009

DECS I-I SEMESTER

NANO ELECTRONICS (ELECTIVE II)

Course Objectives:

- To study about different quantum devices
- To study in detail about nano devices and nano architectures and their computations
- To study about Molecular nano Electronics

Learning Outcomes:

After completion of the course the student will be able to

- Gain complete knowledge regarding different Quantum Devices.
- Know about nano devices and nano architectures and their computations.
- Know about Molecular Nano Electronics

UNIT – I: Quantum Devices:

Charge and spin in single quantum dots- Coulomb blockade – Electrons in mesoscopic structures - single electron transfer devices (SETs) – Electron spin transistor – resonant tunnel diodes, tunnel FETs - quantum interference transistors (QUITs) - quantum dot cellular automata (QCAs) - quantum bits (qubits).

UNIT – II: Nano Electronic Devices:

Electronic transport in 1,2 and 3 dimensions- Quantum confinement - energy subbands - Effective mass - Drude conduction - mean free path in 3D - ballistic conduction - phase coherence length - quantized conductance - Buttiker-Landauer formula- electron transport in pn junctions - short channel NanoTransistor –MOSFETs - Advanced MOSFETs - Trigate FETs, FinFETs - CMOS.

UNIT – III: Molecular NanoElectronics:

Electronic and optoelectronic properties of molecular materials - Electrodes & contacts – functions – molecular electronic devices - elementary circuits using organic molecules- Organic materials based rectifying diode switches – TFTs- OLEDs- OTFTs – logic switches.

UNIT – IV: Spintronics:

Spin tunneling devices - Magnetic tunnel junctions- Tunneling spin polarization - Giant tunneling using MgO tunnel barriers - Tunnel-based spin injectors - Spin injection and spin transport in hybrid nanostructures - spin filters -spin diodes - Magnetic tunnel transistor - Memory devices and sensors - ferroelectric random access memory- MRAMS -Field Sensors - Multiferro electric sensors- Spintronic Biosensors.

UNIT – V: NanoElectronic Architectures & Computations:

Architecture Principles: Mono and Multi processor systems – Parallel data processing – Power Dissipation and Parallelism – Classic systolic arrays - Molecular devices-properties - Self-organization – Size dependent -limitations. Computation: Monte Carlo Simulations-Computational methods and Simulations from ab initio to multiscale Modeling- Modeling of Nanodevices.

Text Books:

1. V. Mitin, V. Kochelap, M. Stroscio, "Introduction to Nanoelectronics," Cambridge University Press, 2008.

2. Rainer Waser, "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices," Wiley-VCH, 2003.

References:

1. Karl Goser, Peter Glosekotter, Jan Dienstuhl, "Nanoelectronics and Nanosystems," Springer, 2004.

2. Sadamichi Maekawa, "Concepts in Spin Electronics," Oxford University Press, 2006.

3. L. Banyai and S.W.Koch, "Semiconductor Quantum Dots," World Scientific, 1993.

4. Edward L. Wolf, "Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience," Wiley-VCH, 2006.

DECS I-I SEMESTER

SECURED COMMUNICATIONS (ELECTIVE II)

Course Objectives:

- To study security and different types of attacks.
- To study about different techniques associated with encryption.
- To study about different algorithms associated with security.
- To study about IP security architecture and designing issues related to fire walls.

Learning Outcomes:

After completion of this course students will be able to know

- The need and role of security.
- Gain knowledge about different techniques associated with encryption.
- Functioning of different algorithms associated with security.
- Gain knowledge regarding IP security architecture and designing issues related to fire walls.

UNIT-I

Information security, Types of attacks, Info security services - Confidentiality, Integrity, Availability, security process - assessment, Implement security, training

UNIT - II

Security technologies - Firewalls, VPNs ; Encryption - Private Key Encryption, Public key encryption, Key management; Concepts of intrusion detection.

UNIT-III

Message authentications and Hash functions, Digital signatures, e-mail security, IP security architecture, Web security

UNIT-IV

Authentication and authorization in WLANs -802.1X authentication, RADIUS protocol; Extensible Authentication protocol, Transport Layer Security and certificates

UNIT - V

Data protection in WLANs - WEP, 802.11i security, RSNA, CCMP, TKIP, wireless roaming security, WMAN security.

Text Books:

1. Eric Maiwald, "Fundamental of Network Security", Dreamtech press Osborne MGH, 2004

- 2. W. Stallings, "Cryptography & Network Security", 3/e, PHI 2003
- 3. Thomas Hardjono, RD Lakshminath, "Security in Wireless LAN & MAN", Artech House, 2005

References:

1. Roger J. Sutton, "Secure Communications: Applications and Management", WILEY, 2002.

2. Don J. Torrieri, "Principles of secure communication systems", 2nd Eedition, ArtechHouse Publishers, 1992.

3. Cryptography and secure Communications by M.Y. Rhee, Mc Graw Hill

DECS I-I SEMESTER

ADAPTIVE SIGNAL PROCESSING (ELECTIVE II)

Course Objectives:

- To study in detail about adaptive Systems.
- To study about various Linear optimum filtering techniques.
- To study about various techniques related Linear and Non Linear adaptive filtering.

Learning outcomes:

After the course students is expected to be able to:

- Get complete knowledge regarding adaptive systems
- Design various Linear optimum filters by employing different techniques associated with them
- Understand various techniques related to with Linear and Non linear adaptive filtering and their design considerations

Unit I:

Introduction to Adaptive Systems: *Eigen Analysis* - Eigen Value problem, Properties of eigen values and eigen vectors, Eigen filters, Eigen value computations, *Adaptive Systems* - Definitions, Characteristics, Applications and Examples of Adaptive systems, The adaptive linear combiner – Description, weight vectors, Desired response performance function, Gradient and Mean square error(MSE).

Unit II:

Linear Optimum Filtering: *Wiener Filters* – Linear optimum filtering, Principle of Orthogonality, Wiener-Hopf equations, Error performance surface, Channel Equalization, Linearly constrained minimum variance filter, *Linear Prediction* – Forward and Backward linear prediction, Levinson-Durbin Algorithm, Properties of prediction error filters, AR modeling of stationary stochastic process, Lattice predictors, Joint process estimation, *Kalman Filters* – Recursive mean square estimation for scalar random variables, Kalman filtering problem, The innovations process, Estimation of the state using innovations process, Filtering, Initial conditions, Variants of the Kalman filter, Extended Kalman filter, Problem Solving.

Unit III:

Linear Adaptive Filtering-I: Method of Steepest descent algorithm and its stability, *Least Means Square (LMS) algorithm* – Structure & operation of LMS algorithm, Examples, Stability & performance analysis of the LMS algorithm, Simulations of Adaptive equalization using LMS algorithm, Convergence aspects, *Method of Least Squares (LS)* – Statement, Data windowing, Minimum sum of error squares, Normal equations and linear least squares filters, Properties.

Unit IV

Linear Adaptive Filtering-II *Recursive Least Squares (RLS) Algorithm* – Matrix inversion lemma, The exponentially weighted RLS algorithm, Update recursion for the sum of weighted error squares, Example, Convergence Analysis, Simulation of adaptive equalization using RLS algorithm, *Order Recursive Adaptive Filters* – Adaptive forward and backward linear prediction, Least squares Lattice predictor, QR-Decomposition based Least squares Lattice filters & their properties, Simulation of Adaptive equalization using Lattice Filter.

Unit V:

Non linear Adaptive Filtering: *Blind deconvolution* – Theoretical and practical considerations, Bussgang algorithm for blind equalization for real base band channels, Special cases of Bussgang algorithm, Simulation studies of Bussgang algorithms, Problem solving.

Text Books:

- 1. Simon Haykin, "Adaptive Filter Theory," Prentice Hall, 4th Edition, 2002.
- 2. Bernard Widrow, Samuel D. Strearns, "Adaptive Signal Processing," Prentice Hall, 2005.

- 1. Paulo S.R. Diniz, Adaptive Filtering Algorithms and Practical Implementation, Third Edition, Springer, Kluwer Academic Publishers.
- 2. Alexander D Poularikas, Zayed M Ramadan, Adaptive Filtering Primer with MATLAB, CRC Press Taylor & Francis Group, 2008 Indian Edition.
- 3. Ali H. Sayed, Adaptive filters, IEEE Press, Wiley-Interscience, A john Wiley & Sons, INC., Publication.
- S. Thomas Alexander, "Adaptive Signal Processing-Theory & Applications," Springer Verlag, 1986

DECS I-I SEMESTER

STRUCTURAL DIGITAL SYSTEM DESIGN LAB

Objectives:

- To understand about VHDL and Verilog Programming in all available styles.
- To understand differences between Verilog and VHDL.
- To represent the different digital blocks in verilog and VHDL in all available styles of modelling

Learning Out Comes:

After completion of this course the students will be able to understand

- Different modelling styles available in VHDL and Verilog and difference between them
- Difference between verilog and VHDL
- Representation of different digital modules in different modelling styles available in VHDL and Verilog

Using VHDL and Verilog do the following experiments

- 1. Design of 4-bit adder / subtractor
- 2. Design of Booth Multiplier
- 3. Design of 4-bit ALU
- 4. Design 32-bit ALU using ripple carry and carry look-ahead logic
- 5. Design of counters and shift registers
- 6. Design of MIPS processor
- 7. Design of Washing machine controller
- 8. Design of Traffic Light Controller
- 9. Mini project

DECS I-II SEMESTER

IMAGE AND VIDEO PROCESSING (13D38201)

Course Objectives:

- To understand different transforms related to gray scale and color images.
- To get complete knowledge regarding different techniques associated with Image Enhancement, Image Restoration, Image Segmentation and Image Compression.
- To get clear knowledge regarding motion estimation, video filtering and video standards

Learning Outcomes:

After completion of this course the students will be able to

- Different transforms related to gray scale and color images.
- Complete knowledge regarding different techniques associated with Image Enhancement, Image Restoration, Image Segmentation and Image Compression.
- Understand basic concepts regarding to motion estimation, video filtering and video standards.

UNIT I

IMAGE FUNDAMENTALS & TRANSFORMS: Gray scale and colour Images, image sampling and quantization. Two dimensional orthogonal transforms: DFT, WHT, Haar transform, KLT, DCT.

UNIT II

IMAGE ENHANCEMENT: Filters in spatial and frequency domains, histogram-based processing, homomorphic filtering. Edge detection, non parametric and model based approaches, LOG filters, localization problem.

IMAGE RESTORATION: Degradation Models, PSF, circulant and block - circulant matrices, deconvolution, restoration using inverse filtering, Wiener filtering and maximum entropy-based methods.

UNIT III

IMAGE SEGMENTATION: Pixel classification, Bi-level Thresholding, Multi-level Thresholding, P-tile method, Adaptive Thresholding, Spectral & spatial classification, Edge detection, Hough transform, Region growing.

UNIT IV

IMAGE COMPRESSION: Compression models, Information theoretic perspective, Fundamental coding theorem. Huffman Coding, Arithmetic coding, Bit plane coding, Run length coding, Lossy compression: Transform coding, Image compression standards.

UNIT V

VIDEO PROCESSING: Representation of Digital Video, Spatio-temporal sampling, Motion Estimation. Video Filtering, Video Compression, Video coding standards.

- 1. R. C. Gonzalez, R. E. Woods,"Digital Image Processing", Pearson Education. 2nd edition,2002
- 2. W. K. Pratt, "Digital image processing", Prentice Hall, 1989
- 3. Rosenfold and A. C. Kak, "Digital image processing", Vols. 1 and 2, Prentice Hall, 1986.
- 4. H. C. Andrew and B. R. Hunt, "Digital image restoration", Prentice Hall, 1977
- 5. R. Jain, R. Kasturi and B.G. Schunck, "Machine Vision", McGraw-Hill International Edition, 1995
- 6. M. Tekalp, "Digital Video Processing", Prentice-Hall, 1995
- 7. Bovik, "Handbook of Image & Video Processing", Academic Press, 2000

DECS I-IISEMESTER DETECTION AND ESTIMATION THEORY (13D38202)

Course Objectives:

- 1. To provide knowledge about various estimation, and detection techniques.
- 2. To analyze different methods & to detect and estimate the signal from noisy signal.
- 3. Estimate and detect the signals in the presence of noise.

Learning Outcomes:

- 1. The students will be able to apply various methods of signal estimation knowing the significance of each method.
- 2. The students will be able to know Cramer-Rao Lower bound in estimating a signal.
- 3. By applying suitable criterion the students will be able to detect the signals with minimum errors in the presence of noise.

UNIT - I

Introduction to Estimation and Detection:

Introduction, Detection and Estimation in Signal Processing, the Mathematical Detection& Estimation problem, Assessing Estimator Performance, Hierarchy of detection problems, Role of asymptotics.

Estimation

UNIT - II

Minimum Variance Unbiased Estimation:

Unbiased Estimators, Minimum Variance Criterion, Existence of the minimum Variance Unbiased Estimator, Finding the Minimum Variance Unbiased Estimator,

Cramer-Rao Lower Bound - Estimator of Accuracy Considerations, Cramer-Rao Lower Bound (CRLB), General CRLB for Signals in White Gaussian Noise, Transformation of Parameters, Extension to a Vector Parameter, Vector Parameter CRLB for Transformations, CRLB for the general Gaussian case,

Linear Models -Definition and Properties, Linear Model Examples, Extension to the Linear Model,

General Minimum Variance Unbiased Estimation: Introduction, Sufficient Statistics, Finding Sufficient Statistics.

UNIT - III

Best Linear Unbiased Estimators:

Definition of BLUE, Finding the BLUE, Extension to Vector Parameter,

Estimation Methods - Maximum Likelihood Estimation (MLE), Finding MLE, Properties of MLE, MLE for Transformed Parameters, Numerical Determination of the MLE, Extension to a Vector Parameter, The Least Squares Approach, Linear Least Squares, Method of Moments, Extension to a Vector Parameter, Statistical Evaluation of Estimators.

The Basian Philosophy - Prior Knowledge and Estimation, Choosing a Prior PDF, Properties of Gaussian PDF, Basian Linear Model, Minimum Mean Square Error (MMSE) Estimators, Maximum A Posteriori Estimators, Performance Description, Linear Basian Estimators – Introduction, Linear MMSE Estimation, Geometrical Interpretations, The Vector LMMSE Estimator.

Detection

UNIT - IV

Statistical Decision Theory I:

Introduction, Neyman-Pearson Theorem, Receiver Operating Characteristics, Minimum Probability of Error, Bayes Risk, Multiple Hypothesis Testing,

Deterministic Signals - Matched Filters, Development of Detector, Performance of Matched Filter, Performance of Generalized Matched Filters, Multiple Signals – Binary Case and its performance, M-ary Case, Linear Model, **Random Signals**– EstimatorCorrelator, Linear Model.

UNIT - V

Statistical Decision Theory II:

Introduction, Summary of Composite Hypothesis, Composite Hypothesis Testing (CHT),

CHT approaches – Bayesian Approach, Generalized Likelihood Approach, Performance of GLRT for Large Data Records, Equivalent Large Data Records Tests.

- 1. Steven M. Kay, "Fundamentals of Statistical Signal Processing Estimation Theory," Pearson, 2010.
- 2. Steven M. Kay, "Fundamentals of Statistical Signal Processing Detection Theory," Pearson, 2010.
- 3. Shanmugam and Breipohl, "*Detection of Signals in Noise and Estimation*,"John Wiley& Sons, 2004.
- 4. Mischa Schwartz, L.Shaw, "Signal Processing: Discrete Sprectral Analysis, Detection, and Estimation," McGraw Hill.

DECS I-IISEMESTER WIRELESS COMMUNICATIONS (13D38203)

Course Objectives:

- To understand basics of Wireless Communications and its evolution process.
- To learn about the mechanism of radio mobile propagation and its effects.
- To understand various types of diversity and equalization techniques to counter balance the effects of Wireless Channel.
- To Study about importance of Wireless Networking and multiple access techniques in the present day mobile communications
- To design and analyze mobile systems using OFDM technology for mitigating the ISI effects at higher data rates.

Learning Outcomes:

After completion of this course the students will be able to

- Understand basics of Wireless Communications and its evolution process.
- Know about the mechanism of radio mobile propagation and its effects.
- Apply various types of diversity and equalization techniques to counter balance the effects of Wireless Channel.
- Recognize the importance of Wireless Networking and multiple access techniques in the present day mobile communications
- Analyze and design mobile systems using OFDM technology for mitigating the ISI effects at higher data rates.

UNIT – 1

INTRODUCTION TO WIRELESS COMMUNICATION SYSTEMS& CELLULAR CONCEPT:

Evolution of Mobile Radio Communication Systems, Examples of Wireless Communication Systems, 1G, 2G, 2.5G, and 3G Wireless Cellular Networks and Standards, Frequency Reuse Concept, Channel Assignment Strategies, Interference and System Capacity, Trunking and Grade of Service, Improving Coverage and Capacity in Cellular Systems, Problem Solving.

UNIT - 2

MOBILE RADIO PROPAGATION:

Large Scale Path Loss: Introduction, Free Space Propagation Model, *Propagation Mechanisms* – Reflection, Diffraction, and Scattering, Practical Budget Design using Path Loss Models, Outdoor Propagation Models, Indoor Propagation Models.

Small Scale Fading and Multipath: Small Scale Multipath Propagation, Impulse Response Model of a Multipath Channel, Small Scale Multipath Measurements, Parameters of Mobile Channels, Types of Small Scale Fading (all variations), *Statistical Models* – Clarke's Model for Flat Fading, Jake's Model, Level Crossing Rate, Simulation of Clarke's/Jake's Model, Two Ray Rayleigh Fading Model, Problem Solving.

EQUALIZATION & DIVERSITY TECHNIQUES:

Equalization: Survey of Equalization Techniques, Linear and Non-linear Equalizers – Linear Transversal Equalizer, Decision Feedback Equalizer (DFE), Algorithms for Adaptive Equalization – Zero Forcing, LMS, RLS, Fractionally Spaced Equalizers.

Diversity Techniques: Realization of Independent Fading Paths, *Receiver Diversity* – System Model, Selection Combining, Threshold Combining, Maximal Ratio Combining, Rake receiver, Equal Gain Combining, *Transmit Diversity*–Channel known at Transmitter, Channel unknown at Transmitter – the Alamouti Scheme, analysis.

UNIT - 4

MULTIPLE ACCESS TECHNIQUES & NETWORKING:

Introduction to Multiple Access: FDMA, TDMA, CDMA, SDMA, Packet Radio, Capacity of Cellular Systems, Problem Solving.

Introduction to Wireless Networking: Introduction to Wireless Networks, Differences between Wireless and Fixed Telephone Networks, Development of Wireless Networks, Traffic Routing in Wireless Networks, Wireless Data Services, Common Channel Signaling.

UNIT - 5

MULTICARRIER MODULATION:

Data Transmission using Multiple Carriers, Multicarrier Modulation with Overlapping Subchannels, Discrete Implementation of Multicarrier Modulation, The Cyclic Prefix, Orthogonal Frequency Division Multiplexing (OFDM), Matrix Representation of OFDM, Vector Coding, Challenges in Multicarrier Systems, Problem Solving.

References:

- 1. T. S. Rappaport, "Wireless Communications, Principles and Practice," Prentice Hall, 2nd Edition, 2002.
- 2. Andrea Goldsmith, "Wireless Communications," Cambridge University Press, 2005.
- 3. David Tse, PramodViswanath, "Fundamentals of Wireless Communications," Cambridge University Press, 2006.
- 4. Dr. KamiloFeher, "Wireless Digital Communications," Prentice Hall, 1995.

R-13

DECS I-IISEMESTER

EMBEDDED SYSTEM DESIGN (13D38204A) (ELECTIVE - III)

Course Objectives:

- To study about current technologies, integration methods and hardware and software design concepts associated with processor in Embedded Systems.
- To study about different types of memory and memory management schemes and various interfacing devices related to design of an Embedded System
- To get detail knowledge regarding testing and hardware software co- design issues pertaining to design of an Embedded System

Learning Outcomes:

After completion of this course the students will be able to understand

- Gets clear knowledge regarding current technologies and issues relating to hardware and software design concepts associated with processor in Embedded Systems.
- Get complete knowledge pertaining to different types of memory and memory management schemes and various interfacing devices related to design of an Embedded System.
- Different techniques related to testing and hardware software co- design issues pertaining to design of an Embedded System.

UNIT-I: Introduction

An Embedded System-Definition, Examples, Current Technologies, Integration in system Design, Embedded system design flow, hardware design concepts, software development, processor in an embedded system and other hardware units, introduction to processor based embedded system design concepts.

UNIT-II: Embedded Hardware

Embedded hardware building blocks, Embedded Processors – ISA architecture models, Internal processor design, processor performance, Board Memory – ROM, RAM, Auxiliary Memory, Memory Management of External Memory, Board Memory and performance.

Embedded board Input / output – Serial versus Parallel I/O, interfacing the I/O components, I/O components and performance, Board buses – Bus arbitration and timing, Integrating the Bus with other board components, Bus performance.

UNIT-III: Embedded Software

Device drivers, Device Drivers for interrupt-Handling, Memory device drivers, On-board bus device drivers, Board I/O drivers, Explanation about above drivers with suitable examples.

Embedded operating systems – Multitasking and process Management, Memory Management, I/O and file system management, OS standards example – POSIX, OS performance guidelines, Board support packages, Middleware and Application Software – Middle ware, Middleware examples, Application layer software examples.

UNIT-IV: Embedded System Design, Development, Implementation and Testing

Embedded system design and development lifecycle model, creating an embedded system architecture, introduction to embedded software development process and tools- Host and Target machines, linking and locating software, Getting embedded software into the target system, issues in Hardware-Software design and co-design.

Implementing the design-The main software utility tool, CAD and the hardware, Translation tools, Debugging tools, testing on host machine, simulators, Laboratory tools, System Boot-Up.

UNIT-V: Embedded System Design-Case Studies

Case studies- Processor design approach of an embedded system –Power PC Processor based and Micro Blaze Processor based Embedded system design on Xilinx platform-NiosII Processor based Embedded system design on Altera platform-Respective Processor architectures should be taken into consideration while designing an Embedded System.

- 1. Tammy Noergaard, "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier (Singapore) Pvt.Ltd.Publications, 2005.
- 2. Frank Vahid, Tony D. Givargis, "Embedded system Design: A Unified Hardware/Software Introduction", John Wily & Sons Inc.2002.
- 3. Peter Marwedel, "Embedded System Design", Science Publishers, 2007.
- 4. Arnold S Burger, "Embedded System Design", CMP.
- 5. Rajkamal, "Embedded Systems: Architecture, Programming and Design", TMH Publications, Second Edition, 2008.

DECS I-IISEMESTER

FUZZY SYSTEMS AND NEURAL NETWORKS (13D38204B) (ELECTIVE - III)

Course Objectives:

- To analyze basic neural computational models.
- To get in detail knowledge regarding different algorithms related to neural learning
- To study about different issues related probability and fuzziness and different types of fuzzy associative memories.

Learning Outcomes:

After completion of this course the students will be able to

- Understand functioning of basic neural computational models.
- Get complete knowledge regarding different algorithms related to neural learning
- Understand about different issues related probability and fuzziness and different types of fuzzy associative memories.

UNIT-I

BASIC NEURAL COMPUTATIONAL MODELS: Basic concepts of Neural Nets, Inference and learning, Classification models (single layer Perceptrons, multi layer perceptrons), Association models (Hop field Nets, Bidirectional associative memories)

UNIT - II

Supervised and Unsupervised learning; Statistical learning; Neural Network learning (Back propagation, Radial basis Function Networks, ART Networks)

UNIT - III

Rule-Based Neural networks; Network Training; Decision Tree Based NN's; INCREMENTAL LEARNING: Principles; Symbolic methods; Neural Network Approaches (Probabilistic NN's); Incremental RBCN.

UNIT-IV

FUZZINESS VS PROBABILITY: Fuzzy Sets & Systems; The Geometry of Fuzzy sets; The Fuzzy Entropy Theorem; The Subsethood Theorem; The Entropy Subsethood Theorem.

R-13

UNIT - V

FUZZY ASSOCIATIVE MEMORIES: Fuzzy & Neural Function Estimators; Fuzzy Hebbian FAMs; Adaptive FAMs.

COMPARISON OF FUZZY & NEURAL SYSTEMS: Case Studies.

- 1. Limin Fu, Neural, "Networks in Computer Intelligence", McGraw Hill Co., 1994.
- 2. B.Kosko, "Neural Networks & Fuzzy Systems", Prentice Hall (India) Ltd., 1992.
- 3. S.Haykin "Neural Networks A Comprehensive Foundation", Maxwell Macmillan International, 1991.

DECS I-IISEMESTER WIRELESS SENSOR NETWORKS (13D38204C) (ELECTIVE - III)

Course Objectives:

- To study about different types of sensor networks, advantages, applications and the mechanism of transportation and processing involved in Wireless Sensor Networks.
- To study about representation and different protocols and mechanisms involved in routing of Wireless Sensor Networks.
- To study about tools and simulators associated with Wireless Sensor Networks.

Learning Outcomes:

After completion of this course the students will be able to

- Understand different types of sensor networks, advantages, applications and the mechanism of transportation and processing involved in Wireless Sensor Networks.
- Understand about representation and different protocols and mechanisms involved in routing of Wireless Sensor Networks.
- Gets complete knowledge regarding different tools and simulators associated with Wireless Sensor Networks.

UNIT-I

Sensor networks, advantages and applications, Sensor Network Applications - Habitat Monitoring, Smart Transportation, Collaborative Processing

UNIT - II

Localization and tracking,- sensing model, Distributed Representation, Tracking Multiple Objects networking sensors- Medium Access Control, *Energy-Aware Routing to a Region*, Attribute-Based Routing

UNIT-III

Infrastructure Establishment -Clustering and time synchronizations, Localization and localization services, Sensor tracking and control - Task-Driven Sensing, Information-Based Sensor Tasking, Sensor Group Management

UNIT-IV

Sensor Network data bases - Sensor Database Challenges , Query Interfaces , Data-Centric Storage, Multidimensional Indices for Orthogonal Range Searching, Locality-Preserving Hashing

UNIT - V

Sensor Network Platforms and Tools -Sensor Network hardware, Node level software, Node-Level Simulators, wireless sensor networks positioning and location management.

- 1. F. Zhao, C Guibas, "Wireless Sensor Networks", Elsevier, Morgan Kaufmann, 2004.
- 2. Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks -Technology, Protocols and Applications", John Wiley & Sons, 2007.

DECS I-IISEMESTER

SPEECH PROCESSING (13D38204D) (ELECTIVE - IV)

Course Objectives:

- To understand how speech signals are processed for Analysis and Synthesis. Also to understand speech processing in the context of its creation (anatomy, classfication of sounds, etc.) as well as in its perception (psychology & neuroscience).
- To analyze tools that are needed for analysis and synthesis, in the areas of digital signal processing for time-frequency analysis.

Learning Outcomes:

• After completing the course, the student will be familiar with the principles and the techniques used in speech processing. This includes speech synthesis, speech coding and speech recognition.

UNIT I

FUNDAMENTALS OF DIGITAL SPEECH PROCESSING: Anatomy & Physiology of Speech organs, the process of speech production, the acoustic theory of speech production, Digital models for speech signals.

TIME DOMAIN MODELS FOR SPEECH PROCESSING: Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate ,Speech vs silence discrimination using Average energy and zero crossing, Pitch period estimation using parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT II

LINEAR PREDICTIVE CODING (LPC) ANALYSIS: Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition, Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT III

HOMOMORPHIC SPEECH PROCESSING: Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, the Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The Homomorphic Vocoder.

SPEECH ENHANCEMENT: Nature of interfering sounds, Speech enhancement techniques, Spectral subtraction, Enhancement by re-synthesis.

UNIT IV

AUTOMATIC SPEECH RECOGNITION: Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System,. Continuous digit Recognition System

SPEAKER RECOGNITION: Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

UNIT V

HIDDEN MARKOV MODEL (HMM) FOR SPEECH: Hidden markov model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS, Adapting to variability in speech, Language models.

- 1. L.R Rabiner and S.W.Schafer, "Digital processing of speech signals", Pearson.
- 2. Douglas O Shaughnessy, "Speech communication", Second Edition Oxford University press, 2000.
- 3. L.R Rabinar and B.H.Juang, "Fundamentals of Speech Recognition"
- 4. Thomas F. Quateri, "Discrete Time Speech Signal Processing", 1/e, Pearson
- 5. Ben Gold & Nelson Morgan, "Speech & Audio Signal Processing", 1/e, Wiley

DECS I-IISEMESTER

SOFTWARE DEFINED RADIO (13D38204E) (ELECTIVE - IV)

Course Objectives:

- To study about requirements, benefits and different models for Software Defined Radio
- To study in detail about Soft ware Defined Radio Architectures for performance optimization
- To get complete knowledge regarding functioning of different blocks and techniques associated with Software Defined Radio.

Learning Outcomes:

After completion of this course the students will be able to

- Analyze requirements, benefits and different models for Software Defined Radio.
- Understand in detail about Soft ware Defined Radio Architectures for performance optimization.
- Gets complete knowledge regarding functioning of different blocks and techniques associated with Software Defined Radio.

UNIT-I

Requirement for Software defined radio, Benefits of multi-standard terminals, Operational requirements, models for SDR, Smart antenna systems,

UNIT – II

Software defined radio architectures, Hardware specifications, Digital aspects of Software defined radio, Current technology limitations, minimum power consumption, ADC performance trends

UNIT-III

Flexible RF receiver architectures, Digital receiver, Single carrier and multi-carrier designs, undersampling, oversampling, Noise figure, Receiver sensitivity, ADC spurious signals

UNIT-IV

Multiband Flexible receiver design, RF Transmit / receive switch, Image rejection mixing, Dynamic range enhancement, Feed forward techniques, cascaded non-linearity techniques

R-13

UNIT - V

Flexible transmitters,, Power amplifiers, Analog quadrature upconvertion, Interpolated bandpass upconversion, PLL based modulator transmitter, All-pass filtering, Polyphase filtering

- 1. P Kenington, "RF and Baseband Techniques for Software Defined Radio", Artec House, 2005
- 2. Jouko Vanakka, "Digital Synthesizers And Transmitter For Software Radio", Springer, 2005
- 3. Wally H. W. Tuttlebee, "Software Defined Radio: Baseband Technologies for 3G Handsets and Base stations", John Wiley & sons , 2003
JNTUA COLLEGE OF ENGINEERING (Autonomous) PULIVENDULA

DECS I-IISEMESTER

MULTIMEDIA COMMUNICATIONS (13D38204F) (ELECTIVE - IV)

Course Objectives:

- To study basic requirements of Multimedia Communications.
- To study about different coding schemes involved in Multimedia Communications.
- To study about different standards and protocols related Multimedia Communications and its networks.

Learning Outcomes:

After completion of this course the students will be able to

- Gets knowledge regarding fundamentals of Multimedia Communications
- Understand about different coding schemes involved in Multimedia Communications.
- Gets complete knowledge regarding different standards and protocols related Multimedia Communications and its networks.

UNIT-I

Multimedia communications - multimedia requirements, Audio Visual integration - Lip synchronization, Audio-to-visual mapping, Bio-model person verification, Joint Audio-Video coding

UNIT - II

Multimedia information processing, Perceptual coding of digital audio signals - hybrid coder - differential perceptual audio coder, Image coding, Video coding, Water marking

UNIT-III

ANNS for multimedia processing - NN techniques for motion estimation, face detection and recognition, Distributed multimedia systems, IP based networks, Multimedia Operating Systems.

UNIT-IV

Multimedia Communication Standards - overview of MPEG 1 ,MPEG-2, MPEG-4 and MPEG-

7., Real time multimedia transmission across the Internet

UNIT - V

Multimedia Communication across networks - packet audio / video , Streaming video across

internet, Multimedia transport across IP/ATM Networks and Wireless networks

References:

- 1. KR RAO et al, "Multimedia Communication Systems: Techniques and Standards", Pearson, 2002.
- 2. Tay Vaughan, "Multimedia- Making it Work", TMH, 5th Edn, 2001
- 3. PK ANDLEIGH, K. THAKKAR, "Multimedia Systems Design", PHI,2002

JNTUA COLLEGE OF ENGINEERING (Autonomous) PULIVENDULA

DECS I-IISEMESTER

ADVANCED COMMUNICATIONS LAB

Course Objectives:

- To generate random data at given rates and employ different modulation schemes over generated data.
- To simulate different modulated signals and diversity schemes over AWGN, and estimate data reception using different algorithms.
- To implement RAKE receiver and estimate its performance through BER curve.

Learning Outcomes:

After completion of this course the students will be able to

- Generate random data at given rates and employ different modulation schemes over generated data.
- Simulate different modulated signals and diversity schemes over AWGN, and estimate data reception using different algorithms.
- Implement RAKE receiver and estimate its performance through BER curve.

List of Experiments:

Generation of Random data at a given data rate (Hardware & Software) – (M-Sequence).

- 1. Simulation of Rayleigh fading channel incorporating speed of the mobile & Power delay profile
- 2. Simulation of BPSK system over AWGN channel & finding its performance with BER plot.
- 3. Implementation of Equalization at the receiver to remove ISI caused due to Low channel bandwidth
- 4. Simulation of CDMA signal using QPSK modulation scheme &obtain matched filter response over AWGN Channel
- 5. Implementation of RAKE receiver & finding its performance through BER Curve
- 6. Implementation of L.M.S algorithm to estimate the original data when it is corrupted by noise & channel.
- 7. Implementation of R.L.S algorithm to estimate the original data when it is corrupted by noise & channel.

Tools Required: MATLAB – 7.0 & above

JNTUA COLLEGE OF ENGINEERING (Autonomous) PULIVENDULA

DECS I-IISEMESTER

IMAGE & VIDEO PROCESSING LAB

Course Objectives:

- To read, write and perform various operations on different types of images and videos.
- To simulate various enhancement, segmentation, compression and various morphological operation on images.
- To simulate spatio-temporal sampling, motion estimation, filtering and various compression techniques on various types of videos.
- •

Learning Outcomes:

After completion of this course the students will be able to

- Enable to develop knowledge and understating and technical skills in Image & Video Processing systems and relevant areas of engineering.
- Simulate various operations on images and videos using different algorithms.
- Provides experience of analytical and imaging and video techniques relevant for various applications.

List of Experiments:

The students are required to simulate the following experimental parts on the MATLAB environment by considering the relevant application based examples.

PART-A: Image Processing

- 1. Image Enhancement.
- 2. Enhancement in Frequency Domain.
- 3. Image Segmentation.
- 4. Image Compression.
- 5. Morphological Operations.

PART-B: Video Processing

- 1. Representation of Digital video: Read, Write, View Videos and conversion of videos in different formats.
- 2. Spatio-temporal sampling of Videos
- 3. Video motion estimation
- 4. Videos filtering.
- 5. Video Compression.

Tools Required: MATLAB – 7.0 & above

TWO YEAR COURSE STRUCTURE

FOR

M.TECH – DIGITAL ELECTRONICS AND COMMUNICATION SYSTEMS (DECS) w.e.f.

2017-2018 ADMITTED BATCH

R-17 REGULATIONS

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COLLEGE OF ENGINEERING (AUTONOMOUS) :: PULIVENDULA JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR PULIVENDULA – 516390, Y.S.R. (DIST), ANDHRA PRADESH, INDIA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR COLLEGE OF ENGINEERING (Autonomous) PULIVENDULA – 516 390 (A. P.)

<u>Academic regulations for M. Tech. (Regular) program</u> with effect from academic year 2017-18

1. ELIGIBILITY FOR ADMISSION:

Admission to the above program shall be made subject to the eligibility, qualification and specialization prescribed by the University for each Program from time to time.

i. Admission shall be made either on the basis of merit/rank obtained by the qualifying candidates in GATE/PGECET or otherwise specified, whichever is relevant.

2. AWARD OF M.TECH. DEGREE:

A student will be declared eligible for the award of the M. Tech. degree if he/she fulfills the following academic regulations:

- i. He/she has pursued a course of study for not less than four semesters and not more than eight semesters.
- ii. Students, who fail to fulfill all the academic requirements for the award of the degree within eight semesters from the year of their admission, shall forfeit their seat in the course and their seat shall stand cancelled.
- iii. Register for 68 credits and secure all 68 credits

3. COURSES OFFERED:

s.no.	Department	Specialization
01.	Electrical & Electronics Engineering (EEE)	Electrical Power Systems (EPS)
02.	Mechanical Engineering (ME)	Computer Aided Design & Computer
		Aided Manufacturing (CAD&CAM)
03.	Electronics & Communication Engineering (ECE)	Digital Electronics & Communication
		Systems (DECS)
04.	Computer Science & Engineering (CSE)	Computer Science & Engineering (CSE)

And any other course as approved by the competent authorities from time to time.

4. COURSE WORK:

The programs are offered on a Semester basis consisting of four Semesters.

- i. The candidates shall undergo *five theory* and *two laboratory* courses in *each semester* during the first and second semesters. During the third and fourth semesters the candidates pursue the dissertation in the concerned specialization only. The theme of dissertation should conform to the specialization.
- ii. There shall be one comprehensive online examinations conducted by the respective department one at the end of 1st year with 60 objective questions for 60 marks on the subjects studied in the respective years of both semesters. The heads of the respective department are given the responsibility of preparing question paper and conducting the online examination by maintaining confidentiality. A student shall acquire Two credit assigned to the online examination only when he/she secure 40% or more marks. In case, if a student fails in comprehensive online examination, he shall re- register by following a similar procedure adopted for the lab examinations.

R-17

- iii. There shall be *two seminars* (*seminar-I, and seminar -II*) related to thesis/dissertation. Out of two seminars related to thesis/dissertation, *seminar-I* shall be conducted in the 3rd semester and the *seminar-II* will be in 4th semester.
- iv. A candidate has to either present a paper in any national or international conference organized by AICTE recognized college/institution, or, publish a paper in peer-reviewed journals/Conferences proceedings before the submission of thesis.
- v. Only on completion of all the prescribed courses, the candidate will be permitted to submit the thesis/dissertation. Three copies of the thesis / dissertation certified by the concerned supervisor in the prescribed form shall be submitted to the College. Once a student fails to submit the thesis within the stipulated period of four semesters, extension of time up to eight semesters may be permitted by the Principal with recommendation of the College Academic Committee.
- vi. The Thesis/Dissertation will be adjudicated by one external examiner from reputed institutions/industry appointed by the competent authority.
- vii. If the report of the external examiner is favorable, a viva-voce examination shall be conducted by a board consisting of Head of the department as Chairman, the supervisor and the examiner who adjudicated the thesis/ dissertation. The board shall jointly report the candidate's work as:
 - A Excellent
 - B Good
 - C Satisfactory
 - D Unsatisfactory
- viii. If the report of the viva-voce is not satisfactory, the candidate will retake the viva-voce examination after three months. If he/she fails to get a satisfactory report at the second viva-voce examination, he/she will not be eligible for the award of the degree unless the candidate is asked to revise and resubmit the thesis/dissertation. The resubmitted copy shall be evaluated by the same board.

5. EVALUATION:

The performance of the candidate in each semester program shall be evaluated subject wise, with a maximum of 100 marks for theory and 100 marks for practical examination, on the basis of Internal Evaluation and End Examination.

i. For the theory subjects, 60% of the marks will be for the End Examination and 40% of the marks will be for Internal Evaluation.

Final Internal marks for a total of 40 marks shall be arrived at by considering the marks secured by the student in both the mid examinations with 80% weightage to the better mid exam and 20% to the other. The two midterm examinations shall be held during the semester, one in the middle of the program and the other one during the last week of instruction. A student shall answer all three questions in 2 hours of time without seeking any choice.

The following pattern shall be followed in the End-Examination.

- a. Five questions shall be set from each of the five units with either/or type for 12 marks each, and the total marks of 60.
- b. All the questions have to be answered compulsorily.
- c. Each question may consist of one, two or more bits.
- ii. For practical subjects, 60 marks shall be for the End Examinations and 40 marks will be for internal evaluation based on the day to day performance. The end semester practical examination shall be conducted by the concerned laboratory teacher and senior expert in the same subject of the department nominated by the Principal.
- iii. Comprehensive Online Examination shall be evaluated for 60 marks ad seminar-I and seminar-II shall be evaluated for internal marks of 50 each. There is no external evaluation for them. A candidate has

to secure a minimum of 50% to be declared successful in all the three evaluations. If the candidate fails, he/she has to re-register for Comprehensive Online Examination /seminars. Assessment of these three shall be done by a board consisting of Head of the Department, concerned thesis supervisors, and senior faculty members of the department.

- iv. A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the End Examination and a minimum aggregate of 50% of the total marks in the End Semester Examination and Internal Evaluation taken together.
- v. In case the candidate does not secure the minimum aggregate marks as specified in 5 (iv) he/she has to reappear for the semester examination either the supplementary or regular in that subject or repeat the course as and when next offered or do any other specified subject as may be required. *However the candidate is permitted to appear for two courses per semester only.*

6. ATTENDANCE:

A student shall be eligible to appear for end semester examinations if he/she acquires a

minimum of 75% of attendance in aggregate of all the subjects in a semester.

- i. Condonation of shortage of attendance up to 10% in any subject i.e. from 65% and above and less than 75% may be given by the College Academic Committee.
- ii. Shortage of Attendance below 65% in aggregate shall in NO case be condoned.
- iii. Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.
- iv. Students whose shortage of attendance is not condoned in any semester are not eligible to take their external Examination of that class and their registration shall stand cancelled.
- v. A student will not be promoted to the next semester unless he/she satisfies the attendance requirements of the present semester, as applicable. They may seek readmission for that semester as and when offered next.
- vi. A stipulated fee shall be payable towards condonation of shortage of attendance to the institution.

7. Grading System is to be introduced. After each subject is evaluated for 100 marks, the marks obtained in each subject will be converted to a corresponding letter grade as given below, depending on the range in which the marks obtained by the student fall.

Academic performance	Letter Grade	Grade points
		Assigned
≥ 95%	S	10
≥90% - < 95%	A++	9.5
≥ 85% - <90%	A+	9
≥80% - <85%	А	8.5
≥75% - <80%	B++	8
≥70% - <75%	B+	7.5
≥65% - <70%	В	7
≥60% - <65%	C++	6.5
≥55% - <60%	C+	6
≥50% - <55%	С	5.5
≥45% -< 50%	D	5
≥40%-<45%	Е	4.5
Below 40%	F(Fail)	0
Absent	Ab (Absent)	0

vii. Table – Conversion into Grades and Grade Points assigned

i. The following procedure shall be adopted to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA);

DECS

ii. The Semester Grade Point Average (SGPA) is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

 $SGPA = \Sigma (C_i \times G_i) / \Sigma C_i$

Where, Ci is the number of credits of the ith subject and Gi is the grade point scored by the student in the ith course.

ii. The Cumulative Grade Point Average (CGPA) will be computed in the same manner taking into account all the courses undergone by a student over all the semesters of a program, i.e.

$$CGPA = \Sigma (C_i \times S_i) / \Sigma C_i$$

Where 'Si' is the SGPA of the ith semester and C_i is the total number of credits in that semester.

iii. Both SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

iv. While computing the GPA/CGPA the subjects in which the student is awarded Zero grade points will also be included.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale. Letter Grade: It is an index of the performance of students in a said course. Grades are denoted by letters S, A, B, C, D, E and F.

8. AWARD OF DEGREE AND CLASS:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the

award of B. Tech. Degree he/she shall be placed in one of the following four classes:

Class Awarded	CGPA Secured
First Class with Distinction	≥ 7.5
First Class	≥ 6.5 < 7.5
Second Class	≥ 5.5 < 6.5
Pass Class	≥ 4.0 < 5.5

(The marks in internal evaluation and external Examination shall be shown separately in the marks memorandum) Further, CGPA to a maximum of extent of 0.05 shall be added which is just sufficient to effect change of class from pass class to Second class, Second class to First class, First class to First class with distinction for all the courses being offered, without adding any marks to the original marks secured by the students

A candidate shall be eligible for the award of respective degree if he/she satisfies the minimum academic requirements in every subject and secures at least satisfactory report on his/her thesis / dissertation and viva-voce.

9. WITHHOLDING OF RESULTS

The result of a candidate shall be withheld if:

- i. He/she has not cleared any dues to the Institution / Hostel.
- ii. A case of disciplinary action against him/her is pending disposal.

10. TRANSITORY REGULATIONS:

Candidates who have discontinued or have been detained for want of attendance or who have failed after having undergone the course are eligible for re-admission to the same or equivalent subjects as and when subjects are offered, subject to the conditions mentioned in 5-(iv) and 2-(ii).

DECS **11. GENERAL:**

The academic regulations should be read as a whole for purpose of any interpretation.

- i. The college reserves the right of altering the regulations as and when necessary. The regulations altered may be applicable to all the candidates on rolls.
- ii. Wherever the word he, him or his occur, it will also includes she, her, hers.
- iii. There shall be no place for transfer of candidate within the constituent colleges of Jawaharlal Nehru Technological University during the entire course of the programme.

JNTUA COLLEGE OF ENGINEERING (Autonomous) PULIVENDULA

Course structure for M.Tech. DIGITAL ELECTRONICS AND COMMUNICATION SYSTEMS (Regular) with effective from 2017-2018

I M.Tech I Semester

S.NO	Course code	Subject Name	Theory	Lab	Credits
1.	17D38101	STRUCTURAL DIGITAL SYSTEM DESIGN	4		4
2.	17D38102	IMAGE AND VIDEO PROCESSING	4		4
3.	17D38103	DIGITAL COMMUNICATION TECHNIQUES	4		4
4.		ELECTIVE-I			
	17D38104	ADVANCED OPERATING SYSTEMS			4
	17D38105	MOBILE NETWORKS	1		
	17D38106	TRANSFORM TECHNIQUES	4		
5.		ELECTIVE-II			
	17D38107	NANO ELECTRONICS			4
	17D38108	SECURED COMMUNICATIONS	4		
	17D38109	ADAPTIVE SIGNAL PROCESSING	4		
6.		STRUCTURAL DIGITAL SYSTEM DESIGN		2	
	17D38110	LAB		3	2
7.	17D38111	IMAGE & VIDEO PROCESSING LAB		3	2
			20	6	
		CONTACT PERIODS/WEEK		26	
	1	TOTAL CREDITS (5 THEORY + 2.1	(ABS)	20	24

DECS I M.Tech II Semester

S.NO	Course code	ourse code Subject Name		Lab	Credits
1.	17D38201	WIRELESS COMMUNICATIONS	4		4
2.	17D38202	DETECTION AND ESTIMATION THEORY	4		4
3.	17D38203	MIXED SIGNAL DESIGN	4		4
4.		ELECTIVE III			
	17D38204 17D38205 17D38206	ELECTIVE-III EMBEDDED SYSTEM DESIGN FUZZY SYSTEMS AND NEURAL NETWORKS WIRELESS SENSOR NETWORKS	4		4
5.		FI FOTIVE IV			
	17D38207 17D38208 17D38209	SPEECH PROCESSING INTERNET OF THINGS MULTIMEDIA COMMUNICATIONS	4		4
6.	17D38210	ADVANCED COMMUNICATIONS LAB		3	2
7.	17D38211	MIXED SIGNAL DESIGN LAB		3	2
	17D38212	COMPREHENSIVE ONLINE EXAMINATION			2
		Contact periods/week	20	6	
	Total/week		26	•	
	Tota	l Credits (5 Theory + 2 Lab +1 online Exam)		26	

II M.Tech I Semester

S.NO	Course Code	Subject	Maximum Marks		Total	Min. Marks/ Grades to	Credits
			Internal	External		rass	
1	17D38301	Seminar-I	50	-	50	25	-

II M.Tech II Semester

S.NO	Course Code	Subject	Maximum Marks		Total	Min. Marks/ Grades to	Credits
			Internal	External		Pass	
1	17D38401	Seminar-II	50	-	50	25	-
2	17D38402	Project Work Grades : A, B, C, D A - Excellent B - Good C – Satisfactory D - Unsatisfactory	-	-	-	-	18

JNTUA COLLEGE OF ENGINEERING (Autonomous) PULIVENDULA STRUCTURAL DIGITAL SYSTEM DESIGN (17D38101)

L T P C 4 0 0 4

Course Objectives:

- 1. To study about structural functionality of different Digital blocks (Both combinational and Sequential)
- 2. To provide an exposure to ASM charts, their notations and their realizations.
- 3. To provide an exposure to VHDL/Verilog and different styles of modelling using VHDL.
- 4. To introduce concept of micro programming and study issues related to micro programming

UNIT-I

COMBINATIONAL CIRCUIT BUILDING BLOCKS: Multiplexers, Demultiplexers, Encoders, Decoders, Comparators, Adders, ALU, Carry look Ahead adder.

SEQUENTIAL CIRCUIT BUILDING BLOCKS: Flip-flops, registers, Memory elements, Shift Registers, Sequence Generators, Timing Generators.

UNIT-II

MODELLING WITH HDL:

Introduction to VHDL/Verilog, Modelling Styles in VHDL/Verilog (Data Flow, Behavioral, Structural and Mixed style modeling using HDL).

SYSTEM DESIGN METHODOLOGY:

Finite State Machine, RTL Design, Realization and implementation of Dice Game, Micro Programming, Linked State machines, RTL Implementation Options.

UNIT-III

DESIGN OF COMBINATIONAL LOGIC:

BCD to 7-Segment Display decoder, BCD Adder, Arithmetic and Logic Unit (ALU), State graphs for control circuits, score board and controller, Synchronization and debouncing, A Shift and Add Multiplier, Array Multiplier, Booth Multiplier.

UNIT-IV

DESIGN OF SEQUENTIAL LOGIC:

Design Procedure for sequential circuits, Design Example- code Converter, Design of Iterative circuits, Design of sequential circuits using ROMs and PLAs, sequential circuit design using CPLD, FPGAs, Reduction of state and Flow Tables, Race-Free State Assignment Hazards.

Design Examples: UART, Traffic Light Controller

UNIT-V

HARDWARE TESTING AND DESIGN FOR TESTABILITY: Testing combinational Logic, Testing sequential Logic, Scan Testing, Boundary Scan, Built in Self Test.

Course Outcomes: After Completion of this course students will be able to

- a. Understand structural functionality of different digital blocks
- b. Represent and Realize their designs in ASM charts
- c. Represent their designs in different modelling styles by using VHDL
- d. Understand concept of Micro program and issues related to micro programming

TEXT BOOKS:

- 1. Charles H.Roth Jr, Lizy Kurian John, "Digital System Design Using VHDL," 2nd Edition, Cengage Learning, 2013.
- 2. Ming-Bio Lin, "Digital System Design and Pratices using Verilog HDL and FPGAs," Willey India Edition, 2012.

- 1. Charles H. Roth, Jr., "Fundamentals of Logic Design", 5th Edition, Cengage Learning, 2012.
- 2. Z. Kohavi, "Switching & finite Automata Theory," 3rd Edition, Cambridge University Press, 2009.
- 3. Michael D. Cilleti, "Advanced Digital Design with Verilog HDL", PHI, 2013.

IMAGE AND VIDEO PROCESSING (17D38102)

L T P C 4 0 0 4

Course Objectives:

- 1. To understand different transforms related to gray scale and color images.
- 2. To get complete knowledge regarding different techniques associated with Image Enhancement, Image Restoration, Image Segmentation and Image Compression.
- 3. To get clear knowledge regarding motion estimation, video filtering and video standards

UNIT I

IMAGE FUNDAMENTALS & TRANSFORMS: Gray scale and colour Images, image sampling and quantization. Two dimensional orthogonal transforms: DFT, WHT, Haar transform, KLT, DCT.

UNIT II

IMAGE ENHANCEMENT: Filters in spatial and frequency domains, histogram-based processing, homomorphic filtering. Edge detection, non-parametric and model based approaches, LOG filters, localization problem.

IMAGE RESTORATION: Degradation Models, PSF, circulant and block - circulant matrices, deconvolution, restoration using inverse filtering, Wiener filtering and maximum entropy-based methods.

UNIT III

IMAGE SEGMENTATION: Pixel classification, Bi-level Thresholding, Multi-level Thresholding, P-tile method, Adaptive Thresholding, Spectral & spatial classification, Edge detection, Hough transform, Region growing. **UNIT IV**

IMAGE COMPRESSION: Compression models, Information theoretic perspective, Fundamental coding theorem. Huffman Coding, Arithmetic coding, Bit plane coding, Run length coding, Lossy compression: Transform coding, Image compression standards.

UNIT V

VIDEO PROCESSING: Representation of Digital Video, Spatio-temporal sampling, Motion Estimation. Video Filtering, Video Compression, Video coding standards.

Course Outcomes: After completion of this course the students will be able to

- a. Different transforms related to gray scale and color images.
- b. Complete knowledge regarding different techniques associated with Image Enhancement, Image Restoration, Image Segmentation and Image Compression.
- c. Understand basic concepts regarding to motion estimation, video filtering and video standards.

TEXT BOOKS:

- 1. R. C. Gonzalez, R. E. Woods, "Digital Image Processing", Pearson Education. 2nd edition, 2002
- 2. Bovik, "Handbook of Image & Video Processing", Academic Press, 2000

- 1. Rosenfold and A. C. Kak, "Digital Image Processing," Vols. 1 and 2, Prentice Hall, 1986.
- 2. H. C. Andrew and B. R. Hunt, "Digital Image Restoration," Prentice Hall, 1977
- 3. R. Jain, R. Kasturi and B.G. Schunck, "Machine Vision," McGraw-Hill International Edition, 1995

DIGITAL COMMUNICATION TECHNIQUES (17D38103)

L T P C 4 0 0 4

R-17

Course Objectives:

- 1. To study about base band signal concepts and different equalizers.
- 2. To study in detail about coherent detection schemes such as ASK, FSK, PSK
- 3. To study in detail about M-ary signaling schemes like QPSK, QAM, MSK.

UNIT I

Review of Random Variables and Random Processes: Random variable, Moment generating function, Markov's inequality, Chebyshev's inequality, Central limit theorem, Different distributions – Gaussian, Poisson, Chi square, Rayleigh, Rician; Correlation - Auto-correlation, Cross correlation, Correlation matrix; Stationary processes, Wide sense stationary processes, Gaussian & Ergodic processes, Problem solving.

UNIT II

Baseband Signal Concepts: Baseband data transmission, Nyquist criterion for zero ISI, Correlative level coding, Data Detection, Optimum design of transmit and receive filters, Equalization - Linear, adaptive, fractionally spaced and decision feedback equalizers.

UNIT III

Digital Modulation Schemes: Detection using matched filter – Optimum receivers for arbitrary binary signals and M'ary Orthogonal signals, Analysis of coherent detection schemes for ASK, PSK and DPSK, M'ary signalling schemes – QPSK, QAM, MSK, Performance of the data transmission schemes under AWGN. Trellis coded Modulation.

UNIT IV

Synchronization: Receiver synchronization, costas loop, symbol synchronization, synchronization with CPM – data aided and Non aided synchronization- synchronization methods based on properties of wide sense cyclostationary random process – Carrier recovery circuits – Symbol clock estimation schemes.

UNIT V

Spread Spectrum Systems: PN sequences, Generation of PN sequences, DS spread spectrum systems, FH spread spectrum systems and performance of DSSS & FHSS in AWGN – Synchronization – Jamming considerations – Commercial Applications, Cellular subsystems.

Course Outcomes:

- a. Students will be aware of base band signal concepts and different equalizers.
- b. Students will be able to get complete knowledge regarding coherent detection schemes like ASK, FSK, PSK.
- c. Students will be able to design M-ary signaling schemes like QPSK, QAM, MSK

TEXT BOOKS:

- 1. J.G.Proakis, Digital Communication (4/e), McGraw-Hill, 2001
- 2. Bernard Sklar, "Digital Communications-Fundamentals & Applications," Prentice Hall, 2001.

REFERENCE BOOKS:

- 1. R.E.Zimer & R.L.Peterson, "Introduction to Digital Communication", PHI, 2001.
- 2. G. R. Cooper & C. D. Mc Gillem, "Modern Communications & Spread Spectrum," McGraw Hill, 1986.
- 3. L.Hanzo et.al, "Turbo Coding, Turbo Equalization & Space-Time Coding," Wiley, 2002.

ADVANCED OPERATING SYSTEMS (17D38104)

L T P C 4 0 0 4

Course Objectives:

- 1. To Study in detail about kernel structures associated with various Operating systems
- 2. To Study in detail about various systems calls, statements and their arguments associated with Unix.
- 3. To Study in detail about various systems calls, statements and their arguments associated with Linux.

UNIT I

INTRODUCTION

General Overview of the System: History – System structure – User perspective – Operating system services – Assumptions about hardware.

Introduction to the Kernel: Architecture of the UNIX operating system - Introduction to system concepts.

The Buffer Cache: Buffer headers – Structure of the buffer pool – Scenarios for retrieval of a buffer – Reading and writing disk blocks – Advantages and disadvantages of the buffer cache.

UNIT II

UNIX I: Overview of UNIX system, Structure, files systems, type of file, ordinary & special files, file permissions, Introduction to shell. UNIX basic commands & command arguments, Standard input / output Input / output redirection, filters and editors, System calls related file structures, input / output process creation & termination.

UNIT III

INTERPROCESS COMMUNICATION IN UNIX: Introduction, file and record locking, Client – Server example, pipes, FIFOs, Streams & Messages, Name Speces, Systems V IPC, Message queues, Semaphores, Shared Memory, Sockets & TLI.

UNIT IV

INTRODUCTION TO NETWORKS AND NETWORK PROGRAMMING IN UNIX: Network Primer, TCP/IP, Internet Protocols, Socket Programming, Introduction & overview, UNIX domain protocols, Socket Addresses, Elementary Socket system calls, Simple examples.

UNIT V

LINUX: Introduction to LINUX System, Editors and Utilities, Type of Shells, Shell Operations, File structure, File Management, Operations. Memory Management Policies: Swapping – Demand paging. The I/O Subsystem: Driver Interface – Disk Drivers – Terminal Drivers– Streams – Inter process communication.

Course Outcomes: After completion of the course students will be able to

- a. Get complete knowledge regarding different types of operating systems and their Kernel structures.
- b. To work effectively on Unix Platform
- c. To work effectively on Linux Platform

TEXT BOOKS:

- 1. Maurice J.Bach, "The design of the UNIX Operating Systems", PHI
- 2. Kernighan & Pike, "The UNIX Programming Environment", PHI

- 1. W.Richard Stevens, "UNIX Network Programming", PHI, 1998.
- 2. Richard Peterson, "The Complete reference LINUX", TMH
- 3. Ritchie & Yates, "UNIX User Guide".

MOBILE NETWORKS (17D38105)

L T P C 4 0 0 4

Course Objectives:

- 1. To study different wireless communication systems
- 2. To study in detail about different multiples accessing schemes
- 3. To study about different architectures in mobile networks such as wireless LAN, Hyper LAN and so on
- 4. To study about dynamic routing and different routing protocols employed in mobile networks

UNIT-I

Wireless communication standards, Cellular communications, GSM protocol architecture,, 3G mobile wireless systems, Beyond 3G

UNIT - II

Multiple Access Techniques - GDMA, TDMA, CDMA, Mobile Data Networks - CDPD, GPRS

UNIT-III

Wireless LAN architecture, physical & MAC layers, Wireless ATM architecture, HIPERLAN, Wireless Personal Area (WPAN) networks - Home RF, Bluetooth.

UNIT-IV

Mobility management in Wireless Networks, Handoff management, Location management, Mobile IP, TCP Wireless Application Protocol

UNIT - V

Mobile Adhoc Networks, Dynamic routing, Route discovery, Routing protocols, Mobile Multimedia Adhoc Networks, MPLS

Course Outcomes: After completion of the course the student will be able to

- a. Gain complete knowledge regarding different wireless communication systems.
- b. Gain complete knowledge regarding different multiples accessing schemes.
- c. Know the architectures of different mobile networks such as wireless LAN, Hyper LAN and so on
- d. Know about different routing mechanisms by employing different routing protocols.

TEXT BOOKS:

- 1. JW Mark, W Zhuang, "Wireless communications & Networking", PHI, 2005
- 2. Kaveh Pahlavan, Prashant Krishnamurthy, "Principles of Wireless Networks", PHI, 2010
- 3. George Aggelou, "Mobile Adhoc Networks", TMH, 2009.

- 1. William Stallings, "Wireless Communications and Networks", Prentice Hall, 2004.
- Siva Ram Murthy C. and Manoj B. S., "Ad Hoc Wireless Networks: Architectures and Protocols", 2nd Edition. Pearson Education 2005.
- 3. Toh C. K., "Ad Hoc Mobile Wireless Networks Protocols and Systems", Prentice Hall, PTR, 2001.
- 4. Yi-Bing and Imrich Chlamtac, "Wireless and Mobile Networks Architectures", John Wiley & Sons, 2001.

TRANSFORM TECHNIQUES (17D38106)

L T P C 4 0 0 4

Course Objectives:

- 1. Study of different types of transforms which can be applicable for different types of signals.
- 2. To study the application of wavelets for different types of signals.
- 3. To study the applications of Multi rate systems and filter banks.

UNIT I:

REVIEW OF TRANSFORMS: Signal spaces, concept of convergence, Hilbert spaces for energy signals, Orthogonality, Ortho normality, Fourier basis, FT-failure of FT-need for time-frequency analysis, spectrogram plotphase space plot in time-frequency plane, Continuous FT, DTFT, Discrete Fourier Series and Transforms, Z-Transform.

ADVANCE TRANSFORMS: Relation between CFT-DTFT, DTFT-DFS, DFS-DFT, DCT (1D&2D), Walsh, Hadamard, Haar, Slant, KLT, Hilbert Transforms – definition, properties and applications.

UNIT II:

CWT & MRA: Time-frequency limitations, tiling of time-frequency plane for STFT, Heisenberg uncertainty principle, Short time Fourier Transform (STFT) analysis, short comings of STFT.

NEED FOR WAVELETS: Wavelet Basis- Concept of Scale and its relation with frequency, Continuous time wavelet Transform Equation- Series Expansion using Wavelets- CWT.

UNIT III:

NEED FOR SCALING FUNCTION: Multi resolution analysis, Tiling of time scale plane for CWT. Important Wavelets: Haar, Mexican Hat Meyer, Shannon, Daubechies.

SPECIAL TOPICS: Wavelet Packet Transform, Bi-orthogonal basis- B-splines, Lifting Scheme of Wavelet Generation-implementation.

UNIT IV:

MULTIRATE SYSTEMS, FILTER BANKS AND DWT: Basics of Decimation and Interpolation in time & frequency domains, Two-channel Filter bank, Perfect Reconstruction Condition, Relationship between Filter Banks and Wavelet basis, DWT Filter Banks for Daubechies Wavelet Function.

UNIT V:

APPLICATIONS OF TRANSFORMS: Signal De-noising, Sub-band Coding of Speech and Music, Signal Compression - Use of DCT, DWT, KLT.

Course Outcomes: After completion of the course the student will be able to

- a. Use different 1-d and 2-d transforms for different signals.
- b. Apply wavelet transforms for different signals and will be able to appreciate its differences with other transformations.
- C. Use different advanced transforms such as DCT, DWT and KLT for different applications like signal de noisy, sub band coding of speech and music and signal compression.

TEXT BOOKS:

- 1. Jaideva C Goswami, Andrew K Chan, "Fundamentals of Wavelets- Theory, Algorithms and Applications", John Wiley & Sons, Inc, Singapore, 1999.
- 2. Raghuveer M.Rao and Ajit S. Bopardikar, "Wavelet Transforms-Introduction theory and applications" Pearson edu, Asia, New Delhi, 2003.
- 3. Soman.K.P, Ramachandran K.I, "Insight into Wavelets from Theory to practice", Printice Hall India, First Edition, 2004.

- 1. Vetterli M. Kovacevic, "Wavelets and sub-band coding", PJI, 1995.
- 2. C. Sydney Burrus, "Introduction to Wavelets and Wavelet Transforms", 1st Edition, PHI, 1997.
- 3. Jayaraman, "Digital Image Processing", TMH, 2009

NANO ELECTRONICS (17D38107)

L T P C 4 0 0 4

Course Objectives:

- 1. To study about different quantum devices
- 2. To study in detail about nano devices and nano architectures and their computations
- 3. To study about Molecular nano Electronics

UNIT – I: Quantum Devices:

Charge and spin in single quantum dots- Coulomb blockade – Electrons in mesoscopic structures - single electron transfer devices (SETs) – Electron spin transistor – resonant tunnel diodes, tunnel FETs - quantum interference transistors (QUITs) - quantum dot cellular automata (QCAs) - quantum bits (qubits).

UNIT – II: Nano Electronic Devices:

Electronic transport in 1, 2 and 3 dimensions- Quantum confinement - energy subbands - Effective mass - Drude conduction - mean free path in 3D - ballistic conduction - phase coherence length - quantized conductance - Buttiker-Landauer formula- electron transport in pn junctions - short channel NanoTransistor -MOSFETs - Advanced MOSFETs - Trigate FETs, FinFETs - CMOS.

UNIT – III: Molecular Nano Electronics:

Electronic and optoelectronic properties of molecular materials - Electrodes & contacts - functions - molecular electronic devices - elementary circuits using organic molecules- Organic materials based rectifying diode switches - TFTs- OLEDs- OTFTs - logic switches.

UNIT – IV: Spintronics:

Spin tunneling devices - Magnetic tunnel junctions- Tunneling spin polarization - Giant tunneling using MgO tunnel barriers - Tunnel-based spin injectors - Spin injection and spin transport in hybrid nanostructures - spin filters -spin diodes - Magnetic tunnel transistor - Memory devices and sensors - ferroelectric random access memory- MRAMS - Field Sensors - Multiferro electric sensors- Spintronic Biosensors.

UNIT – V: Nano Electronic Architectures & Computations:

Architecture Principles: Mono and Multi processor systems – Parallel data processing – Power Dissipation and Parallelism – Classic systolic arrays - Molecular devices-properties - Self-organization – Size dependent - limitations. Computation: Monte Carlo Simulations- Computational methods and Simulations from ab initio to multiscale Modeling- Modeling of Nanodevices.

Course Outcomes: After completion of the course the student will be able to

- a. Gain complete knowledge regarding different Quantum Devices.
- b. Know about nano devices and nano architectures and their computations.
- c. Know about Molecular Nano Electronics

TEXT BOOKS:

- 1. V. Mitin, V. Kochelap, M. Stroscio, "Introduction to Nanoelectronics," Cambridge University Press, 2008.
- 2. Rainer Waser, "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices," Wiley-VCH, 2003.

- 1. Karl Goser, Peter Glosekotter, Jan Dienstuhl, "Nanoelectronics and Nanosystems," Springer, 2004.
- 2. Sadamichi Maekawa, "Concepts in Spin Electronics," Oxford University Press, 2006.
- 3. L. Banyai and S.W.Koch, "Semiconductor Quantum Dots," World Scientific, 1993.
- 4. Edward L. Wolf, "Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience," Wiley-VCH, 2006.

SECURED COMMUNICATIONS (17D38108)

L T P C 4 0 0 4

Course Objectives:

- 1. To study security and different types of attacks.
- 2. To study about different techniques associated with encryption.
- 3. To study about different algorithms associated with security.
- 4. To study about IP security architecture and designing issues related to fire walls.

UNIT-I

Information security, Types of attacks, Info security services - Confidentiality, Integrity, Availability, security process - assessment, Implement security, training

UNIT - II

Security technologies - Firewalls, VPNs ; Encryption - Private Key Encryption, Public key encryption, Key management; Concepts of intrusion detection.

UNIT-III

Message authentications and Hash functions, Digital signatures, e-mail security, IP security architecture, Web security

UNIT-IV

Authentication and authorization in WLANs -802.1X authentication, RADIUS protocol; Extensible Authentication protocol, Transport Layer Security and certificates

UNIT - V

Data protection in WLANs - WEP, 802.11i security, RSNA, CCMP, TKIP, wireless roaming security, WMAN security.

Course Outcomes: After completion of this course students will be able to know

- a. The need and role of security.
- b. Gain knowledge about different techniques associated with encryption.
- c. Functioning of different algorithms associated with security.
- d. Gain knowledge regarding IP security architecture and designing issues related to fire walls.

TEXT BOOKS:

- 1. Eric Maiwald, "Fundamental of Network Security", Dreamtech press Osborne MGH, 2004
- 2. W. Stallings, "Cryptography & Network Security", 3/e, PHI 2003
- 3. Thomas Hardjono, RD Lakshminath, "Security in Wireless LAN & MAN", Artech House, 2005

- 1. Roger J. Sutton, "Secure Communications: Applications and Management", WILEY, 2002.
- 2. Don J. Torrieri, "Principles of secure communication systems", 2nd Eedition, ArtechHouse Publishers, 1992.
- 3. Cryptography and secure Communications by M.Y. Rhee, Mc Graw Hill

ADAPTIVE SIGNAL PROCESSING (17D38109)

L T P C 4 0 0 4

Course Objectives:

- 1. To study in detail about adaptive Systems.
- 2. To study about various Linear optimum filtering techniques.
- 3. To study about various techniques related Linear and Non Linear adaptive filtering.

UNIT I:

Introduction to Adaptive Systems: *Eigen Analysis* - Eigen Value problem, Properties of eigen values and eigen vectors, Eigen filters, Eigen value computations, *Adaptive Systems* - Definitions, Characteristics, Applications and Examples of Adaptive systems, The adaptive linear combiner – Description, weight vectors, Desired response performance function, Gradient and Mean square error(MSE).

UNIT II:

Linear Optimum Filtering: *Wiener Filters* – Linear optimum filtering, Principle of Orthogonality, Wiener-Hopf equations, Error performance surface, Channel Equalization, Linearly constrained minimum variance filter, *Linear Prediction* – Forward and Backward linear prediction, Levinson-Durbin Algorithm, Properties of prediction error filters, AR modeling of stationary stochastic process, Lattice predictors, Joint process estimation, *Kalman Filters* - Recursive mean square estimation for scalar random variables, Kalman filtering problem, The innovations process, Estimation of the state using innovations process, Filtering, Initial conditions, Variants of the Kalman filter, Extended Kalman filter, Problem Solving.

UNIT III:

Linear Adaptive Filtering-I: Method of Steepest descent algorithm and its stability, *Least Means Square (LMS)* algorithm – Structure & operation of LMS algorithm, Examples, Stability & performance analysis of the LMS algorithm, Simulations of Adaptive equalization using LMS algorithm, Convergence aspects, *Method of Least Squares (LS)* - Statement, Data windowing, Minimum sum of error squares, Normal equations and linear least squares filters, Properties.

UNIT IV

Linear Adaptive Filtering-II *Recursive Least Squares (RLS) Algorithm* – Matrix inversion lemma, The exponentially weighted RLS algorithm, Update recursion for the sum of weighted error squares, Example, Convergence Analysis, Simulation of adaptive equalization using RLS algorithm, *Order Recursive Adaptive Filters* – Adaptive forward and backward linear prediction, Least squares Lattice predictor, QR-Decomposition based Least squares Lattice filters & their properties, Simulation of Adaptive equalization using Lattice Filter.

UNIT V:

Non linear Adaptive Filtering: *Blind deconvolution* – Theoretical and practical considerations, Bussgang algorithm for blind equalization for real base band channels, Special cases of Bussgang algorithm, Simulation studies of Bussgang algorithms, Problem solving.

Course Outcomes: After the course students is expected to be able to:

- a. Get complete knowledge regarding adaptive systems
- b. Design various Linear optimum filters by employing different techniques associated with them
- c. Understand various techniques related to with Linear and Non linear adaptive filtering and their design considerations

TEXT BOOKS:

- 1. Simon Haykin, "Adaptive Filter Theory," Prentice Hall, 4th Edition, 2002.
- 2. Bernard Widrow, Samuel D. Strearns, "Adaptive Signal Processing," Prentice Hall, 2005.

- 1. Paulo S.R. Diniz, Adaptive Filtering Algorithms and Practical Implementation, Third Edition, Springer, Kluwer Academic Publishers.
- 2. Alexander D Poularikas, Zayed M Ramadan, Adaptive Filtering Primer with MATLAB, CRC Press Taylor & Francis Group, 2008 Indian Edition.
- 3. Ali H. Sayed, Adaptive filters, IEEE Press, Wiley-Interscience, A john Wiley & Sons, INC., Publication.
- 4. S. Thomas Alexander, "Adaptive Signal Processing-Theory & Applications," Springer Verlag, 1986

DECS I M.Tech I Semester

STRUCTURAL DIGITAL SYSTEM DESIGN LAB (17D38110)

L T P C 0 0 3 2

Objectives:

- 1. To understand about VHDL and Verilog Programming in all available styles.
- 2. To understand differences between Verilog and VHDL.
- 3. To represent the different digital blocks in Verilog and VHDL in all available styles of modeling

Using VHDL and Verilog do the following experiments

- 1. Design of 4-bit adder
- 2. Design of Booth Multiplier
- 3. Design of 4 bit / 32 Bit ALU
- 4. Design of Counters & Shift Registers
- 5. Design of MIPS Processor
- 6. Fire Detection and Control System using Combinational Logic circuits.
- 7. Traffic Light Controller using Sequential Logic circuits
- 8. Pattern Detection using Moore Machine.
- 9. Finite State Machine(FSM) based logic circuit.

Mini Project

Learning Out Comes: After completion of this course the students will be able to understand

- a. Different modeling styles available in VHDL and Verilog and difference between them
- b. Difference between Verilog and VHDL
- c. Representation of different digital modules in different modeling styles available in VHDL and Verilog

IMAGE & VIDEO PROCESSING LAB (17D38111)

L	Т	Р	С
0	0	3	2

Course Objectives:

- 1. To read, write and perform various operations on different types of images and videos.
- 2. To simulate various enhancement, segmentation, compression and various morphological operation on images.
- 3. To simulate spatio-temporal sampling, motion estimation, filtering and various compression techniques on various types of videos.

List of Experiments:

The students are required to simulate the following experimental parts on the MATLAB environment by considering the relevant application based examples.

PART-A: Image Processing

- 1. Image Enhancement.
- 2. Enhancement in Frequency Domain.
- 3. Image Segmentation.
- 4. Image Compression.
- 5. Morphological Operations.

PART-B: Video Processing

- 1. Representation of Digital video: Read, Write, View Videos and conversion of videos in different formats.
- 2. Spatio-temporal sampling of Videos
- 3. Video motion estimation
- 4. Videos filtering.
- 5. Video Compression.

Tools Required: MATLAB – 7.0 & above

Course Outcomes:

After completion of this course the students will be able to

- a. Enable to develop knowledge and understating and technical skills in Image & Video Processing systems and relevant areas of engineering.
- b. Simulate various operations on images and videos using different algorithms.
- c. Provides experience of analytical and imaging and video techniques relevant for various applications.

WIRELESS COMMUNICATIONS (17D38201)

R-17

Course Objectives:

- 1. To understand basics of Wireless Communications and its evolution process.
- 2. To learn about the mechanism of radio mobile propagation and its effects.
- 3. To understand various types of diversity and equalization techniques to counter balance the effects of Wireless Channel.
- 4. To Study about importance of Wireless Networking and multiple access techniques in the present day mobile communications
- 5. To design and analyze mobile systems using OFDM technology for mitigating the ISI effects at higher data rates.

UNIT – 1

Introduction to Wireless Communication Systems & Cellular Concept:

Evolution of Mobile Radio Communication Systems, Examples of Wireless Communication Systems, 1G, 2G, 2.5G, and 3G Wireless Cellular Networks and Standards, Frequency Reuse Concept, Channel Assignment Strategies, Interference and System Capacity, Trunking and Grade of Service, Improving Coverage and Capacity in Cellular Systems, Problem Solving.

UNIT - 2

Mobile Radio Propagation:

Large Scale Path Loss: Introduction, Free Space Propagation Model, *Propagation Mechanisms* – Reflection, Diffraction, and Scattering, Practical Budget Design using Path Loss Models, Outdoor Propagation Models, Indoor Propagation Models.

Small Scale Fading and Multipath: Small Scale Multipath Propagation, Impulse Response Model of a Multipath Channel, Small Scale Multipath Measurements, Parameters of Mobile Channels, Types of Small Scale Fading (all variations), *Statistical Models* – Clarke's Model for Flat Fading, Jake's Model, Level Crossing Rate, Simulation of Clarke's/Jake's Model, Two Ray Rayleigh Fading Model, Problem Solving.

UNIT -3

Equalization & Diversity Techniques:

Equalization: Survey of Equalization Techniques, Linear and Non-linear Equalizers – Linear Transversal Equalizer, Decision Feedback Equalizer (DFE), Algorithms for Adaptive Equalization – Zero Forcing, LMS, RLS, Fractionally Spaced Equalizers.

Diversity Techniques: Realization of Independent Fading Paths, *Receiver Diversity* – System Model, Selection Combining, Threshold Combining, Maximal Ratio Combining, Rake receiver, Equal Gain Combining, *Transmit Diversity*–Channel known at Transmitter, Channel unknown at Transmitter – the Alamouti Scheme, analysis.

UNIT - 4

Multiple Access Techniques & Networking:

Introduction to Multiple Access: FDMA, TDMA, CDMA, SDMA, Packet Radio, Capacity of Cellular Systems, Problem Solving.

Introduction to Wireless Networking: Introduction to Wireless Networks, Differences between Wireless and Fixed Telephone Networks, Development of Wireless Networks, Traffic Routing in Wireless Networks, Wireless Data Services, Common Channel Signaling.

UNIT - 5

Multicarrier Modulation:

Data Transmission using Multiple Carriers, Multicarrier Modulation with Overlapping Subchannels, Discrete Implementation of Multicarrier Modulation, The Cyclic Prefix, Orthogonal Frequency Division Multiplexing (OFDM), Matrix Representation of OFDM, Vector Coding, Challenges in Multicarrier Systems, Problem Solving.

Course Outcomes: After completion of this course the students will be able to

- a. Understand basics of Wireless Communications and its evolution process.
- b. Know about the mechanism of radio mobile propagation and its effects.
- c. Apply various types of diversity and equalization techniques to counter balance the effects of Wireless Channel.
- d. Recognize the importance of Wireless Networking and multiple access techniques in the present day mobile communications
- e. Analyze and design mobile systems using OFDM technology for mitigating the ISI effects at higher data rates.

TEXT BOOKS:

- Aditya K Jagannatham, "Principles of Modern Wireless Communications Systems," 1st Edition, McGraw Hill, 2015.
- 2. T. S. Rappaport, "Wireless Communications, Principles and Practice," Prentice Hall, 2nd Edition, 2002.

- 1. Andrea Goldsmith, "Wireless Communications," Cambridge University Press, 2005.
- 2. David Tse, PramodViswanath, "Fundamentals of Wireless Communications," Cambridge University Press, 2006.
- 3. Dr. KamiloFeher, "Wireless Digital Communications," Prentice Hall, 1995.

I M.Tech II Semester

DETECTION AND ESTIMATION THEORY (17D38202)

L T P C 4 0 0 4

Course Objectives:

- 1. To provide knowledge about various estimation, and detection techniques.
- 2. To analyze different methods & to detect and estimate the signal from noisy signal.
- 3. Estimate and detect the signals in the presence of noise.

UNIT - I

Introduction to Estimation and Detection:

Introduction, Detection and Estimation in Signal Processing, the Mathematical Detection& Estimation problem, Assessing Estimator Performance, Hierarchy of detection problems, Role of asymptotics.

Estimation

UNIT - II

Minimum Variance Unbiased Estimation:

Unbiased Estimators, Minimum Variance Criterion, Existence of the minimum Variance Unbiased Estimator, Finding the Minimum Variance Unbiased Estimator,

Cramer-Rao Lower Bound - Estimator of Accuracy Considerations, Cramer-Rao Lower Bound (CRLB), General CRLB for Signals in White Gaussian Noise, Transformation of Parameters, Extension to a Vector Parameter, Vector Parameter CRLB for Transformations, CRLB for the general Gaussian case,

Linear Models -Definition and Properties, Linear Model Examples, Extension to the Linear Model,

General Minimum Variance Unbiased Estimation: Introduction, Sufficient Statistics, Finding Sufficient Statistics.

UNIT - III

Best Linear Unbiased Estimators:

Definition of BLUE, Finding the BLUE, Extension to Vector Parameter,

Estimation Methods - Maximum Likelihood Estimation (MLE), Finding MLE, Properties of MLE, MLE for Transformed Parameters, Numerical Determination of the MLE, Extension to a Vector Parameter, The Least Squares Approach, Linear Least Squares, Method of Moments, Extension to a Vector Parameter, Statistical Evaluation of Estimators.

The Basian Philosophy - Prior Knowledge and Estimation, Choosing a Prior PDF, Properties of Gaussian PDF, Basian Linear Model, Minimum Mean Square Error (MMSE) Estimators, Maximum A Posteriori Estimators, Performance Description, Linear Basian Estimators – Introduction, Linear MMSE Estimation, Geometrical Interpretations, The Vector LMMSE Estimator.

Detection

UNIT - IV

Statistical Decision Theory I:

Introduction, Neyman-Pearson Theorem, Receiver Operating Characteristics, Minimum Probability of Error, Bayes Risk, Multiple Hypothesis Testing,

Deterministic Signals - Matched Filters, Development of Detector, Performance of Matched Filter, Performance of Generalized Matched Filters, Multiple Signals – Binary Case and its performance, M-ary Case, Linear Model, **Random Signals**– Estimator Correlator, Linear Model.

UNIT - V

Statistical Decision Theory II:

Introduction, Summary of Composite Hypothesis, Composite Hypothesis Testing (CHT),

CHT approaches – Bayesian Approach, Generalized Likelihood Approach, Performance of GLRT for Large Data Records, Equivalent Large Data Records Tests.

DECS

Course Outcomes:

- a. The students will be able to apply various methods of signal estimation knowing the significance of each method.
- b. The students will be able to know Cramer-Rao Lower bound in estimating a signal.
- c. By applying suitable criterion the students will be able to detect the signals with minimum errors in the presence of noise.

Text Books:

- 1. Steven M. Kay, "Fundamentals of Statistical Signal Processing Estimation Theory," Pearson, 2010.
- 2. Shanmugam and Breipohl, "Detection of Signals in Noise and Estimation," John Wiley& Sons, 2004.

References:

- 1. Mischa Schwartz, L.Shaw, "Signal Processing: Discrete Sprectral Analysis, Detection, and Estimation," McGraw Hill.
- 2. Harry L.Van Trees, Kristine L.Bell, Zhi Tian, "Detection Estimation and Modulation Theory, Part I: Detection, Estimation and Filtering Theory," 2nd Edition, Wiley, 2013.

MIXED SIGNAL DESIGN (17D38203)

L T P C 4 0 0 4

Course Objectives: students will be able to

- 1. To understand the design of circuits in IC form especially both digital and analog designs.
- 2. To gain knowledge on power amplifiers and different feed concepts.
- 3. To acquire knowledge on design different architectures in mixed signal mode.
- 4. To gain the knowledge on data converters like Digital to Analog and Analog to Digital Converters.

UNIT – I:

Current Sources & Sinks: The cascode connection, sensitivity and temperature analysis, transient response, layout of simple Current Mirror, matching in MOSFET mirrors, other Current Sources/Sinks. Voltage dividers, current source self-biasing, band gap voltage references, Beta Multiplier Referenced Self-biasing.

UNIT – II:

Amplifiers: Gate Drain connected loads, Current Source Loads, Noise and Distortion, Class AB Amplifier. Feedback Amplifiers: Feedback Equation, properties of negative feedback and amplifier design, feedback topologies, amplifiers employing the four types of feedback, Stability.

UNIT – III:

Differential Amplifiers: The Source Coupled pair, the Source Cross-Coupled pair, cascode loads, Wide-Swing Differential Amplifiers, Operational Amplifiers: Basic CMOS Op-Amp Design, Operational Trans conductance Amplifiers, Differential Output Op-Amp.

UNIT – IV:

Non-Linear & Dynamic Analog Circuits: Basic CMOS Comparator Design, Adaptive Biasing, Analog Multipliers, MOSFET Switch, Switched Capacitor circuits: Switched Capacitor Integrator, dynamic circuits.

UNIT – V:

Data Converter Architectures: Data Converter Fundamentals, DAC & ADC specifications, Mixed Signal Layout issues, DAC architectures, ADC architectures.

Course Outcome: After completion of the course, students will be able to

- a. Design mixed signal based circuits starting from basic constraints to advanced constraints.
- b. Demonstrate in-depth knowledge in Data Converters ADC and DAC, power amplifiers.
- c. Design circuits like Various feedback concepts and op-amp circuits.
- d. Understand the design of non-linear and dynamic analog circuits.

TEXT BOOKS:

- 1. Baker, Li, Boyce, "CMOS Circuit Design, Layout and Simulation," 1st Edition, Tata McGraw Hill,
- 2. Rudy Van De Plassche, "CMOS Integrated Analog-to-Digital and Digital-to Analog converters," Kluwer Academic Publishers, 2003

- 1. R. Jacob Baker, "CMOS Mixed-Signal Circuit Design", Wiley Interscience, 2009.
- 2. David A.Johns, Ken Martin, "Analog Integrated Circuit Design," John-Wiley & Sons, 1997.
- 3. B. Razavi, "Design of Analog CMOS Circuits," McGraw Hill, 2003.

EMBEDDED SYSTEM DESIGN (17D38204)

L T P C 4 0 0 4

Course Objectives:

- 1. To study about current technologies, integration methods and hardware and software design concepts associated with processor in Embedded Systems.
- 2. To study about different types of memory and memory management schemes and various interfacing devices related to design of an Embedded System
- 3. To get detail knowledge regarding testing and hardware software co- design issues pertaining to design of an Embedded System

UNIT-I: Introduction

An Embedded System-Definition, Examples, Current Technologies, Integration in system Design, Embedded system design flow, hardware design concepts, software development, processor in an embedded system and other hardware units, introduction to processor based embedded system design concepts.

UNIT-II: Embedded Hardware

Embedded hardware building blocks, Embedded Processors – ISA architecture models, Internal processor design, processor performance, Board Memory – ROM, RAM, Auxiliary Memory, Memory Management of External Memory, Board Memory and performance.

Embedded board Input / output – Serial versus Parallel I/O, interfacing the I/O components, I/O components and performance, Board buses – Bus arbitration and timing, Integrating the Bus with other board components, Bus performance.

UNIT-III: Embedded Software

Device drivers, Device Drivers for interrupt-Handling, Memory device drivers, On-board bus device drivers, Board I/O drivers, Explanation about above drivers with suitable examples.

Embedded operating systems – Multitasking and process Management, Memory Management, I/O and file system management, OS standards example – POSIX, OS performance guidelines, Board support packages, Middleware and Application Software – Middle ware, Middleware examples, Application layer software examples.

UNIT-IV:

Embedded System Design, Development, Implementation and Testing

Embedded system design and development lifecycle model, creating an embedded system architecture, introduction to embedded software development process and tools- Host and Target machines, linking and locating software, Getting embedded software into the target system, issues in Hardware-Software design and co-design.

Implementing the design-The main software utility tool, CAD and the hardware, Translation tools, Debugging tools, testing on host machine, simulators, Laboratory tools, System Boot-Up.

UNIT-V: Embedded System Design-Case Studies

Case studies- Processor design approach of an embedded system –Power PC Processor based and Micro Blaze Processor based Embedded system design on Xilinx platform-NiosII Processor based Embedded system design on Altera platform-Respective Processor architectures should be taken into consideration while designing an Embedded System.

Course Outcomes: After completion of this course the students will be able to

- a. Know clear knowledge regarding current technologies and issues relating to hardware and software design concepts associated with processor in Embedded Systems.
- b. Understand complete knowledge pertaining to different types of memory and memory management schemes and various interfacing devices related to design of an Embedded System.
- c. Explain different techniques related to testing and hardware software co- design issues pertaining to design of an Embedded System.

TEXT BOOKS:

- 1. Tammy Noergaard, "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier (Singapore) Pvt.Ltd.Publications, 2005.
- 2. Frank Vahid, Tony D. Givargis, "Embedded system Design: A Unified Hardware/Software Introduction", John Wily & Sons Inc.2002.

- 1. Peter Marwedel, "Embedded System Design", Science Publishers, 2007.
- 2. Arnold S Burger, "Embedded System Design", CMP.
- 3. Rajkamal, "Embedded Systems: Architecture, Programming and Design", TMH Publications, Second Edition, 2008.

DECS I M.Tech II Semester FUZZY SYSTEMS AND NEURAL NETWORKS (17D38205)

L T P C 4 0 0 4

Course Objectives:

- 1. To analyze basic neural computational models.
- 2. To get in detail knowledge regarding different algorithms related to neural learning
- 3. To study about different issues related probability and fuzziness and different types of fuzzy associative memories.

UNIT-I

Basic Neural Computational Models:

Basic concepts of Neural Nets, Inference and learning, Classification models (single layer Perceptrons, multi layer perceptrons), Association models (Hop field Nets, Bidirectional associative memories)

UNIT - II

Supervised and Unsupervised learning; Statistical learning; Neural Network learning (Back propagation, Radial basis Function Networks, ART Networks)

UNIT - III

Rule-Based Neural networks; Network Training; Decision Tree Based NN's;

Incremental Learning: Principles; Symbolic methods; Neural Network Approaches (Probabilistic NN's); Incremental RBCN.

UNIT-IV

Fuzziness Vs Probability: Fuzzy Sets & Systems; The Geometry of Fuzzy sets; The Fuzzy Entropy Theorem; The Subsethood Theorem; The Entropy Subsethood Theorem.

UNIT - V

Fuzzy Associative Memories: Fuzzy & Neural Function Estimators; Fuzzy Hebbian FAMs; Adaptive FAMs. comparison of fuzzy & neural systems: Case Studies.

Course Outcomes: After completion of this course the students will be able to

- a. Understand functioning of basic neural computational models.
- b. Get complete knowledge regarding different algorithms related to neural learning
- c. Understand about different issues related probability and fuzziness and different types of fuzzy associative memories.

Text Books:

- 1. B.Kosko, "Neural Networks & Fuzzy Systems", Prentice Hall (India) Ltd., 1992.
- 2. Yegna Narayanan, "Artificial Neural Networks". 8th Printing, PHI, 2003.

References:

- 1. Limin Fu, Neural, "Networks in Computer Intelligence", McGraw Hill Co., 1994.
- 2. S.Haykin "Neural Networks A Comprehensive Foundation", Maxwell Macmillan International, 1991.

WIRELESS SENSOR NETWORKS (17D38206)

L T P C 4 0 0 4

Course Objectives:

- 1. To study about different types of sensor networks, advantages, applications and the mechanism of transportation and processing involved in Wireless Sensor Networks.
- 2. To study about representation and different protocols and mechanisms involved in routing of Wireless Sensor Networks.
- 3. To study about tools and simulators associated with Wireless Sensor Networks.

UNIT-I

Sensor networks, advantages and applications, Sensor Network Applications - Habitat Monitoring, Smart Transportation, Collaborative Processing

UNIT - II

Localization and tracking,- sensing model, Distributed Representation, Tracking Multiple Objects networking sensors- Medium Access Control, Energy-Aware Routing to a Region, Attribute-Based Routing

UNIT-III

Infrastructure Establishment -Clustering and time synchronizations, Localization and localization services, Sensor tracking and control - Task-Driven Sensing, Information-Based Sensor Tasking, Sensor Group Management

UNIT-IV

Sensor Network data bases - Sensor Database Challenges , Query Interfaces , Data-Centric Storage, Multidimensional Indices for Orthogonal Range Searching, Locality-Preserving Hashing

UNIT - V

Sensor Network Platforms and Tools -Sensor Network hardware, Node level software, Node-Level Simulators, wireless sensor networks positioning and location management.

Course Outcomes: After completion of this course the students will be able to

- a. Understand different types of sensor networks, advantages, applications and the mechanism of transportation and processing involved in Wireless Sensor Networks.
- b. Understand about representation and different protocols and mechanisms involved in routing of Wireless Sensor Networks.
- c. Gets complete knowledge regarding different tools and simulators associated with Wireless Sensor Networks.

- 1. F. Zhao, C Guibas, "Wireless Sensor Networks", Elsevier, Morgan Kaufmann, 2004.
- 2. Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks -Technology, Protocols and Applications", John Wiley & Sons, 2007.

SPEECH PROCESSING (17D38207)

L T P C 4 0 0 4

Course Objectives:

- 1. To understand how speech signals are processed for Analysis and Synthesis. Also to understand speech processing in the context of its creation (anatomy, classification of sounds, etc.) as well as in its perception (psychology & neuroscience).
- 2. To analyze tools those are needed for analysis and synthesis, in the areas of digital signal processing for time-frequency analysis.

UNIT I

FUNDAMENTALS OF DIGITAL SPEECH PROCESSING: Anatomy & Physiology of Speech organs, the process of speech production, the acoustic theory of speech production, Digital models for speech signals.

TIME DOMAIN MODELS FOR SPEECH PROCESSING: Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate ,Speech vs silence discrimination using Average energy and zero crossing, Pitch period estimation using parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT II

LINEAR PREDICTIVE CODING (LPC) ANALYSIS: Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition, Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT III

HOMOMORPHIC SPEECH PROCESSING: Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, the Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The Homomorphic Vocoder.

SPEECH ENHANCEMENT: Nature of interfering sounds, Speech enhancement techniques, Spectral subtraction, Enhancement by re-synthesis.

UNIT IV

AUTOMATIC SPEECH RECOGNITION: Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System,. Continuous digit Recognition System

SPEAKER RECOGNITION: Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

UNIT V

HIDDEN MARKOV MODEL (HMM) FOR SPEECH: Hidden markov model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS, Adapting to variability in speech, Language models.

Course Outcomes: After completing the course, the student will be familiar with the principles and the techniques used in speech processing. This includes speech synthesis, speech coding and speech recognition.

TEXT BOOKS:

- 1. L.R Rabiner and S.W.Schafer, "Digital Processing of Speech Signals", Pearson, 2007.
- 2. Thomas F. Quateri, "Discrete Time Speech Signal Processing", 1st Edition, Pearson Edition.

REFERENCES:

- 1. Douglas O Shaughnessy, "Speech communication", Second Edition Oxford University press, 2000.
- 2. L.R Rabinar and B.H.Juang, "Fundamentals of Speech Recognition," PHI, 1993.
- 3. Ben Gold & Nelson Morgan, "Speech & Audio Signal Processing", 1st Edition, Wiley.

I M.Tech II Semester

INTERNET OF THINGS (17D38208)

L T P C 4 0 0 4

Course Objectives:

- 1. To introduce the terminology, technology and its applications.
- 2. To introduce the raspberry PI platform, that is widely used in IoT applications.
- 3. To introduce the implementation of web based services on IoT devices.

UNIT I :

Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, IoT Communication APIs IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle.

UNIT II:

IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

UNIT III:

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

UNIT IV:

IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT V:

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

Course Outcomes: After completion of the course, the student should able to

- a. Understand the new computing technologies
- b. Apply the latest computing technologies like cloud computing technology and Big Data
- c. Introduce the concept of Machine to Machine (M2M) with necessary protocols
- d. Acquire the skill to write programs using python scripting language used in many IoT devices

TEXT BOOKS:

- 1. Arshdeep Bahga and Vijay Madisetti, "Internet of Things A Hands-on Approach," 1st Edition, Universities Press, 2015.
- 2. Matt Richardson & Shawn Wallace, "Getting Started with Raspberry Pi," Maker Media Inc., O'Reilly, 2014.

I M.Tech II Semester

MULTIMEDIA COMMUNICATIONS (17D38209)

L T P C 4 0 0 4

Course Objectives:

- 1. To study basic requirements of Multimedia Communications.
- 2. To study about different coding schemes involved in Multimedia Communications.
- 3. To study about different standards and protocols related Multimedia Communications and its networks.

UNIT-I

Multimedia communications - multimedia requirements, Audio Visual integration - Lip synchronization, Audio-to-visual mapping, Bio-model person verification, Joint Audio-Video coding

UNIT - II

Multimedia information processing, Perceptual coding of digital audio signals - hybrid coder -differential perceptual audio coder, Image coding, Video coding, Water marking

UNIT-III

ANNS for multimedia processing - NN techniques for motion estimation, face detection and recognition, Distributed multimedia systems, IP based networks, Multimedia Operating Systems.

UNIT-IV

Multimedia Communication Standards - overview of MPEG 1, MPEG-2, MPEG-4 and MPEG-7., Real time multimedia transmission across the Internet

UNIT - V

Multimedia Communication across networks - packet audio / video, Streaming video across internet, Multimedia transport across IP/ATM Networks and Wireless networks

Course Outcomes: After completion of this course the students will be able to

- a. Gets knowledge regarding fundamentals of Multimedia Communications
- b. Understand about different coding schemes involved in Multimedia Communications.
- c. Gets complete knowledge regarding different standards and protocols related Multimedia Communications and its networks.

TEXT BOOKS:

1. K R Rao et al, "Multimedia Communication Systems: Techniques and Standards", Pearson, 2002.

- 1. Tay Vaughan, "Multimedia- Making it Work", TMH, 5th Edition, 2001.
- 2. Pk Andleigh , K. Thakkar, "Multimedia Systems Design", PHI,2002.

ADVANCED COMMUNICATIONS LAB (17D38210)

R-17

L T P C 0 0 3 2

Course Objectives:

- 1. To generate random data at given rates and employ different modulation schemes over generated data.
- 2. To simulate different modulated signals and diversity schemes over AWGN, and estimate data reception using different algorithms.
- 3. To implement RAKE receiver and estimate its performance through BER curve.

List of Experiments:

- 1. Generation of Random data at a given data rate (Hardware & Software) (M-Sequence).
- 2. Simulation of Rayleigh fading channel incorporating speed of the mobile & Power delay profile
- 3. Simulation of BPSK system over AWGN channel & finding its performance with BER plot.
- 4. Implementation of Equalization at the receiver to remove ISI caused due to Low channel bandwidth
- 5. Simulation of CDMA signal using QPSK modulation scheme &obtain matched filter response over AWGN Channel
- 6. Implementation of RAKE receiver & finding its performance through BER Curve
- 7. Implementation of L.M.S algorithm to estimate the original data when it is corrupted by noise & channel.
- 8. Implementation of R.L.S algorithm to estimate the original data when it is corrupted by noise & channel.

Tools Required: MATLAB – 7.0 & above

Course Outcomes: After completion of this course the students will be able to

- a. Generate random data at given rates and employ different modulation schemes over generated data.
- b. Simulate different modulated signals and diversity schemes over AWGN, and estimate data reception using different algorithms.
- c. Implement RAKE receiver and estimate its performance through BER curve.

MIXED SIGNAL DESIGN LAB (17D38211)

L T P C 0 0 3 2

Course Objectives: students will be able to

- 1. Know basic electronics involved in the design of MOS circuits.
- 2. To design a schematic and layout for Combinational and Sequential Circuits
- 3. Analyze the power and timing of Combinational and Sequential Circuits using EDA tools

List of experimental Concepts:

- 1. Analog circuit simulation.
- 2. Digital circuit simulation.
- 3. Mixed signal simulation.
- 4. Layout Extraction.
- 5. Parasitic values estimation from layout.
- 6. Layout Vs Schematic.
- 7. Net List Extraction.
- 8. Design Rule Checks

Equipment/Software Required:

- EDA Tools Industry Standard software-latest version like Mentor/ Synopsys /Equivalent.
- > Personal computer with necessary peripherals.

Course Outcome: After completion of the course, students will be able to

- a. Make models of transistor circuits and simulate them for various operational requirements.
- b. Design of analog and digital circuits using EDA tools.
- c. Analyze and design of VLSI circuits.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR COLLEGE OF ENGINEERING (AUTONOMOUS), PULIVENDULA YSR (KADAPA) District 516 390, (A.P) INDIA

M.Tech. Digital Electronics & Communication Systems (DECS)

Semester-I									
S.No.	Course	Course Name	Category	H	Hours per		Credits		
	Code			L	Т	Р			
1.		Advanced Digital System Design	PC	3	0	0	3		
2.		Wireless and Mobile Communications	PC	3	0	0	3		
3.		Program Elective- 1	PE	3	0	0	3		
		a. Design of Fault Tolerant Systems							
		b. CMOS Digital IC Design							
		c. Fuzzy Systems and Neural Networks							
4.		Program Elective- 2	PE	3	0	0	3		
		a. Coding Theory and Techniques							
		b. Advanced Digital Signal Processing							
		c. 5G Communications							
5.		Advanced Digital System Design Lab	PC	0	0	4	2		
6.		Wireless and Mobile Communications Lab	PC	0	0	4	2		
7.		Research Methodology and IPR	MC	2	0	0	2		
8.		Audit Course 1	AC	2	0	0	0		
Total 1									

Semester-II								
S.No.	Course	Course Name	Category	Hou	ırs p	er	Credits	
	Code			L	Т	Р		
1.		Analog and Mixed Signal Design	PC	3	0	0	3	
2.		Advanced Communications and Networks	PC	3	0	0	3	
3.		Program Elective – 3	PE	3	0	0	3	
		a. Low Power VLSI Design						
		b. SoC Architecture						
		c. Wireless Sensor Networks						
4.		Program Elective – 4	PE	3	0	0	3	
		a. Software Defined Radio						
		b. Image and Video Processing						
		c. Transform Techniques						
5.		Analog and Mixed Signal Design Lab	PC	0	0	4	2	
6.		Advanced Communications and Networks	PC	0	0	4	2	
		Lab						
7.		Technical Seminar	PR	0	0	4	2	
8.		Audit Course 2	AC	2	0	0	0	
	1	,	1	1	Tota	l	18	

	Semester-III										
S.No.	Course	Course Course Name Ca				er	Credits				
	Code			L	Т	Р					
1.		Program Elective –5	PE	3	0	0	3				
		a. Detection and Estimation Theory									
		b. Embedded Systems									
		c. Artificial Intelligence and Machine									
		Learning									
2.		Open Elective	OE	3	0	0	3				
3.		Dissertation Phase – I	PR	0	0	20	10				
4		Co-Curricular Activities	PR				02				
				T	otal		18				

		Semester-IV					
S.No.	Course	Course Name	Category	Hours per			Credits
	Code			L	Т	Р	
1.		Dissertation Phase – II	PR	0	0	32	16
			Total				16

Open Elective:

- 1. Business Analytics
- 2. Industrial Safety
- 3. Operation Research
- 4. Cost Management of Engineering Projects
- 5. Composite Materials
- 6. Waste to Energy

Audit course I:

- 1. English for Research Paper Writing
- 2. Value Education
- 3. Pedagogy Studies

Audit course II:

- 1. Disaster Management
- 2. Constitution of India
- 3. Personality Development through Life Enlightenment Skills.

Guidelines for Awarding Credits for Co-curricular Activities:

Name of the Activity	Maximum Credit Points
	Eligible / Activity
Participation in Seminar/Conference/Workshop/Symposium/ Training	1
Programs within India (related to the specialization of the student)	
Participation in Seminar/Conference/Workshop/Symposium/ Training	2
Programs outside India (related to the specialization of the student)	
Academic Award/Research Award from State Level/National Agencies	1
Academic Award/Research Award from International Agencies	2
Research / Review Publication in National Journals (Indexed in Scopus /	1
Web of Science)	
Research / Review Publication in International Journals	2
(Indexed in Scopus / Web of Science)	

Course Code	
Semester	Ι

ADVANCED DIGITAL SYSTEM DESIGN

 L
 T
 P
 C

 3
 0
 0
 3

Course Objectives:							
• To understand processor arithmetic operations and basic binary codes.							
• To learn and design different combinational logic circuits.							
• To implement sequential logic circuit design.							
• To design different subsystems using various combinational circuits.							
• To design and analyze different subsystems using various sequential circuits	5.						
Course Outcomes (CO): Student will be able to							
• Understand processor arithmetic operations and basic binary codes.							
• Design different combinational logic circuits.							
• Implement sequential logic circuit design.							
• Design different subsystems using various combinational circuits.							
 Design and analyze different subsystems using various sequential circuits. 							
UNIT - I	Lecture Hrs:						
Processor Arithmetic: Two's complement number system - Arithmetic operati	ons; Fixed point						
number system; Floating point number system - IEEE 754 format, Basic binary code	es.						
	T / TT						
	Lecture Hrs:						
Combinational circuits: CMOS logic design, Static and dynamic analysis o	f Combinational						
circuits, timing hazards. Functional blocks: Decoders, Encoders, Three-state devic	es, Multiplexers,						
Parity circuits, Comparators, Adders, Subtractors, Carry look-ahead adder –	timing analysis.						
Combinational multiplier structures.	x . xx						
	Lecture Hrs:						
Sequential Logic: Latches and Flip-Flops, Sequential logic circuits - timing anal	lysis (Set up and						
hold times), State machines - Mealy & Moore machines, Analysis, FSM design us	sing D flip-flops,						
FSM optimization and partitioning; Synchronizers and metastability. FSM D	esign examples:						
vending machine, Traffic light controller, Washing machine. Design and architecti	ure of CPLD and						
FPGA.	T / T						
	Lecture Hrs:						
Subsystem Design using Combinational Circuits: Design different logical blocks	involving mostly						
combinational circuits: ALU, 4-bit combinational multiplier, Barrel shifter, Simp	le fixed point to						
floating point encoder, Dual Priority encoder, Cascading comparators.	T / T						
UNIT - V	Lecture Hrs:						
Subsystem Design using Sequential Circuits: Design different logical blocks	involving mostly						
sequential circuits: Pattern (sequence) detector, Programmable Up-down count	er, Round robin						
arbiter with 3 requesters, Process Controller, FIFO.							
Textbooks:							
1. M. Morris Mano, Michael D. Ciletti, "Digital Design: With an Introduction to t	he Verilog HDL,						
VHDL, and System Verilog", Pearson Education; 6 th Edition, 2018.							
2. John F. Wakerly, "Digital Design", Prentice Hall, 3rd Edition, 2002.							
Reference Books:							
1. N. N. Biswas, "Logic Design Theory", PHI.							
2. Samuel C. Lee, "Digital Circuits and Logic Design", PHI.							
Omme Learning Resources:							

Course Code	
Semester	

Ι

 L
 T
 P
 C

 3
 0
 0
 3

Course Objectives:
• To study about the channel planning for Wireless systems.
• To know about the large scale path loss in Mobile Radio Propagation.
• To learn about the small scale fading and multipath fading in Mobile Radio Propagation.
• To comprehend the concepts of Equalizers and Diversity techniques.
• To study about the Wireless networks and their standards.
Course Outcomes (CO): Student will be able to
Know about the channel planning for Wireless systems.
• Learn about the large scale path loss in Mobile Radio Propagation.
• Understand the small scale fading and multipath fading in Mobile Radio Propagation.
• Comprehend the concepts of Equalizers and Diversity techniques.
• Know about the Wireless networks and their standards.
UNIT - I Lecture Hrs:
The Cellular Concept: System design fundamentals: Introduction, Frequency reuse, Channel
assignment Strategies, Handoff strategies- Prioritizing handoffs, Practical handoff considerations,
Interference and system capacity - Co channel Interference and system capacity, Channel planning
for wireless systems, Adjacent channel interference, Power control for reducing interference,
Trunking and Grade of service, Improving coverage & capacity in Cellular systems- Cell splitting,
sectoring.
UNIT - II Lecture Hrs:
Mobile Radio Propagation-Large-Scale Path Loss: Introduction to Radio wave propagation, Free
space propagation model, relating power to electric field, Three basic propagation mechanisms,
Reflection, Ground reflection (Two-Ray) model, Diffraction, Scattering, Outdoor propagation
models, Indoor propagation models, Signal penetration into buildings, Ray tracing and Site specific
modeling.
UNIT - III Lecture Hrs:
Mobile Radio Propagation - Small Scale Fading and Multipath Fading : Small scale multipath
propagation, factors influencing small scale fading, Doppler shift, Impulse response model of a
multipath channel, relationship between bandwidth and received power, Small-scale multipath
measurements, Parameters of mobile multipath channels, Types of Small-scale fading- fading effects
due to multipath time delay spread, fading effects due to Doppler spread, statistical models for
multipath fading channels, Clarke's model for flat fading, spectral shape due to Doppler spread in
Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics,
Two-ray Rayleigh fading model.
UNIT - IV Lecture Hrs:
Equalization and Diversity: Introduction, Fundamentals of equalization, Training a generic
adaptive equalizer, equalizers in a communication receiver, Linear equalizers, Non-linear
equalization, Algorithms for adaptive equalization. Diversity techniques - Derivation of selection,
diversity improvement, Derivation of maximal ratio combining improvement, Practical space
diversity consideration, Polarization diversity, Frequency diversity, Time diversity, RAKE receiver.
UNIT - V Lecture Hrs:
Wireless Networks: Introduction to wireless networks, Advantages and disadvantages of Wireless
local area networks, WLAN topologies, WLAN standard IEEE 802.11, IEEE 802.11 Medium access
control, Comparison of IEEE 802.11 a, b, g and n standards, IEEE 802.16 and its enhancements,
Wireless PANs, HiperLan, WLL.

Textbooks:

1. Wireless Communications, Principles, Practice – Theodore, S. Rappaport, 2nd Ed., 2002, PHI.

2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.

Reference Books:

- 1. Wireless Digital Communications Kamilo Feher, 1999, PHI.
- 2. Wireless Communication and Networking William Stallings, 2003, PHI.
- 3. Principles of Wireless Networks KavehPah Laven and P. Krishna Murthy, 2002, PE.
- 4. Mobile Cellular Communication Gottapu Sasibhushana Rao, Pearson Education, 2012.

Course Coue	-	PROGRAM ELECTIVE – 1	L	1	Ŷ	C	
Semester	Ι	DESIGN OF FAULT TOLERANT SYSTEMS	3	0	0	3	
Course Objective	s:						
To provid	e br	oad understanding of fault diagnosis and tolerant design approx	ich.				
• To illustrate the framework of test pattern generation using semi and fully automatic approach.							
To acquire	e the	e knowledge of scan architectures.					
To unders	tanc	the design concepts of built-in-self test.					
• To learn a	bou	t various standard test access methods.					
Course Outcome	s (C	O): Student will be able to					
 Understan Illustrate t Comprehe Understan Learn abo 	nd fa the f end nd th out v	Ault diagnosis and tolerant design approach. Framework of test pattern generation using semi and fully autor the knowledge of scan architectures. The design concepts of built-in-self test. arious standard test access methods.	natic	app	roacł	1.	
UNIT - I			Leo	ture	Hrs		
Fault Tolerant	Desi	gn: Basic concepts: Reliability concepts. Failures & faults	Re	liahi	litv #	and	
failure rate, Rela availability, reliat design - Basic co reconfiguration teo	ation bility once chni	between reliability and mean time between failure, many y of series, parallel and parallel-series combinational circuit pts - static, dynamic, hybrid, triple modular redundant syste ques, Data redundancy, Time redundancy and software redund	intai s. F m (' ancy	nabil ault FMR v con	ity a toler (), 51 cepts	and ant MR S.	
UNIT - II			Lec	ture	Hrs:		
Self-Checking Ci totally self-checki Fail safe design-S theory and Berger	ircu ng c Stro cod	its & Fail-Safe Design: Basic concepts of self-checking circlecker, Checkers using m out of n codes, Berger code, Low-congly fault secure circuits, fail safe design of sequential circuit le, totally self-checking PLA design.	cuit ost re s us	s, Do sidu ing p	esign e coc partit	of le. ion	
UNIT - III			Lec	ture	Hrs:		
Design for Testa testability, Contro and syndrome test Design for testab DFT technique- F full scan design, designa	abili illab able oility ull s Sha	ity: Design for testability for combinational circuits: Baility and observability, The Reed Muller's expansion technique designs. y by means of scan: Making circuits testable, Testability instances in the second	asic e, us ertic can a sign	cond se of on, F rchit , oth	cepts cont ull se ectur	of trol can res- can	
UNIT IV			Las	4	I I man		
UNIT - IVLecture Hrs:Logic Built – In - Self-Test (BIST) : Basics-Memory-based BIST, BIST effectiveness, BIST types, Designing a BIST, Test pattern generation- engaging TPGs, exhaustive counters, ring counters, twisted ring counter, Linear feedback shift register, Output response analysis-engaging ORA's, One's counter, transition counter, parity checking, Serial LFSRs, Parallel signature analysis, BIST architectures-BIST related terminologies, A centralized and separate board-level BIST architecture, Built-in evaluation and self-test (BEST), Random test socket(RTS), LSSD On-chip self-test, Self – testing using MISR and SRSG, Concurrent BIST, BILBO, Enhancing coverage, RT level BIST design-CUT design, simulation and synthesis, RTS BIST insertion, Configuring the RTS BIST, incorporating configurations in BIST, Design of STUMPS, RTS and STUMPS results.							
UNIT - V			Lec	ture	Hrs:		
Standard IEEE access port, bour Boundary scan tes scan chain, multip but multiple TMS boundary scan tes Scan Description	Tes ndar st in ole-s S, N S, N t ha lang	t Access Methods: Boundary scan basics, Boundary scan y scan registers, TAP controller, the decoder unit, select structions -Mandatory instructions, Board level scan chain stru- scan chain with one control test port, multiple-scan chains wi Aultiple-scan chain, multiple access port, RT Level boundar rdware for CUT, Two module test case, virtual boundary scan uage.	archi and actur th or th so teste	itectu othe re-Or ne T can-i er, B	nre- r un ne se DI,T nsert ound	test its, rial DO ing ary	

Textbooks:

- 1. Fault Tolerant & Fault Testable Hardware Design- Parag K. Lala, PHI, 1984.
- 2. Digital System Test and Testable Design using HDL models and Architectures –Zainalabedin Navabi, Springer International Ed.

Reference Books:

- 1. Digital Systems Testing and Testable Design- Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman, Jaico Books.
- 2. Essentials of Electronic Testing- Bushnell & Vishwani D. Agarwal, Springers.

3. Design for Test for Digital IC's and Embedded Core Systems- Alfred L. Crouch, 2008.

Course Code		PROGRAM ELECTIVE – 1	L	Т	P	С
Semester	Ι	CMOS DIGITAL IC DESIGN	3	0	0	3
Course Objective	es:					
 To unders 	tan	d the fundamental properties of digital integrated circuits using	MO	SFE	Г's.	
• To learn t	he t	basics of CMOS Digital IC design using Combinational MOS le	ogic	circu	its.	
• To know	the	basics of CMOS Digital IC design using Sequential MOS logic	circ	uits.		
To unders	tan	d the fundamentals of Dynamic logic circuits.				
• To analyz	e ai	nd compare different semiconductor memories.				
Course Outcome	s (C	CO): Student will be able to				
• Learn the	fun	damental properties of digital integrated circuits using MOSFE	ET's			
• Understar	nd tl	ne basics of CMOS Digital IC design using Combinational MO	S lo	gic ci	ircuit	s.
• Know the	bas	sics of CMOS Digital IC design using Sequential MOS logic ci	rcuit	s.		
• Understar	nd tl	ne fundamentals of Dynamic logic circuits.				
• Analyze a	nd	compare different semiconductor memories.				
UNIT - I		*	Lee	cture	Hrs:	
MOS Design Ps	eud	lo NMOS Logic: Inverter, Inverter threshold voltage, outr	out ł	nigh	volta	ge,
Output low voltage	ge, g	gain at gate threshold voltage, Transient response, Rise time, J	Fall	time,	Pseu	ıdo
NMOS logic gate	s, T	ransistor equivalency, CMOS Inverter logic.				
UNIT - II			Lee	cture	Hrs:	
Combinational N	109	S Logic Circuits: MOS logic circuits with NMOS loads, Primi	tive	CMC	DS lo	gic
gates-NOR & N	AN	D gate, Complex Logic circuits design-Realizing boolean e	expre	ssior	ns us	ing
NMOS gates and	CN	IOS gates, AOI and OIA gates, CMOS full adder, CMOS tra	ansm	issio	n ga	tes,
Designing with T	rans	mission gates.				
UNIT - III			Lee	cture	Hrs:	
Sequential MOS	Lo	gic Circuits: Behavior of bi-stable elements, SR Latch, Cloch	ced 1	atch	and	flip
flop circuits, CMO	DS I) latch and edge triggered flip-flop.				
UNIT - IV			Lee	cture	Hrs:	
Dynamic Logic	Ci	cuits: Basic principle, Voltage Bootstrapping, Synchronou	ıs d	ynam	nic p	ass
transistor circuits	, D	ynamic CMOS transmission gate logic, High performance	Dyna	amic	CM	OS
circuits.						
UNIT - V			Lee	cture	Hrs:	
Semiconductor I	Mer	nories: Types, RAM array organization, DRAM – Types, O	pera	tion,	DRA	٩M
timing analysis, I	Leal	cage currents in DRAM cell and refresh operation, SRAM of	opera	tion,	SRA	4M
timing analysis, L	eak	age currents in SRAM cells, Flash Memory-NOR flash and NA	۸ND	flasł	1.	
Textbooks:						4
1. Neil Weste,	Dav	vid Harris, "CMOS VLSI Design: A Circuits and Systems	Pers	pecti	ve",	4^{th}
Edition, Pears	on,	2010.				
2. CMOS Digita	al I	ntegrated Circuits Analysis and Design – Sung-Mo Kang,	Yusı	uf Le	ebleb	ici,
TMH, 3 rd Edit	tion	, 2011.				
Reference Books	:			0.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>
1. Introduction t Press, 2011.	οV	LSI Systems: A Logic, Circuit and System Perspective – Min	ng-B	SO Li	in, C	RC
2. Digital Integr Borivoje Niko	ateo ateo	1 Circuits – A Design Perspective, Jan M. Rabaey, Ananth 2ndEdition, PHI.	ia Cl	hand	rakas	an,
3. Digital Integra	ated	Circuit Design – Ken Martin, Oxford University Press, 2011.				
Online Learning	Re	sources:				
0						

Course Code		PROGRAM ELECTIVE – 1	L	Т	P	С
Semester	Ι	FUZZY SYSTEMS AND NEURAL NETWORKS	3	0	0	3
Course Objective	es:					
To analyz	e ba	asic neural computational models.				
• To get in	deta	il knowledge about supervised and un-supervised learning.				
To unders	tan	d different types of associative memories.				
To study a	abo	ut different issues related probability and fuzziness.				
• To learn a	iboi	it different types of fuzzy associative memories.				
Course Outcome	s (C	CO): Student will be able to				
Analyze b	asi	c neural computational models.				
Gain know	vle	lge about supervised and un-supervised learning.				
Understar	nd d	ifferent types of associative memories.				
Analyze t	he i	ssues related probability and fuzziness.				
Learn diff	ere	nt types of fuzzy associative memories.				
UNIT - I			Le	cture	Hrs:	
Introduction: Hi	sto	ry of Neural networks, Structure and functions of biologi	cal ;	and a	artific	cial
neuron, Neural ne	etwo	ork architectures, learning methods, evaluation of neural netwo	orks.	Mc	Cullo	ch-
Pitt's neuron mo	del	, perception learning, Delta learning, Windrow-Hoff learn	ing	rules	, lin	ear
separability, Adal	ine,	Modifications.	-			
UNIT - II			Lee	cture	Hrs:	
Supervised Lear	rniı	ng: Architectures, Madalines, Back propagation algorithm	, in	port	ance	of
learning paramete	r ar	d momentum term, radial basis functions.				
Unsupervised Le	arr	ing: Winner – Take – all learning, out star learning, learning	vecto	or qua	antizo	ers,
Counter propagat	ion	networks, Kohonen self - organizing networks, Grossberg	g lay	ver, a	adapt	ive
resonance theory,	Ha	mming net.				
UNIT - III			Lee	cture	Hrs:	
Associative Mem	l <mark>ori</mark> emo	es: Hebbian learning rule, continues and discrete Hopfield ne	twor	ks, r	ecurr	ent
		y, Boltzmann machines, Bi-an certonar associative memory.	ΙA	oturo	Hree	
Eugrinage ve Dro	hal	ility Eugen Sate & Systems The Coomstry of Eugen acts The			TIIS.	
Theorem: The Sul	Dat	hood Theorem: The Entropy Subset Hood Theorem	вг	izzy	Entro	уру
LINIT V	5501	nood Theorem, The Entropy Subset flood Theorem.	Ιa	oturo	Hree	
		Momenting Europe & Neurol Europeing Estimators Europe	Ltak	hine.	EAN	
Adaptive FAMs.	ve	Memories: Fuzzy & Neural Function Estimators; Fuzzy	Heb	Dian	FAI	vis;
Textbooks:						
1. J.M. Zurada, "I	ntro	duction to Artificial Neural Systems" - Jaico Publishing House	e. Bo	mbar	v.200)1.
2. Kishan Mehrot	ra,	Chelkuri. K. Mohan, Sanjay Ranka, "Elements of Artificial N	eura	1 Net	work	κs",
Penram Internatio	nal.					
Reference Books	:					
1. S. N Sivanandh	am	S. Sumathi, S.N. Deepa, "Introduction to Neural networks usi	ng n	atlab	6.0"	,
Tata McGraw Hill	l, N	ew Delhi, 2005.	-			
2. B. Kosko, "Neu	iral	Networks & Fuzzy Systems", Prentice Hall (India) Ltd., 1992.				
Online Learning	Re	sources:				
						_

Course Code		PROGRAM ELECTIVE – 2	L	Т	Р	С		
Semester	Ι	CODING THEORY AND TECHNIQUES	3	0	0	3		
			ıl					
Course Objective	es:							
• To learn the measurement of information and errors.								
• To obtain knowledge in designing Cyclic codes.								
To construct	uct	tree and trellies diagrams for convolution codes.						
 To design 	the	Turbo codes and their applications.						
To analyz	e th	e Space time codes and their applications.						
Course Outcome	s (C	CO): Student will be able to						
• Learn the	me	asurement of information and errors.						
Obtain knowledge in designing Cyclic codes.								
Construct	tree	e and trellies diagrams for convolution codes.						
• Design the	e Tı	urbo codes and their applications.						
Analyze	the	Space time codes and their applications.	Ŧ					
UNIT - I			Leo	ture	Hrs:			
Coding for Relia	able	e Digital Transmission and storage: Mathematical model	ot 11	ntorn	natior	n, A		
Error control strat	ire	of information, Average and mutual information and entropy	/, IY	pes	or er	ors,		
Linear Block Co	des	a. : Introduction to Linear block codes. Syndrome and error de	tecti	on I	Minir	num		
distance of a bloc	k c	ode Error detecting and Error correcting capabilities of a blo	ck c	ode	Stan	lard		
array and Syndro	me	decoding. Probability of an undetected error for Linear co	odes	over	a E	SC.		
Hamming codes.	App	lications of block codes for error control in data storage system	1.					
UNIT - II			Leo	cture	Hrs:			
Cyclic codes: De	scri	ption, Generator and Parity-check matrices, Encoding, Synd	rome	e cor	nputa	tion		
and error detecti	on,	Decoding, Cyclic Hamming Codes, shortened cyclic cod	es, 1	Error	-trap	ping		
decoding for cycli	c co	odes, Majority logic decoding for cyclic codes.						
UNIT - III			Leo	cture	Hrs:			
Convolutional Convolutional Convolution	ode	s: Encoding of convolutional codes, Structural and distance pro	pert	ies,				
maximum likeliho	bod	decoding, Sequential decoding, Majority- logic decoding of d	conv	oluti	on co	des.		
Application of Vit	erb	i decoding and sequential decoding, Applications of convolution	onal	code	s in A	RQ		
system.			La		IIman			
UNIT - IV		Codes Codes have a second s	Leo	lure	HIS:	1		
Log likelihood ol	DPC	Codes- Codes based on sparse graphs, decoding for binar	y era	isure	char	nel,		
Log-likelihood al	geo nvo	utional codes Parallel concatenation The UMTS tu	лр. rho	code		ues,		
concatenation Par	alle	el concatenation Turbo decoding	100	cou	., 5	<i>.</i> 11 <i>a</i> 1		
UNIT - V			Leo	cture	Hrs:			
Space-Time Cod	es:	Introduction, Digital modulation schemes, Diversity, Ortho	gona	1 spa	nce- 1	ime		
block codes, Alar	nou	ti's schemes, Extension to more than two transmit antennas,	Simu	latio	n res	ults,		
Spatial Multiplexi	ing:	General concept, Iterative APP preprocessing and per-layer	Dec	odin	g, Li	near		
multilayer detection	ion,	Original BLAST detection, QL Decomposition and inter	face	can	cellat	ion,		
Performance of M	ulti	-layer detection schemes, Unified description by linear disper	sion	code	s.			
Textbooks:								
1. Error Control (Cod	ing- Fundamentals and Applications –Shu Lin, Daniel J. Coste	llo, J	r,				
Prentice Hall,	lnc.							
2. Error Correctin	ng C	oding Theory-Man Young Rhee, McGraw-Hill, 1989.						
1 Disital Campoon		the second second at the line time. Demond Older DE						
1. Digital Commu	nica	ations-rundamental and Application - Bernard Sklar, PE.						
3 Error Correction	n C	nding- Mathematical methods & algorithms-Todd K. Moon W	lev	India	1 200	6		
4. Information Th	eorv	, Coding and Cryptography – Ranian Bose. 2nd Edition. TMH	y [, 200)9.	., <i>2</i> 00			
Online Learning	Re	Sources:	, _ 0	•				

Course Code		PROGRAM ELECTIVE – 2	L	Т	P	С
Semester	Ι	ADVANCED DIGITAL SIGNAL PROCESSING	3	0	0	3
Course Objective	es:					
To study a	abo	ut the digital signal processing algorithms.				
• To learn a	boı	it the multi rate signal processing.				
• To gain k	nov	ledge about the power spectral estimation and their parametric	met	hods	•	
To study a	ibo	ut the effects of finite word length in fixed-point DSP systems.				
To unders	tan	d various applications of Digital signal processing.				
Course Outcomes	s ((CO): Student will be able to				
Learn abo	ut t	he digital signal processing algorithms.				
Know abo	out	the multi rate signal processing.				
Gain know	vle	dge about the power spectral estimation and their parametric m	etho	ds.		
 Appreciat 	e th	e effects of finite word length in fixed-point DSP systems.				
Understan	id v	arious applications of Digital signal processing.				
UNIT - I			Leo	cture	Hrs:	
DSP Algorithms:	Fa	st DFT algorithms based on Index mapping, Sliding discrete t	ouri	er tra	Insfo	rm,
DFT computation		ver a narrow frequency band, Split radix FFT, Linear filte	ring	appr	oach	to
computation of DI	-1	using Chirp Z-Transform.	T .		TT	
	1.0			lure	Hrs:	
conversion by a ra	l P	rocessing: Decimation by a factor D, Interpolation by a factor nal factor I/D, Filter design & Implementation for sampling rate	: I, S e cor	ampl	ing r	ate
UNIT - III			Leo	cture	Hrs:	
Power Spectral H	Esti	mation: Estimation of spectra from finite duration observation	n of	signa	ls, n	on-
parametric method	ls:	Bartlett, Welch & Blackmann, Tukey methods.		-		
Parametric Meth	od	s for Power Spectrum Estimation: Relation between auto con	relat	ion &	k mo	del
parameters, Yule-	Wa	ker & Burg Methods, MA & ARMA models for power spectru	m es	timat	ion.	
UNIT - IV			Leo	cture	Hrs:	
Analysis of Fini	te	Word length effects in Fixed-Point DSP Systems: Fixe	d, F	loatir	ig-Po	oint
Arithmetic – ADC) qi	iantization noise & signal quality, Finite word length effect in	IIR	digita	al fili	lers
– Finite Word-leng	gin	enects in FF1 algorithms.	La	oturo	Ura	
Applications of 1	Dia	ital Signal Processings Dual tona multi fraquancy signal d		ion	5 mag	trol
analysis of sinusoi	idal	signals Spectral analysis of Non-stationary Signals Musical	soun	d pro	spec	na
Over sampling A	A/D	Converter Over sampling D/A Converter Discrete-Time	sound an	alvtic	sio	ng, mal
Generation.		Converter, Over sampling Dirr Converter, Discrete rink	, un	arytic	· 518	,11cc1
Textbooks:						
1. Sanjit K Mitra,	"D	igital Signal Processing", Tata McGraw Hill Publications.				
2. J G Proakis, D) G	Manolokis, "Digital Signal Processing Principles, Algorithm	ns, A	vppli	catio	ns"
Reference Books						
1. A V Oppenhien	n. R	W Schafer, "Discrete-Time Signal Processing", Pearson Educ	ation	1.		
2. Emmanuel C If	eac	her Barrie. W. Jervis, "DSP- A Practical Approach", Pearson E	duca	ition.		
3. S. M. Kay, "Mo	oder	rn spectral Estimation Techniques" PHI, 1997.				
Online Learning	Re	sources:				

Course Code		PROGRAM ELECTIVE – 2	L	Т	Р	C
Semester	Ι	5G COMMUNICATIONS	3	0	0	3
Course Objective	es:					
To know a	abo	ut the evolution and advancements of mobile technologies.				
• To learn a	boı	at the channel models and their requirements.				
To unders	tan	d the requirements of transmission over 5G and modulation tec	hniq	ues.		
To acquire	e kı	nowledge on D2D and M2M communications.				
To gain th	ie k	nowledge about millimeter wave communications.				
Course Outcome	s (C	CO): Student will be able to				
Know abo	out	the evolution and advancements of mobile technologies.				
Learn abo	ut t	he channel models and their requirements.				
Understar	nd tl	he requirements of transmission over 5G and modulation technic	iques	5.		
Acquire k	nov	vledge on D2D and M2M communications.				
Gain the k	no	wledge about millimeter wave communications.	1			
UNIT - I			Lee	cture	Hrs:	
Overview of 5G	Br	oadband Wireless Communications: Evolution of mobile te	chnc	ologie	s 1G	i to
4G (LTE, LTEA,	, Ľ	TEA Pro), An overview of 5G requirements, Regulations for	or 5	G , S	pectr	um
analysis and sharing	ng f	for 5G.				
UNIT - II			Lee	cture	Hrs:	
The 5G wireless	Pr	ropagation Channels: Channel modeling requirements, propagation	agati	on se	cenar	rios
and challenges in	the	5G modeling, Channel Models for mmWave MIMO Systems.	-			
UNIT - III		· · · ·	Lee	cture	Hrs:	
Transmission ar	d	Design Techniques for 5G: Basic requirements of transn	nissio	on o	ver <i>f</i>	5G.
Modulation tech	nia	ies – Orthogonal frequency division multiplexing (OFD)	M).	gen	eraliz	zed
frequency division	n m	ultiplexing (GFDM) filter bank multi-carriers (FBMC) and	univ	ersal	filte	red
multi-carrier (UF	M	T) Multiple accesses techniques – orthogonal frequency of	livis	ion	multi	nle
accesses (OFDM)	A)	generalized frequency division multiple accesses (GFDMA)	no	n-ort	hogo	mal
multiple accesses	(N(OMA)	, 110		1050	1141
LINIT - IV	(1 (Le	rture	Hrs	
Device-to-Device	(D	2D) and Machine-to-Machine (M2M) type Communication	ne.	Exte	nsion	of
AG D2D standard	(D iza	tion to 5G radio resource management for mobile broadband	4 D2	D n	miltik	ion
and multi operator	n D	2D communications	1 D2	, п	luitii	lop
		2D communications.	La		IIman	
	C	• • • • • • • • • • • • • • • • • • • •	Leo		HIS:	
Millimeter-wave		ommunications: Spectrum regulations, deployment scenario	os, b	eamr	ormi	ng,
physical layer te	chn	iques, interference and mobility management, Massive MI	MO	prop	bagat	10n
channel models, C	Cha:	nnel Estimation in Massive MIMO, Massive MIMO with impe	erfec	t CSI	, Mu	ilt1-
cell Massive MIM	Ю,	Pilot contamination, Spatial modulation (SM).				
Textbooks:						
1. Martin Sauter "	Fro	om GSM From GSM to LTE–Advanced Pro and 5G: An Introc	lucti	on to	Mot	oile
Networks and N	Moł	pile Broadband", Wiley-Blackwell.				
2. Afif Osseiran,	Jo	se.F. Monserrat, Patrick Marsch, "Fundamentals of 5G Me	obile	Net	work	τs",
Cambridge Uni	ver	sity Press.				
Reference Books	:					
1. Jonathan Rodrig	gue	z, "Fundamentals of 5G Mobile Networks", John Wiley & Son	s.			
2. Amitabha Ghos	h a	nd Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambrid	dge			
University Press	5					
3. Athanasios G.	Ka	anatos, Konstantina S. Nikita, Panagiotis Mathiopoulos, "No	ew I	Direc	tions	in
Wireless Com	mu	nication Systems from Mobile to 5G", CRC Press.				
4. Theodore S. R	apt	paport, Robert W. Heath, Robert C. Danials, James N. Murd	dock	"Mi	llime	eter
L	11					

Course Code		ADVANCED DIGITAL SYSTEM	L	Т	Р	C
Semester	Ι	DESIGN LAB	0	0	4	2

- To familiarize the HDL simulator / synthesis tool.
- To design and implement given combinational circuits on FPGA device.
- To design and implement given sequential circuits on FPGA device.

Course Outcomes (CO): Student will be able to

- Familiarize the HDL simulator / synthesis tool.
- Design and implement given combinational circuit on FPGA device.
- Design and implement given sequential circuit on FPGA device.

List of Experiments:

Student must design ANY TWELVE experiments using standard HDL simulator / Synthesis tool for target FPGA device.

- 1. HDL code to realize all the logic gates
- 2. Design and Simulation of adder, Serial Binary Adder, Multi Precession Adder, Carry Look Ahead Adder.
- 3. Design of 2-to-4 decoder, 8-to-3 encoder (without and with parity)
- 4. Design of 8-to-1 multiplexer
- 5. Design of 4 bit binary to gray converter
- 6. Design of Multiplexer/ Demultiplexer, comparator
- 7. Design of Full adder using 3 modeling styles
- 8. Design of flip flops: SR, D, JK, T
- 9. Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence counter
- 10. Design of a N- bit Register of Serial- in Serial –out, Serial in parallel out, Parallel in Serial out and Parallel in Parallel Out.
- 11. Design of Sequence Detector (Finite State Machine- Mealy and Moore Machines).
- 12. Design of 4- Bit Multiplier, Divider.
- 13. Design of ALU to Perform ADD, SUB, AND-OR, 1's and 2's Compliment,
- 14. Design of Finite State Machine.
- 15. Implementing the above designs on Xilinx/Altera/Cypress/equivalent based FPGA/CPLD kits.

Software Requirements:

Xilinx Vivado

Hardware Requirements: Xilinx Spartan 6 FPGA board.

References:

Course Code		WIRELESS AND MOBILE	L	Т	Р	С
Semester	Ι	COMMUNICATIONS LAB	0	0	4	2

- To understand the concepts of GSM/CDMA technologies.
- To implement signal processing algorithms for the given specifications.

• To implement wireless communication algorithms for the given specifications.

Course Outcomes (CO): Student will be able to

- Understand the concepts of GSM/CDMA technologies.
- Implement signal processing algorithms for the given specifications.
- Implement wireless communication algorithms for the given specifications.

List of Experiments:

Student must do ALL TWELVE experiments using MATLAB/NetSim/Qualnet simulator.

- 1. Implementation of Convolutional Encoder and Decoder.
- 2. Simulation of the following Outdoor Path loss propagation models using MATLAB.
 - a. Free Space Propagation model
 - b. Okumura model
 - c. Hata model
- 3. Simulation of Adaptive Linear Equalizer using MAT LAB software.
- 4. Measurement of call blocking probability for GSM network using Netsim software.
- 5. Measurement of call blocking probability for CDMA network using Netsim software.
- 6. Study of GSM handset for various signaling and fault insertion techniques (Major GSM handset sections: clock, SIM card, charging, LCD module, Keyboard, User interface).
- 7. Study of transmitter and receiver section in mobile handset and measure frequency.
- 8. Band signal and GMSK modulating signal.
- 9. Simulation of RAKE Receiver for CDMA communication using MAT LAB software.
- 10. Simulate and test various types of PN codes, chip rate, spreading factor and processing gain on performance of DSSS in CDMA.
- 11. Simulate and test the 3G Network system features using GSM AT Commands. (Features of 3G Communication system: Transmission of voice, video calls, SMS, MMS, TCP/IP, HTTP, GPS).
- 12. Modelling of communication system using Simulink.

Software Requirements:

MATLAB/NetSim/Qualnet simulator

References:

\						
Course Code		RESEARCH METHODOLOGY AND IPR	L	Т	Р	С
Semester	Ι		2	0	0	2
Course Obie	otivos	•				
• To know	v how	• to identify an appropriate research problem in their interesting domain				
To kilov To unde	rstand	the ethical issues in the preparation of a research report				
To learn		different types of Intellectual property rights				
To rearin	know	edge about the law of patent rights and convrights				
To gain To know	v abou	t the new developments in IPR				
Course Outc	omes	(CO): Student will be able to				
• Know h	ow to	identify an appropriate research problem in their interesting domain				
 Underst 	and th	e ethical issues in the preparation of a research report				
Learn al	nout d	ifferent types of Intellectual property rights				
 Gain kn 	owled	ge about the law of natent rights and convrights				
Know al	hout th	he new developments in IPR				
UNIT - I	oout ti	Lecture Hrs.				
Research pro	oblem	: Meaning of research problem Sources of research problem Criteria	a chara	cteris	tics of	of a
good research	n prob	lem Errors in selecting a research problem scope and objectives of	of research	arch r	roble	em
Approaches	of inv	restigation of solutions for research problem data collection and	lvsis	intern	retati	ion
Necessary ins	trume	ntations	, s,	meerp	Tetat	, ,
UNIT - II		Lecture Hrs.				
Literature st	tudv s	Effective literature studies approaches analysis Plagiarism Resea	rch eth	ics F	Effect	ive
technical writ	ting h	ow to write report Paper developing a research proposal Format of	researd	ch pro	posa	1 a
presentation a	and as	sessment by a review committee	Teseur	in pro	posu	., u
UNIT - III		Lecture Hrs:				
Nature of I	ntelle	ctual Property: Patents Designs Trade and Copyright Process	s of t	patent	ing	and
Development	: techt	pological research, innovation, patenting, development, International Sc	cenario	Inter	matic	nal
cooperation o	n Inte	lectual Property. Procedure for grants of patents. Patenting under PCT.	cinario		man	mai
UNIT - IV		Lecture Hrs:				
Patent Right	s: Sco	pe of patent rights Licensing and transfer of technology Patent inform	nation a	and da	ataba	ses
Geographical	Indic	pe of patent rights: Decensing and dansfer of comology, ratent morn	introll (uuou	,
UNIT - V	maret					
New Develor	ment	s in IPR: Administration of patent system New developments in IP	R IPR	of h	inlag	ical
systems. Com	puter	software etc., Traditional knowledge Case Studies, IPR and IITs.	,	01 0	10105	Ioui
Textbooks:	-p #***					
1 Stuart M	[elvill	and Wayne Goddard "Research methodology: an introduction for sc	ience	& ena	ineer	ina
students	,,,	e and wayne Goudard, Research methodology. an introduction for se		c eng	,incer	mg
2 Wayne (Fodda	d and Stuart Melville "Research Methodology: An Introduction"				
Reference Bo	nks.	a and Stuart Mervine, Research Methodology. An Introduction				
1 Raniit K	jumar	2nd Edition "Research Methodology: A Sten by Sten Guide for begin	more"			
2 Halbert	"Resi	sting Intellectual Property" Taylor & amp: Francis I td. 2007	inci s			
2. Haloelt, 3. Mayall	"Indu	strig Inchectual Hoperty, Taylor earlip, Haneis Eta, 2007.				
4 Niebel	"Prod	iet Design" McGraw Hill 1974				
5 Asimov	"Intr	aduction to Design" Prentice Hall 1967				
6 Robert I	, ши Р Ме	wes Peter S Menell Mark A Lemley "Intellectual Property in New"	Techno	مامعند	al A d	<i></i>
2016		geo, i etci 5. wienen, wark A. Lenney, interfectual i topetty ill New	i cenne	nogic	ai Až	, se
2010.						

Course Code		ENGLISH FOR RESEARCH	L	Т	P	C			
Semester	Ι	PAPER WRITING	2	0	0	0			
		(Audit Course - 1)				-			
Course Objectives:									
• Understand that how to improve your writing skills and level of readability									
• Learn about what to write in each section									
• Understand the skills needed when writing a Title Ensure the good quality of paper at very									
first-time submi	ssion								
UNIT - I			Lecture	Hrs:					
Planning and Preparati	on, W	ord Order, Breaking up long sentenc	es, Stru	cturing	Paragrap	ohs and			
Sentences, Being Conci	se and	Removing Redundancy, Avoiding Am	biguity a	and Vag	ueness				
UNIT - II			Lecture	Hrs:					
Clarifying Who Did W	hat, Hi	ghlighting Your Findings, Hedging an	d Critic	izing, Pa	araphras	ing and			
Plagiarism, Sections of	a Paper	r, Abstracts. Introduction		<u>U</u>	•	C			
UNIT - III			Lecture	Hrs:					
Review of the Literature	e, Meth	ods, Results, Discussion, Conclusions,	The Fin	al Chec	k.				
UNIT - IV			Lecture	Hrs:					
key skills are needed w	hen wr	iting a Title, key skills are needed whe	n writing	g an Abs	stract, ke	ev skills			
are needed when writing	g an In	troduction, skills needed when writing	a Reviev	w of the	Literatu	re			
UNIT - V	_		Lecture	Hrs:					
skills are needed when w	riting th	ne Methods, skills needed when writing the	he Result	ts, skills	are neede	ed when			
writing the Discussion, sk	tills are	needed when writing the Conclusions. use	ful phras	es, how t	o ensure	paper is			
as good as it could possib	ly be th	e first- time submission	I	,					
Textbooks:									
1. Goldbort R (20	06) Wr	iting for Science							
2. Day R (2006) H	Iow to	Write and Publish a Scientific Paper							
Reference Books:		*							
1. Highman N (19	998), H	landbook of Writing for the Mathema	tical Sc	iences, S	SIAM.				
Highman'sbool	ζ.	C C							
2. Adrian Wallwo	rk, Eng	glish for Writing Research Papers, Spi	ringer N	lew Yor	k Dordr	echt			
Heidelberg Lon	don, 20	011	-						
1									

Course Code	ANALOG AND MIXED SIGNAL DESIGN	L	Г	Р	C
Semester II		3	0	0	3
Course Objectives:		1	1 1	•	
• To understand th	e design of circuit in IC form especially both analog and	digita	I de	sigr	IS.
• To study about p	ower amplifiers and different feedback concepts.	_			
• To acquire know	ledge on different design architectures in mixed signal m	ode.			
• To analyze CMC	OS based switched capacitor circuits.				
• To learn the basi	cs of data converters.				
Course Outcomes (C	O): Student will be able to				
• Understand the d	lesign of circuit in IC form especially both analog and dig	ital de	esig	ns.	
• Learn about pow	er amplifiers and different feedback concepts.				
Acquire knowled	lge on different design architectures in mixed signal mode	э.			
Analyze CMOS	based switched capacitor circuits.				
• Learn the basics	of data converters.				
UNIT - I		Lectu	ıre l	Hrs:	
Current Sources an	nd Sinks: General considerations, MOS I/V characteristic	cs. Sn	nall	-cig	nal
model for the MOS	transistor, Channel modulation, back gate effect, influend	ce of l	bod	y bi	as,
Single stage amplif	iers with differential loads, the cascode connection.	sensi	tivi	tv a	nd
temperature analysi	s. transient response . layout of simple current mirror	: ma	atch	ing	in
MOSFET mirrors .	other current sources or sinks. Voltage dividers, current	ent so	urc	e se	elf-
biasing band gap vo	oltage references. Beta multiplier referenced self-baising			• • •	
UNIT - II	nuge references, Deta maniprier referenced sen calonig.	Lecti	ıre l	Hrs:	
Amplifiers: Gate d	rain connected loads. Current sources loads. Noise and c	listort	ion	. Cla	ass
AB Amplifier.			1011	,	
Feedback Amplifie	ers: Feedback equation, properties of negative feedback	c and	am	nolif	ïer
design feedback for	pologies amplifiers employing the four types of feedback	Stab	ility	рш ,	101
UNIT - III	ologies, unpriners employing the four types of feedback	Lect	ire l	Hrs	
Differential Ampli	fiers: The source coupled pair, the source cross –couple	d pai	r. c	asco	ode
loads. Wide-swing d	lifferential amplifiers.	w pul	., .		
Operational Ampl	ifiers: Basic CMOS Op-Amp design Operational tr	ansco	ndu	ctar	nce
amplifiers. Different	ial output On-amp	unseo	nau	etui	
UNIT - IV		Lecti	ire l	Hrs	
Non-Linear Circu	its: Basic CMOS comparator design Adaptive b	iasing		Anal	οg
multipliers		iusing	, 1	ma	05
Dynamic Analog	Circuits: MOSEET Switch Switched capacitor circu	its S	wit	chea	1
capacitor integrator	dynamic circuits	ns, D	w It	CHEC	1
UNIT - V	dynamic circuits.	Lecti	ire l	Hrs	
Data Converter Fr	undamentals and Architectures • DAC & ADC specif	icatio	ns	Mix	ed
signal layout issues	DAC architectures ADC architectures Floor planning r	netho	de i	Glol	hal
interconnect Floor t	alan design Off-chin connections	netnov	u 0,	010	Jui
Textbooks.	Jan design, On-emp connections.				
1 CMOS Circuits	Design Layout and Simulation – Baker Li Boyce 1st ed	1 TM	н		
2 Rudy Van De 1	Plassche "CMOS Integrated Analog-to-Digital and Di	1., 11V. aital_t		Anal	οσ
2. Rudy Vall DC I	ar Academic Dublichers, 2003	gitai-t	.0 1	Tha	Ug
Reference Rooks	a readenite i dononeio, 2003.				
1 R Jacob Raber	"CMOS Mixed-Signal Circuit Design" Wiley Interscience	<u>20</u> 20	00		
2 David A Labor	Von Mortin "Analog Integrated Circuit Design" July	\mathbf{W}^{1}	, o	с.	na
2. David A.Jonns,	Ken marun, Analog Integrated Circuit Design," John-	wney	X	. 20	118,
1997.					
3. B. Razavi, "Desi	gn of Analog CMOS Circuits," McGraw Hill, 2003.				
Online Learning Res	ources:				

Course Code		ADVANCED COMMUNICATIONS AND	L	Т	Р	С
Semester	Π	NETWORKS	3	0	0	3
Course Objective	es:					
To unders	stand	various spread spectrum communication techniques.				
• To know	abou	it the different aspects related to OFDM.				
• To study	the b	asic concepts of MIMO systems.				
• To learn a	abou	t the protocols used in wireless networks.				
• To study	abou	t the protocols used in broadband wireless networks.				
Course Outcome	s (C	O : Student will be able to				
Understar	nd va	prious spread spectrum communication techniques.				
Know abo	out ti	the different aspects related to OFDM				
Learn the	hasi	c concepts of MIMO systems				
Gain info	rmat	ion about the protocols used in wireless networks				
Know abo	nnau Suit tl	a protocols used in broadband wireless networks.				
		the protocols used in broadband whereas networks.	La	oturo	Ura	
UNII - I Spread Speetrum		Communications, Spreading sequences, Properties of sprea	Leo			200
Boudo poise so		communications. Spreading sequences- Properties of spreading sequences. Welch sequences Or	tum	g sec	Jueno	blo
spreading factor a	quen	nees. Barker sequences, Complementary codes	noge	onai	varia	.Die
Direct sequence	cque	ances, Barker sequence, Complementary codes.	De	ko 1	·····	vor
Synchronization i	spi n Cl	MA Power control Soft handoff Multiuser detection Or	, Ro stimi	1m n	ultin	/CI,
detector Liner m	11 CI 11tim	Ser detection	'unnu	1111 11	iuitiu	.501
LINIT II	innu		Ιa	otura	Hree	
Orthogonal Fra		nov Division Multiplaying: Pasia principles of orthogon	Let		nglo	NC
Multicarrier system	eme	OFDM block diagram and its explanation OFDM sign	anty nal 1	nath	amati	vs ical
representation Se	ellect	ion parameter for modulation. Pulse shaping in OEDM sign	mal	and	snec	tral
efficiency Windo	w in	OFDM signal and spectrum Synchronization in OFDM Pilo	,iiui t ins	ert in	OFI	DM
transmission and	ch	annel estimation Amplitude limitations in OEDM, FIG	no	int s	elect	ion
constraints in OF		CDMA vs OEDM Hybrid OEDM	por		erect	ion
UNIT - III	<i>,</i>		Le	rture	Hrs	
MIMO Systems:	Intr	oduction. Space diversity and system based on space diversit	v S	mart	ante	nna
system and MIM	INU [()]	MIMO based system architecture MIMO exploits multipat	h S	nace	— ti	ime
processing Ante	enna	consideration for MIMO MIMO channel modelling	MIN	и ИО	chan	nel
measurement M	IMC) channel capacity Cyclic delay diversity (CDD) Space	ce t	ime	codi	ng
advantages and a	annli	cations of MIMO in present context MIMO Applications	in	3G V	Wirel	ess
system and beyon	d M	IMO-OFDM				000
UNIT - IV			Leo	rture	Hrs	
Wireless LANs/	(EE)	802.11x : Introduction to IEEE802.11x technologies Evolution	ution	n of	wirel	655
LANS IFFF 802	11 d	esion Issues IEEE 802 11 services IEEE 802 11 MAC laver	oner	ation	s IF	FF
802 11 Laver1	IFFF	E = 802.11 a/b/g Higher rate standards. Wireless LAN sect	iritv	Co	mnut	ing
wireless technolog	vies	Typical WLAN hardware			mput	1115
UNIT - V		- JProm (12) In Charles (allo)	Le	cture	Hrs	
Wireless PANs/	IEE	E 802.15x: Introduction to IEEE 802.15x technologies:	W	ireles	s P	AN
applications and a	rchi	tecture. IEEE 802.15.1 physical layer details Bluetooth link of	ontr	oller	s has	ics
Bluetooth link co	ontro	llers operational states. IEEE 802.15.1 protocols and host	contr	rol in	terf	nce.
Evaluation of IEF	E 80	2.15 standards				
Broad Band Wi	reles	MANS/IEEE 802.16x: Introduction to WMAN/IEEE 802	.16x	tecł	nolo	gv.
IEEE 802.16 Wir	eless	MANs, IEEE 802.16 MAC layer details, IEEE 802.16 phys	ical	layer	deta	ils,

IEEE 802.16 physical layer details for 2-11 GHz, IEEE 802.16 common system operations.

Textbooks:

1.Gary J. Mullett, "Introduction to Wireless Telecommunications Systems and Networks", CENGAGE

2. UpenaDalal, "Wireless Communication", Oxford University Press, 2009

Reference Books:

1. Ke-Lin Du & M N S Swamy, "Wireless Communication System", Cambridge University Press, 2010

2. Gottapu Sasibhusan Rao, "Mobile Cellular Communication", 1st Edition, Pearson Education, 2012

Course Code		PROGRAM ELECTIVE – 3	L	Т	P	С
Semester	Π	LOW POWER VLSI DESIGN	3	0	0	3
Course Objective	es:					
To underst	and	he basic concepts related to low power circuit design.				
To implem	nent I	Low power design approaches for system level and circuit level	el me	easur	es.	
To design	diffe	rent types of low voltage low power adders.				
To design	and a	analyze different types of low voltage multipliers.				
 To gain kn 	lowle	edge on different types of memories for efficient design of sys	tems			
Course Outcome	s (C	O): Student will be able to				
• Understand	d the	basic concepts related to low power circuit design.				
Implement	Lov	v power design approaches for system level and circuit level n	neası	ares.		
Design dif	feren	t types of low voltage low power adders.				
Design and	l ana	lyze different types of low voltage multipliers.				
Gain know	ledg	e on different types of memories for efficient design of system	ns.			
UNIT - I			Leo	cture	Hrs:	
Fundamentals: 1	Need	for low power circuit design, Sources of power dissipat	ion ·	– Sta	atic :	and
dynamic power	dissip	pation, Short circuit power dissipation, Glitching power d	lissir	oatior	n, Sł	ıort
channel effects -	Drai	n induced barrier lowering and punch through, Surface sca	ıtteri	ng, V	Velo	city
saturation, Impact	ioni	zation, Hot electron effect.				
UNIT - II			Lee	cture	Hrs:	
Low-Power Desi	gn A	pproaches: Low-Power design through Voltage scaling – V	TCN	10S	circu	iits,
MTCMOS circui	ts, A	Architectural level approach –Pipelining and paral	lel	pro	ocess	ing
approaches. Swit	tchec	l capacitance minimization approaches: System level measu	ires,	Circ	uit le	evel
measures, Mask le	evel	measures.				
UNIT - III			Lee	cture	Hrs:	
Low-Voltage Lov	w-Po	wer Adders: Introduction, Standard adder cells, CMOS Add	er's	archi	tectu	ires
- Ripple carry add	ders,	Carry look ahead adders, Carry select adders, Carry save add	iers,	Low	-volt	age
low-power design	i tecl	niques – Trends of technology and power supply voltage,	low-	volta	ge lo	DW-
power logic styles	5. 		T.		TT	
UNII - IV	Dave D	awan Multiplicant Introduction Overview of multiplic	Lec	<u>ture</u>	Hrs:	of
Low-voltage Lo	JW-P	ower Multipliers: Introduction, Overview of Intriplica	ation	I, I <u>)</u> Intro	ypes	ion
to Welloss Tree N	Aulti.	s, braun multiplier, baugh wooley multiplier, booth multip	ner,	mure	Jauci	1011
UNIT V	un		La	oturo	Ura	
Low Voltage Lo	w Do	war Mamarias: Basics of POM Low power POM technol		futur	$\frac{1115}{11}$	nda
and development	of F	20Ms Basics of SRAM Memory cell Pre-charge and equ	ıgy, ıaliz	ation	circ	mus
Low-Power SRA	M	technologies Basics of DRAM Self-refresh circuit Fu	ture	trer	nde	and
development of D	RAN	A	ture	ti ch	1015	and
Textbooks:	111 11	A.				
1. CMOS Digital	Inte	grated Circuits – Analysis and Design – Sung-Mo Kang	Yusi	af Le	ebleh	ici.
TMH, 2011.		88				,
2. Low-Voltage, 1	Low-	Power VLSI Subsystems - Kiat-Seng Yeo, Kaushik Roy, T	MH	Prof	essic	onal
Engineering.						
Reference Books	:					
1. Introduction to	VL	SI Systems: A Logic, Circuit and System Perspective - Min	ng-B	O Li	n, C	RC
Press, 2011.			-			
2. Low Power CM	10S	Design – Anantha Chandrakasan, IEEE Press/Wiley Internation	onal,	1998	3.	
3. Low Power CN	MOS	VLSI Circuit Design – Kaushik Roy, Sharat C. Prasad, Joh	n W	iley a	& Sc	ons,
2000.	D					
Online Learning	Kes	ources:				

Course Code		PROGRAM ELECTIVE – 3	L	T	P	C
Semester	II	SoC ARCHITECTURE	3	0	0	3
Course Objective	es:		1	0.0	1	
• To unders	tand	the basics of SoC architecture and different approaches relate	a to	50C	desig	gn.
• To select	an aj	oppropriate robust processor for SoC design.				
• To know a	abou	t the memory requirements for SoC design.				
 To learn at 	out o	customization and configurability in SoC design.				
 To realize 	real	time case studies.				
Course Outcome	s (C	O): Student will be able to				
Understar	d th	e basics of SoC architecture and different approaches related to	o So	C de	sign.	
• Select an	appr	opriate robust processor for SoC design				
Know abo	out tl	ne memory requirements for SoC design.				
• Learn abou	it cus	tomization and configurability in SoC design.				
Realize re	al ti	me case studies				
UNIT - I	ui 11		Leo	ture	Hrs	
Introduction to	the	System Approach: Compare SoC ASIC SOP SIP and	MC	M	Svste	m
Architecture. C	omp	onents of the system. Hardware & Software, Processor	· Ar	chite	ecture	es.
Memory & Add	ress	ing. System level interconnection. An approach for SoC	Desi	gn.	Syste	èm
Architecture and	Cor	nnlexity		<i>B</i> ,	9500	
UNIT - II	001		Leo	ture	Hrs	
Processors: Intro	duct	ion Processor selection for SoC Basic concepts in process	sor a	rchi	ectu	re
Basic concepts i	n nr	ocessor micro-architecture Basic elements in instruction ha	ndlii	ησ Ε	luffe	rs.
minimizing nine	line	delays Branches More robust processors. Vector process	ors	and	Vect	tor
instruction exten	sion	s VIIW processors Superscalar processors	5015	unu	100	.01
UNIT - III	51011	s, verv processors, superscalar processors.	Leo	ture	Hrs	
Memory Design	for	SoC: Overview: SoC external memory SoC internal	mer	norv	Siz	ze
Scratchnads and	cac	he memory Cache organization Cache data Write policies	s St	rated	vies f	for
line replacement	at	miss time. Other types of Cache Split $-$ L and D $-$ Cache	hes.	Mu	ltiley	vel
Caches, SOC me	mor	v system. Models of simple processor – memory interaction.		1.10		••
UNIT - IV	11101		Leo	ture	Hrs	
Interconnect. Cr	ston	nization and Configurability: Interconnect architectures	F	3115.	Bas	sic
architectures So] st	andard buses Analytic bus models. Using the bus model	Eff	ects	of h	115
transactions and c	onte	ntion time			01 0	••••
SoC Customize	tior	• An overview customizing instruction processor	rec	onfi	mrał	vle
technologies. M	anni	ng design onto reconfigurable devices. Instance- si	necif	Fic	desig	m.
Customizable so	t n	cocessor Reconfiguration - overhead analysis and trade-	off	analy	sis	,, 01
reconfigurable pa	ralle	lism			515	011
UNIT - V			Leo	ture	Hrs	
Application Studie	s/(ase Studies: SoC Design approach: AES-algorithms Design	and	eval	uatic	m.
Image compressi	0n_	IPEG compression	unu	eval	uun	, iii,
Textbooks:						
1 "Computer Sys	em	Design System-on-Chin" Michael I Flynn and Wayne Luk	Wie	lv In	dia I	ovt
Ltd	lenn	Design bystem on emp ; intender 5. I film and wayne back,		1 y 11	uiu I	
2. "ARM System	n or	n Chip Architecture", Steve Furber, 2ndEdition, 2000,	Addi	son	Wes	lev
Professional.)
Reference Books	:					
1. Design of Syste	m or	a Chip: Devices and Components – Ricardo Reis, 1st Ed., 20	04, 5	Sprin	ger.	
2. Co-Verification	ı of	Hardware and Software for ARM System on Chip De	sign	(En	ibedo	ded
Technology) -	Jaso	n Andrews – Newnes, BK and CDROM.	0			
3. System on Chip	Ver	ification - Methodologies and Techniques -Prakash Rashinka	ar, P	eter l	Pater	son
and Leena Sing	<u>h L</u> ,	2001, Kluwer Academic Publishers.				
Online Learning	Res	ources:				

Course Code PROGRAM ELECTIVE – 3	L	Т	Р	С			
Semester II WIRELESS SENSOR NETWORKS	3	0	0	3			
Course Objectives:							
• To study about different types of sensor networks, their advantages and applied	cati	ons.					
• To understand the concepts of localization and tracking control.							
• To learn about the protocols used in routing of Wireless sensor networks.							
• To know the mechanisms involved in routing of Wireless sensor networks.							
• To study about the tools and simulators associated with Wireless sensor netw	ork	s.					
Course Outcomes (CO): Student will be able to							
• To study about different types of sensor networks, their advantages and applied	cati	ons.					
• To understand the concepts of localization and tracking control.							
• To learn about the protocols used in routing of Wireless sensor networks.							
• To know the mechanisms involved in routing of Wireless sensor networks.							
• To study about the tools and simulators associated with Wireless sensor netw	ork	s.					
UNIT - I	Lec	cture	Hrs:				
Introduction: Sensor networks, advantages and applications, Sensor network applic	atic	ons –	Hab	itat			
monitoring, Smart transportation, Collaborative processing.							
UNIT - II	Lec	cture	Hrs:				
Localization and tracking: Sensing model, Distributed representation, Tracking	mul	tiple	obje	ects			
networking sensors- Medium access control, Energy-aware routing to a region,	Att	tribut	te-ba	sed			
routing.							
UNIT - III	Lec	cture	Hrs:				
Infrastructure Establishment: Clustering and time synchronizations, Localization	and	lloca	ılizat	ion			
services, Sensor tracking and control - Task-driven sensing, Information-based	ser	nsor	taski	ng,			
Sensor group management.							
UNIT - IV	Lec	cture	Hrs:				
Sensor Network data bases: Sensor database challenges, Query interfaces, Data-	-cer	ntric	stora	.ge,			
Multidimensional indices for orthogonal range searching, Locality-preserving hashing	g.						
UNIT - V	Lec	cture	Hrs:				
Sensor Network Platforms and Tools: Sensor network hardware, Node level softw	vare	, No	de-le	vel			
simulators, Wireless sensor networks positioning and location management.							
Textbooks:							
1. F. Zhao, C Guibas, "Wireless Sensor Networks", Elsevier, Morgan Kaufmann, 200)4.						
2. Kazem Sohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks -Techno	olog	gy, P	rotoc	ols			
and Applications", John Wiley & Sons, 2007.							
Reference Books:							
1. P.Nicopolitidis, M.S.Obaidat, G.I.Papadimitria, A.S. Pomportsis, "Wireless Networ	rks'	', Joł	n				
wiley & sons, 2003.							
Online Learning Resources:							

Course Code		PROGRAM ELECTIVE – 4	L	Т	Р	С
Semester	II	SOFTWARE DEFINED RADIO	3	0	0	3
Course Objective	es:					
To know	the r	equirements, benefits and different models of Software Define	d Ra	adio.		
• To learn a	about	t Software Defined Radio Architectures for performance optim	nizat	ion.		
To study	in de	tail about flexible RF receiver architectures of Software Defin	ed R	ladio	•	
• To unders	stand	the design of multiband flexible receiver and its performance.	•			
To study	abou	t the flexible transmitters receiver design.				
Course Outcome	s (C	U): Student will be able to				
Know the	requ	irrements, benefits and different models of Software Defined I	kadı	э.		
• Learn abo	out S	offware Defined Radio Architectures for performance optimize	atior	1.		
• Study in a		about flexible RF receiver architectures of Software Defined	Rad	10.		
• Understan	nd th	e design of multiband flexible receiver and its performance.				
• Learn add		ie nexible transmitters receiver design.	La		Han	
	L .		Leo		Hrs:	1
Operational requi	requi	rement for Software defined radio, Benefits of multi-sta	naar	a te	rmin	ais,
		ins, models for SDR, Smart and ma systems.	La	oturo	Ura	
			Leo		піз.	
Basic Architectu	re o	a solution of Software defined radio. Current technology limit	cture	es, H	ardw	are
power consumption	gitai on A	D performance trends	atioi	18, 11		um
UNIT - III	, , , , , , , , , ,		Leo	cture	Hrs:	
Flexible RF Re	ceive	r Architectures: Digital receiver, Single carrier and mult	i-car	rier	desig	gns,
under sampling, c	overs	ampling, Noise figure, Receiver sensitivity, ADC spurious sign	nals.			, ,
UNIT - IV			Lee	cture	Hrs:	
Multi-Band and	Ger	neral Coverage Systems: Multiband Flexible receiver desig	n, R	F Tr	ansm	nit /
receive switch, I	mage	e rejection mixing, Dynamic range enhancement, Feed for	ward	l tec	hniqu	ies,
cascaded non-line	arity	techniques.	r			
UNIT - V			Lee	cture	Hrs:	
Flexible Transm	nitter	s and Power Amplifiers: Flexible transmitters, Power an	nplif	iers,	Ana	log
quadrature up-co	nvers	sion, interpolated bandpass up conversion, PLL based modu	lator	r trar	nsmit	ter,
All-pass filtering,	Poly	phase filtering				
1 extbooks:				24	205	
1. P Kenington, "	KF a	nd Baseband Techniques for Software Defined Radio", Artec	Hous $C I$	se, 20	JU5	and
2. wally п. w. I Base stations" Io	uitte hn W	Viley & sons 2003	JU I	Tand	seis a	ana
Reference Books	:	1109 (0.0015), 2005				
1. JoukoVanakka	, "Di	gital Synthesizers and Transmitter for Software Radio", Spring	ger, 2	2005	•	
Online Learning	Res	ources:				
g						

Course Code	PROGRAM ELECTIVE – 4	L	Т	Р	С
Semester II	IMAGE AND VIDEO PROCESSING	3	0	0	3
		1			
Course Objectives:					
• To understand the	e fundamentals of image processing.				
• To study about th	ne different Image enhancement methods.				
• To learn about th	e fundamentals concepts of Image Compression.				
• To understand the	e representation of video and its basic principles.				
• To gain the know	vledge about different methods of motion estimation.				
Course Outcomes (CO):	: Student will be able to				
Understand the fu	undamentals of image processing.				
• Study about the d	lifferent Image enhancement methods.				
• Learn about the f	fundamentals concepts of Image Compression.				
• Understand the re	epresentation of video and its basic principles.				
• Gain the knowled	dge about different methods of motion estimation.				
UNIT - I	•	Leo	cture	Hrs:	
Fundamentals of Imag	e Processing and Image Transforms: Basic steps of I	mag	e pro	cessi	ing
system, Sampling and qua	antization of an image, Basic relationship between pixels.	U			U
Image Segmentation: Se	egmentation concepts, Point, Line and edge detection, Three	esho	lding	, regi	ion
based segmentation.			-	-	
UNIT - II		Leo	cture	Hrs:	
Image Enhancement: S	Spatial domain methods: Histogram processing, Fundam	enta	ls of	spat	tial
filtering, smoothing spatia	al filters, Sharpening spatial filters.				
Frequency Domain Me	thods: Basics of filtering in frequency domain, image s	moo	thing	, ima	ige
sharpening, Selective filte	ering.				
UNIT - III		Leo	cture	Hrs:	
Image Compression: Im	nage compression fundamentals, Coding redundancy, Spa	tial a	and te	empo	oral
redundancy, Compression	n models: Lossy & lossless, Huffman coding, Bit plane co	oding	g, Tra	ansfo	rm
coding, Predictive coding	g, Wavelet coding, Lossy predictive coding, JPEG Standard	s.			
UNIT - IV		Leo	cture	Hrs:	
Basic Steps of Video I	Processing: Analog video, Digital video. Time-varying	Imag	ge fo	rmati	ion
models: Three- dimensi	ional motion models, Geometric image formation, Ph	oton	netric	ima	age
formation, Sampling of v	ideo signals, Filtering operations.				
UNIT - V		Leo	cture	Hrs:	
2-D Motion Estimation	n: Optical flow, General methodologies, Pixel based me	otior	n esti	mati	on,
Block- matching algorith	m, Mesh based motion estimation, Global motion estimation	on, F	Regio	n bas	sed
motion estimation, Mult	ti resolution motion estimation, Waveform based codin	ng, I	Block	t bas	sed
transform coding, Predict	tive coding, Application of motion estimation in video codin	ng.			
Textbooks:					
 Digital Image Processin Digital Video Processin 	ng – Gonzaleze and Woods, 4 th Ed., Pearson, 2018. ng – M. Tekalp, Prentice Hall International.				
Reference Books:					
1. Video Processing and Ed., PH Int.	Communication - Yao Wang, Joem Ostermann and Ya-	-quir	n Zha	ing.	1 st
2. Digital Image Processi	ng – S. Jayaraman, S. Esakkirajan, T. Veera Kumar –TMH	, 200)9		
Online Learning Resour	rces:				

Course Code		PROGRAM ELECTIVE – 4	L	Т	Р	С
Semester	II	TRANSFORM TECHNIQUES	3	0	0	3
		v		-		-
Course Objectiv	es:					
• To study	ahou	t different types of transforms for different types of signals				
 To study To under 	abou	the application of wavelets for different types of signals				
To under	ho n	and for scaling function				
• To learn	tha a	nulications of Multi-rate systems and filter banks				
• To study	the e	pplications of transforms				
	$\frac{1}{2}$	pplications of transforms.				
Course Outcome	s (C					
Study abo	out d	ifterent types of transforms for different types of signals.				
Understan	nd th	e application of wavelets for different types of signals.				
• Learn the	need	for scaling function.				
Study the	appl	ications of Multi rate systems and filter banks.				
Know the	app	lications of transforms.				
UNIT - I			Lee	cture	Hrs:	
Review of Trans	sforr	ns: Signal spaces, concept of convergence, Hilbert spaces for	or en	ergy	sign	als,
Orthogonality, O	rtho	normality, Fourier basis, FT-failure of FT-need for time-fre	equer	ncy a	inaly	sis,
spectrogram plot-	phas	e space plot in time-frequency plane, Continuous FT, DTFT	, Dis	screte	fou	rier
series and transfo	rms,	Z-Transform.				
Advance Transf	form	s: Relation between CFT-DTFT, DTFT-DFS, DFS-DFT,	DC	T (1	D&2	D),
Walsh, Hadamarc	l, Ha	ar, Slant, KLT, Hilbert Transforms – definition, properties and	l app	olicati	ions.	
UNIT - II			Lee	cture	Hrs:	
CWT and MRA	: Tir	ne-frequency limitations, tiling of time-frequency plane for S	TFT	', Hei	senb	erg
uncertainty princi	ple, s	short time Fourier Transform (STFT) analysis, short comings	of S?	ΓFT.		
Need for Wavele	ts: V	Vavelet Basis- Concept of scale and its relationship with frequ	ency	, Coi	ntinu	ous
time wavelet trans	sforn	n equation- Series expansion using Wavelets- CWT.				
UNIT - III			Leo	cture	Hrs:	
Need for Scalin	ng F	unction: Multi resolution analysis, Tiling of time scale	plan	e foi	· CV	VT.
Important Wavele	ets: H	laar, Mexican Hat Meyer, Shannon, Daubechies.				
Special Topics:	Wa	velet packet transform, Bi-orthogonal basis- B-splines, L	ifting	g sch	eme	of
wavelet generatio	n-im	plementation				
UNIT - IV			Lee	cture	Hrs:	
Multirate System	ns, 1	Filter Banks and DWT: Basics of Decimation and Interpo	olatio	n in	time	&
frequency domain	ns, T	wo-channel filter bank, Perfect reconstruction condition, Rela	ition	ship	betw	een
filter banks and W	/ave	et basis, DWT filter banks for Daubechies wavelet function.				
UNIT - V			Leo	cture	Hrs:	
Applications of	Tra	nsforms: Signal de-noising, Sub-band coding of speech as	nd n	nusic	, Sig	nal
Compression - Us	se of	DCT, DWT, KLT.			_	
Textbooks:						
1. Jaideva C Go	swar	ni, Andrew K Chan, "Fundamentals of Wavelets- Theory,	Alg	gorith	ms a	and
Applications",	John	Wiley & Sons, Inc, Singapore, 1999.	C	-		
2. Raghuveer M	. Ra	o and Ajit S. Bopardikar, "Wavelet Transforms-Introduc	ction	the	ory a	and
applications" P	ears	on edu, Asia, New Delhi, 2003.			-	
Reference Books	:					
1. Vetterli M. Kov	acev	vic, "Wavelets and sub-band coding", PJI, 1995.				
2. C. Sydney Burr	us, "	Introduction to Wavelets and Wavelet Transforms", PHI, 1st E	Editic	on, 19	997.	
3. S. Jayaraman, S	S. Esa	akkirajan, T. Veera Kumar, "Digital Image Processing", TMH	, 200)9		
4. Soman.K. P. R	ama	chandran K.I, "Insight into Wavelets from Theory to practic	e", I	Prent	ice H	lall
India. First Edi	tion	2004.	,			
Online Learning	Rec.	0117665*				
Junie Lear ning	1162	uu (13)				

Course Code		ANALOG AND MIXED SIGNAL	L	Т	Р	С
Semester	II	DESIGN LAB	0	0	4	2

- To understand the layout design rules and design a schematic & layout for Combinational and Sequential Circuits.
- To learn the implementation of Layout, Physical Verification and place & routing for complex designs.
- To verify the layouts, DRC and LVS.

Course Outcomes (CO): Students will be able to

- Understand the layout design rules and design a schematic & layout for Combinational and Sequential Circuits.
- Learn the implementation of Layout, Physical Verification and place & routing for complex designs.
- Verify the layouts, DRC and LVS.

List of Experiments:

Introduction to layout design rules. Layout, physical verification, placement & routing for complex design, static timing analysis and IR drop analysis for all following **TWELVE** experiments need to be done

- 1. Design and verify the CMOS inverter.
- 2. Design CMOS NAND and NOR gates.
- 3. Design CMOS XOR/XNOR by using NAND/NOR gates.
- 4. Design CMOS 1-bit full adder and verify the circuit using transient analysis.
- 5. Design CMOS 1-bit full Subtractor and verify the circuit using transient analysis.
- 6. Design a multiplexer and perform all the analysis to verify its characteristics.
- 7. Design and Implementation of RS –Latch.
- 8. Design and Implementation of D –Latch.
- 9. Design and Implementation of Asynchronous Counter.
- 10. Design and Implementation of Static SRAM Cell.
- 11. Analog Circuit simulation (AC analysis) CS (Common Source) amplifier.
- 12. Analog Circuit simulation (AC analysis) Differential amplifier.

Equipment/Software Required:

- EDA Tools Industry Standard software-latest version like Mentor/ Synopsys /Equivalent.
- Personal computer with necessary peripherals.

References:

Course Code		ADVANCED COMMUNICATIONS	L	Т	Р	С
Semester	II	AND NETWORKS LAB	0	0	4	2

- To implement digital filters for the given specifications.
- To design and simulate different modulation schemes for the given specifications.
- To design and implement demodulation schemes for the given specifications.

Course Outcomes (CO): Student will be able to

- Implement digital filters for the given specifications.
- Design and simulate different modulation schemes for the given specifications.
- Design and implement demodulation schemes for the given specifications.

List of Experiments:

Student must do ANY **TWELVE** experiments.

- 1. Implementation of Matched Filters.
- 2. Optimum receiver for the AWGN channel.
- 3. Design FIR (LP/HP/BP) filter using Window method.
- 4. Measurement of effect of Inter Symbol Interference.
- 5. Generation of constant envelope PSK signal wave form for different values of M.
- 6. Simulation of PSK system with M=4.
- 7. Simulation of DPSK system with M=4.
- 8. Design of FSK system.
- 9. Simulation of correlation type demodulation for FSK signal.
- 10. BPSK Modulation and Demodulation techniques.
- 11. QPSK Modulation and Demodulation techniques.
- 12. DQPSK Modulation and Demodulation techniques.
- 13. 8-QAM Modulation and Demodulation techniques.
- 14. DQAM Modulation and Demodulation techniques.
- 15. Verification of Decimation and Interpolation of a given signal.
- 16. Power spectrum estimation using AR model.

Software Requirements:

MATLAB, Qualnet simulator

References:

Course Code		PERSONALITY	L	Т	Р	С
Semester	II	DEVELOPMENT THROUGH				
		LIFE ENLIGHTENMENT	2	0	0	•
		SKILLS	4	U	U	U
		(Audit Course - II)				
Course Objectives:						
• To learn to achi	eve the	highest goal happily Learn about what	to write	in each	section	
• To become a pe	erson wi	ith stable mind, pleasing personality and	d determ	ination		
• To awaken wise	lom in s	students				
			.	**		
UNIT - I	<u> </u>		Lecture	Hrs:		
Neetisatakam-Holistic	develo	pment of personality				
• Verses- 19,20,	21,22 (WISDOM)				
• Verses- 29,31,	32 (pric)	le & heroism)				
• verses- 20,28,	03,03 (virtue)				
UNIT - II			Lecture	Hrs:		
Neetisatakam-Holistic	develo	pment of personality	1			
• Verses- 52,53,	59 (dor	it's)				
• Verses- 71,73,	75,78 (do's)				
UNIT - III			Lecture	Hrs:		
Approach to day to day	work a	and duties.				
Shrimad Bhagw	ad Gee	ta: Chapter 2-Verses 41, 47,48,				
Chapter 3-Verse	es 13, 2	1, 27, 35, Chapter 6-Verses 5,13,17, 23	3, 35,			
Chapter 18-Ver	ses 45,	46, 48.				
UNIT - IV			Lecture	Hrs:		
Statements of basic know	wledge	2.	1			
Shrimad Bhagw	ad Gee	ta: Chapter2-Verses 56, 62, 68				
Chapter 12 - Ver	rses 13,	14, 15, 16,17, 18				
Personality of R	Role mo	del. Shrimad Bhagwad Geeta:				
UNIT - V			Lecture	Hrs:		
Chapter 2-Verse	es 17, C	Chapter 3-Verses 36,37,42,				
Chapter 4-Vers	ses 18, 3	38,39				
• Chapter 18 – Ve	erses 37	7,38,63				
Textbooks:						
1. "Srimad Bhagavad	l Gita"	by Swami Swarupananda Advaita Ash	ram (Pu	blication	n Depart	ment),
Kolkata.	~		~			
2. Bhartrihari's Thr	ee Sat	akam (Niti-sringar-vairagya) by P.	Gopinath	n, Rash	triya Sa	anskrit
Sansthanam, New Del	ln1.					
Kelerence Books:						

Course Code		DDOCDAM ELECTIVE 5	T	т	р	C
Course Code		PROGRAM ELECTIVE – 5	L	1	r	
Semester	III	DETECTION AND ESTIMATION THEORY	3	0	0	3
Course Objectiv	es:					
• To gain k	nowle	edge about various estimation and detection methods.				
To analyz	ze diff	Ferent methods of minimum variance unbiased estimation tec	hnia	ies.		
To under	stand	best linear unbiased estimators in detecting signals in the pre	sence	e of r	noise	
To learn	ahout	statistical decision theory and deterministic signals	sene	0 01 1	10100	
• To know	about	composite hypothesis testing and its approaches				
		Composite hypothesis testing and its approaches.				
Course Outcome	es (CC	<i>D</i>): Students will be able to				
Gain kno	wledg	e about various estimation and detection methods.				
Analyze	differe	ent methods of minimum variance unbiased estimation techn	iques	•		
Understa	nd bes	t linear unbiased estimators in detecting signals in the preser	ice of	f noi	se.	
Learn abo	out sta	tistical decision theory and deterministic signals.				
Know ab	out co	mposite hypothesis testing and its approaches				
		inposite hypothesis testing and its approachesi	La	atura	Llra.	
	E-4ª		Lee	·	<u>піs.</u>	
Introduction to	ESU	mation and Detection: Introduction, Detection and esti-	matio	on 11	n sig	;nai
processing, the I	nather	matical detection & estimation problem, Assessing estimation	ator]	perio	ormai	ice,
Hierarchy of dete	ction j	problems, Role of asymptotic.	T			
UNIT - II			Lee	cture	Hrs:	
Minimum Varia	ance	Unbiased Estimation: Unbiased estimators, Minimum v	arian	ice c	riteri	on,
Existence of the	miniı	num variance unbiased estimator, Finding the minimum	variai	nce i	ınbia	sed
estimator.						
Cramer-Rao Lo	ower	Bound: Estimator of accuracy considerations, Cramer-H	tao 1	lower	r boi	und
(CRLB), Genera	1 CR	LB for signals in white Gaussian noise, Transformatio	n of	par	amet	ers,
Extension to a ve	ctor p	arameter, Vector parameter CRLB for transformations, CRI	LB fo	or the	gene	eral
Gaussian case.						
Linear Models:	Defini	tion and properties, Linear model examples, Extension to the	e line	ar m	odel.	
General Minim	um V	ariance Unbiased Estimation: Introduction, Sufficient	statis	tics,	Find	ing
sufficient statistic	s.					
UNIT - III			Lee	cture	Hrs:	
Best Linear Un	biased	Estimators: Definition of BLUE, Finding the BLUE, Ex	tensi	ion t	o vec	ctor
parameter.						
Estimation Met	hods:	Maximum likelihood estimation (MLE), Finding MLE, Pr	opert	ties of	of M	LE,
MLE for transfo	rmed	parameters, Numerical determination of the MLE, Exter	nsion	to a	a vec	ctor
parameter, Least	squar	es approach, Linear least squares, Method of moments, Ext	ensio	n to	a vec	ctor
parameter, Statist	ical e	valuation of estimators.				
The Basian Phi	losop	hy: Prior knowledge and estimation, Choosing a prior P.	DF, J	Prop	erties	of
Gaussian PDF, B	asian	linear model, Minimum mean square error (MMSE) estima	tors,	Max	imun	n A
posteriori estima	tors,	Performance description, Linear basian estimators - Int	roduc	ction,	, Lin	lear
MMSE estimation	n, Geo	ometrical interpretations, Vector LMMSE estimator.				
UNIT - IV			Lee	cture	Hrs:	
Statistical Decis	sion	Theory I: Introduction, Nevman-Pearson theorem, Re	eceiv	er o	perat	ing
characteristics. M	inimu	in probability of error. Bayes risk. Multiple hypothesis testing	19.	•	Peru	
Deterministic Si	gnals	: Matched filters. Development of detector. Performance	of m	atche	ed fil	ter.
Performance of	penera	lized matched filters. Multiple signals – Binary case and	its	perfo	rmar	ice.
M-ary case. Linea	ar moo	iel.	1	r		,
Random Signals	: Esti	nator correlator, Linear model				
UNIT - V		· · · · · · · · · · · · · · · · · · ·	Le	cture	Hrs:	
Statistical Decid	ion '	Theory II: Introduction Summary of composite hypot	hesis	Co	mpo	site
hypothesis testing	, (CH	Theory is introduction, summary of composite hypot	10010	, cc	mpo	5110
CHT Approache	es: Ba	vesian approach, Generalized likelihood approach, Performa	ance	of G	LRT	for

large data records, Equivalent large data records tests.

Textbooks:

- 1. Steven M. Kay, "Fundamentals of Statistical Signal Processing Estimation Theory," Pearson, 2010.
- 2. Shanmugam and Breipohl, "Detection of Signals in Noise and Estimation", John Wiley& Sons, 2004.

Reference Books:

1. Mischa Schwartz, L. Shaw, "Signal Processing: Discrete Spectral Analysis, Detection, and Estimation," McGraw Hill.

Course Code		EMBEDDED SYSTEMS	L	Т	Р	С
Semester	Π		3	0	0	3
Course Objective	es:					
• To know about the basics of embedded systems their classification and application.						
To provid	e kn	owledge on the building blocks of embedded system.				
• To unders	tand	the requirement of embedded firmware and its role in API.				
• To learn a	bout	the role of real time operating system in embedded design.				
• To gain th	ie kn	owledge about task level communication in an embedded syst	em.			
Course Outcome	s (C	O): Student will be able to				
Know the	basi	cs of embedded systems their classification and application.				
Gain knov	vled	ge on the building blocks of embedded system.				
 Understand 	nd th	e requirement of embedded firmware and its role in API.				
Learn abo	nit th	e role of real time operating system in embedded design.				
• Gain the k	cnow	veldge about task level communication in an embedded system	1			
UNIT - I			Leo	cture	Hrs:	
Introduction to	Eml	pedded Systems: Definition of Embedded System. Embed	ded	Svst	ems	Vs
General Computi	ng S	Systems, History of Embedded Systems, Classification, M	ajor	Apr	licat	ion
Areas, Purpose of	Emt	bedded Systems, Characteristics and Quality Attributes of Emb	oedd	edSv	vstem	ıs.
UNIT - II			Lee	ture	Hrs:	
Typical Embedd	ed S	ystem: Core of the Embedded System, General Purpose and	Don	nain S	Speci	ific
Processors, ASICs	s, PL	Ds, Commercial Off-The-Shelf Components (COTS), Memo	ry: I	ROM	, RA	М,
Memory accordin	g to	the type of Interface, Memory Shadowing, Memory selection	n fo	r En	ıbedc	led
Systems, Sensors	and	Actuators, Communication Interface: Onboard and External	Co	nmu	nicati	ion
Interfaces. DDR, I	Flasł	n, NVRAM				
UNIT - III			Lee	cture	Hrs:	
Embedded Firm	war	e: Reset Circuit, Brown-out Protection Circuit, Oscillator	Unit	, Rea	al Ti	me
Clock, Watchdog	Tim	er, Embedded Firmware Design Approaches and Developmen	t Laı	nguag	ges.	
UNIT - IV			Lee	cture	Hrs:	
RTOS Based En	ıbed	ded System Design: Operating System Basics, Types of Op	erat	ing S	yster	ms,
Tasks, Process and	d Th	reads, Multiprocessing and Multitasking, Task Scheduling.				
UNIT - V			Lee	cture	Hrs:	
Task Communic	atio	n: Shared Memory, Message Passing, Remote Procedure C	all a	and S	Socke	ets,
Task Synchroniz	zatio	n: Task Communication/Synchronization Issues, Task	Syn	chro	nizat	ion
Techniques, Devic	ce Di	rivers, How to Choose an RTOS.	-			
Textbooks:						
1. Introduction to	Emb	edded Systems - Shibu K.V, Mc Graw Hill.				
2. Embedded Syst	em I	Design - Frank Vahid, Tony Givargis, John Wiley.				
Reference Books	:					
1. Embedded Syst	ems	- Raj Kamal, TMH.				
2. Embedded Syst	ems	– Lyla, Pearson, 2013				
3. An Embedded S	Softv	vare Primer - David E. Simon, Pearson Education.				
Online Learning	Res	ources:				

Course Code		PROGRAM ELECTIVE – 5	L	Т	P	С
Semester	III	ARTIFICIAL INTELLIGENCE AND MACHINE	3	0	0	3
		LEARNING				
Course Objectiv	es:					
To learn t	the ba	sics of AI and problem solving techniques.				
To unders	stand	concepts of logic programming.				
To study	the pł	nases in building expert systems and their applications.				
 To gain k 	nowle	edge on machine learning systems and artificial neural networ	rks.			
• To learn o	differe	ent knowledge representation techniques.				
Course Outcome	es (CC	D): Student will be able to				
To learn t	the ba	sics of AI and problem solving techniques.				
To unders	stand	concepts of logic programming.				
To study	the pł	ases in building expert systems and their applications.				
• To gain k	nowle	edge on machine learning systems and artificial neural netwo	rks.			
• To learn o	differe	ent knowledge representation techniques.				
UNIT - I		X A	Le	cture	Hrs:	
Introduction: Hi	story,	Intelligent systems, Foundations of AI, Sub areas of AI, App	licat	tions.		
Problem Solving	g – St	tate Space Search and Control Strategies: Introduction,	Gen	eral	probl	lem
solving, Characte	eristic	s of problem, Exhaustive searches, Heuristic search tech	niqu	es, I	terati	ve-
deepening, Cons	traint	satisfaction. Game playing, Bounded lsook-ahead strat	egy	and	use	of
evaluation function	ons, A	lpha-Beta pruning				
UNIT - II			Le	cture	Hrs:	
Logic Concepts	and L	ogic Programming: Introduction, Propositional calculus, Pr	opos	sition	al lo	gic,
Natural deductio	n sys	tem, Axiomatic system, Semantic tableau system in pro	posi	itiona	ul lo	gic,
Resolution refutat	t10n 1r	n propositional logic, Predicate logic, Logic programming.			1	1
Knowledge Rep	resen	tation: Introduction, Approaches to knowledge representa	tion,	, Kn	owle	dge
representation u	sing	semantic network, Extended semantic networks for	KR,	Kn	owle	dge
INIT III	ng Ira	imes.	Lo	atura	LIro.	
Fynert System s	nd A	nnlications: Introduction Phases in building expert system	LC B	vner	t eve	tem
architecture Exp	ert si	stems Vs Traditional systems. Truth maintenance system	$\Delta = \Delta$	nnlic	t sys ation	of
expert systems L	ist of	shells and tools), 1 1	ppne	ation	01
Uncertainty Me	asure	- Probability Theory: Introduction Probability theory	Ba	vesia	n he	lief
networks. Certain	tv fac	tor theory. Dempster-Shafer theory.	Du	y cond		ner
UNIT - IV			Le	cture	Hrs:	
Machine-Learni	ng I	Paradigms: Introduction. Machine learning systems.	sup	ervis	ed	and
unsupervised lear	ning,	Inductive learning, Learning decision trees, Deductive learning	ning	g, Ch	usteri	ing,
Support vector M	achin	es.				U,
Artificial Neura	l Net	works: Introduction, Artificial neural networks, Single- la	yer	feed-	forw	ard
networks, Multi-	layer	feed-forward networks, Radial- Basis function networks,	Desi	ign i	ssues	of
artificial neural neural	etwor	ks, Recurrent networks.		-		
UNIT - V			Le	cture	Hrs:	
Advanced Know	wledg	e Representation Techniques: Case grammars, Seman	ıtic	web	nati	ıral
language process	ing:	Introduction, Sentence analysis phases, Grammars and p	arse	rs, T	ypes	of
parsers, Semantic	analy	vsis, Universal networking knowledge.				
Textbooks:						
1. Saroj Kaushik.	Artifi	cial Intelligence. Cengage Learning, 2011.		. ~		
2. Andreas C. Mi	iller a	nd Sarah Guido, "Introduction to Machine Learning with Py	thon	AG	uide	tor
Data Scientists	″, O'l	Keilly, 1 st Edition, 2016.				
Reference Books	:					
1. Rich, Knight, N	Nair: A	Artificial intelligence, Tata McGraw Hill, Third Edition 2009.	and -			0.4
2. Kussell, Norvig	g: Arti	Inicial intelligence, A Modern Approach, Pearson Education,	2."" E	aitio	n, 20	104.
5. Jason brownle		austical methods for machine learning – Discover now to the	ransi	orm	uata	into
knowledge wit	n pyti	ion, machine learning mastery, 2018.				

Online Learning Resources:

\

Course Code			L	Т	Р	C
Semester	III	COST MANAGEMENT OF ENGINEERING	3	0	0	3
		PROJECTS				
		(Open Elective)				
Course Objective	es:					
Understa	ind t	he cost concepts, Project Management for planning	to e	xecu	tion	of
projects.	.1					
• Enable	them	to comprehend the fundamentals of Project exec	ut10	n, C	Costi	ng,
Qualitita	uve i Adifi	ferent methods to manage the projects, profit planning at	nd c	net		
Apply in	t um	ntermonous mainest manage the projects, profit planning an	Iu C	JSL.	ntart	
		intemporary project management tools and methodologies in	India I o		Hrst	
COST CONCE	ртс	Introduction and Overview of the Strategic Cost Mana	gen	ant	Droc	000
Cost concerts in		ision making: Polovent cost Differential cost	gen	mon	tol o	0055
cost concepts in		Objectives of a Costing System Inventory value	tion		lai C Iroot	ion
and Opportunity	r ono	retional control — Dravision of data for Decision — Mak	ina	- (Ieat	IOII
	r ope	rational control – Provision of data for Decision – Max	Ing.		IIman	
		NEMENT Designs Different types Why to	Le		HIS:	a a4
PROJECT MA	INAC	FEMIENT : Project: meaning – Different types– why to) IIIa	nage	⊱ C	ost
overruns center	s –	various stages of project execution: conception to co	omn	115510	oning	5 -
Project executio	on as	congiomeration of technical and nontechnical activi	ties	– L	Detai	lea
Engineering act	ivitie	s - Pre-project execution main clearances and doc	ume	ents	Proj	ect
team: Role of e	ach r	nember – Importance Project site: Data required with	1 S1g	gnific		3 - 6
Project contract	s — 1	lypes and contents. Project execution Project cost contr	01 –	Ba	r cha	irts
and Network dia	ıgram	1 – Project commissioning: mechanical and process.				
			La	oturo	Ura	
COST BEHAN	VIOR	AND PROFIT PLANNING Cost Rehavior and	Prof	it D	lann	ing
Marginal Costi		Distinction between Marginal Costing and Absorr	tion		otino	ng
Brook oven An	ng –	Cost Volume Profit Analysis Various days	ion		mole	; —
problems Sta	ndor	Costing and Variance Analysis – Various decis	Dor	to A	noly	ing wie
Target costi	nuar	Life Cycle Costing Costing of service sector	1 ar	Juct	in ti	515 mo
- Target costi	ig —	Life Cycle Costing – Costing of service sector –	_	Jusi-	חו-נו דר	
approach – M		and Theory of constraints	IIIIIE	5 –	10	nai
Quality Manage	ment	and Theory of constraints.	I.e		I Luck	
UNII - IV		ENT Activity Deced Cost Management Decel Med	Le	cture D	HIS:	h a d
CUSI MANA	JEN J V	ENI : Activity-Based Cost Management – Bench Mark	hla	- Da Rud	arano	:ea
Performance bu	døets	- Zero-based budgets Measurement of Divisional prof	itah	ility	nrici	ing
decisions includ	ing tr	ansfer pricing.	nuo	iiie y	Prie	
UNIT - V	0		Le	cture	Hrs:	
QUANTITATI	VE	TECHNIQUES : Quantitative techniques for cost	mai	nager	ment	; —
Linear Program	ming	– PERT/CPM – Transportation problems – Assignm	nent	prot	olem	s –
Simulation – Le	earnir	ng Curve Theory.		•		
Textbooks:						
1 Cost As	001104	ing A Managarial Emphasis Drantica Hall of India New		16;		
2. Robert S	Kap	lan Anthony A. Alkinson, Management & Cost Account	ing.	1111.		

REFERENCE BOOKS:

- 1. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher.
- 2. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.
| Course Code | | WASTE TO ENERGY (Open Elective) | L | Т | Р | С |
|-------------|-----|----------------------------------|---|---|---|---|
| Semester | III | | 3 | 0 | 0 | 3 |

Course Objectives:						
• To understand the concept of waste to energy.						
• To analyze technical and management principles for production of energy from						
waste.						
• To apply the best available technologies for waste to energy.						
• To develop the process for thermal conversion, bio-chemical and waste to energy						
conversion.						
UNIT - I	Lecture Hrs:					
Introduction to Energy from Waste : Classification of waste as fuel - Agree	based – Forest					
residue - Industrial waste - MSW - Conversion devices - Incinerators - Gasifiers -						
Digestors.						
UNIT - II	Lecture Hrs:					
Biomass Pyrolysis : Pyrolysis – Types – Slow fast – Manufacture of charcoal – Methods –						
Yields and application – Manufacture of pyrolytic oils and gases – Yields and applications.						
UNIT - III	Lecture Hrs:					
Biomass Gasification : Gasifiers - Fixed bed system - Downdraft and up	draft gasifiers –					
Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement						
for thermal heating - Gasifier engine arrangement and electrical power - H	Equilibrium and					
kinetic consideration in gasifier operation.	-					
UNIT - IV	Lecture Hrs:					
Biomass Combustion : Biomass stoves - Improved challahs - Types, Some	e exotic designs					
- Fixed bed combustors- Types - Inclined grate combustors - Fluidized bed combustors -						
Design – Construction and operation – Operation of all the above biomass of	combustors.					
UNIT - V	Lecture Hrs:					
Introduction to Biogas : Properties of biogas (Calorific value and composition	tion) – Biogas					
plant technology and status - Bio energy system - Design and constructional features -						
Biomass resources and their classification - Biomass conversion processes - Thermo						
chemical conversion - Direct combustion - Biomass gasification -	Pyrolysis and					
liquefaction - Biochemical conversion - anaerobic digestion Types of	biogas Plants –					
Applications - Alcohol production from biomass - Bio diesel production - Urban waste						
to energy conversion – Biomass energy programme in India.						
Textbooks:						
1. Non-Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 19	90.					
2. Biogas Technology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S.						
S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.						
Reference Books:						